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Abstract

In order to illustrate the methods used to work with self-points on elliptic curves, we
present here the explicit computations on one of the curves of conductor 14.

1 Self-points on elliptic curves

Let E/Q be an elliptic curve. Denote by N its conductor. There is a modular parametrization

ϕE : X0(N) � E

which is a surjective morphism defined over Q. For any cyclic subgroup C of order N in E, we
may consider the point xC represented by (E,C) in the moduli space Y0(N). We call the image
PC = ϕE(xC) in E a self-point of E. If instead, we choose a couple (E′, C ′) where E′ is a curve
which is isogenous to E over Q̄ and C ′ is any cyclic subgroup of E′ of order N , we say that
ϕE(E′, C ′) is a higher self-point. The self-point PC is defined over the field of definition Q(C) of
C; a number field of relatively small degree.

It turns out that the properties of these self-points depend very much on the nature of the
curve. For instance they behave differently whether the curve has complex multiplication or not.
In case the conductor is a prime number the situation is fairly easy. In [DW07], we prove the
following theorem.

Theorem 1. Let E/Q be an elliptic curve of prime conductor p = N . Then the point PC is of
infinite order. The only relation among the p + 1 self-points is that the sum of all self-points is
equal to the image of the cusp 0 ∈ X0(p), which is known to be a torsion point in E(Q).

It can be shown that the group generated by the self-points produces a copy of the so-called
Steinberg representation in the Mordell-Weil group of E over the Galois closure K of Q(C).

On the other hand, it is easy to find a self-point which is torsion. Namely there happens to
be a curve E of conductor 27, usually labelled 27a2, which admits a cyclic isogeny of degree 27
defined over Q. If C is the kernel of this isogeny, then the self-point PC must be defined over Q.
But the Mordell-Weil group E(Q) is finite of order 3. So PC is torsion. Note that this curve E has
complex multiplication.

We conjecture that all self-points on a curve with non-integral j-invariant are of infinite order.
Moreover, we believe that for such curves the following gives all the possible relations among the
self-points. Let d be a divisor of N different from N . Let D be any cyclic subgroup of E of order d.
There is a degeneracy map π : X0(N) → X0(d) inducing a map π∗ : J0(d) → J0(N) on Jacobians.
Consider the point xD = (E,D) on X0(d) and the divisor class

π∗
[
(xD)− (∞)

]
=

∑
C⊃D

[
(xC)

]
− π∗

[
(∞)

]
, (1)

where the sum runs over all cyclic subgroups C of order N containing D. This divisor class belongs
to the image of π∗ in J0(N) and hence in the kernel of the map ϕE : J0(N) � E because N is
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the exact conductor of E. This gives the relation that for any d and D, the sum
∑

C⊃D PC is a
torsion point on E.

Under some technical conditions, we are able to prove for semi-stable curves and even for some
curves with composite conductor that the above relations are the only relations among self-points.
See [Wut07]. But the proof is much more involved than the proof of the above theorem. To
illustrate the kind of techniques used when dealing with curves whose conductor is not prime, we
are treating here in this article one single curve of conductor 14. All the computations have been
done using magma [BCP97] and pari-gp [PAR06].

2 Self-points on the curve of conductor 14

Let E be the curve 14a1; it is given by the equation

E = 14a1 : y2 + x y + y = x3 + 4x − 6 .

The Mordell-Weil group over Q contains six points generated by (9,−33). There are six curves in
the isogeny class of E linked as shown in the diagram below.

14a4
3

14a1
3

14a3

14a6

2

3
14a2

2

3
14a5

2

The aim of this section is to prove that there are 24
self-points on this curve, all of infinite order, and that
the only relations among these points are given by (1)

The curve 14a1 has non-split multiplicative reduction
of type I6 with c2 = 3 at 2 and split multiplicative re-
duction of type I3 with c7 = 3 at 7.

For any d dividing N = 14, let Kd be the field inside
Q(E[d]) which is fixed by the scalars of the image of the
Galois representation

ρ̄d : Gal(Q(E[d])/Q) � GL2(Z/dZ) .

Write Gd for the Galois group of Kd/Q, which is a subgroup of PGL2(Z/dZ) via ρ̄d.
Since the curve has a 2-torsion point T = (1,−1) defined over Q, the Galois group G14 =

Gal(K14/Q) is certainly not equal to PGL2(Z/14Z). The projection onto PGL2(F7) is surjective
since E is semi-stable and there is no isogeny of degree 7, see [Ser96]. The Galois group G2 =
Gal(K2/Q) is cyclic with two elements. In fact, K2 is Q(

√
−7).

The only proper Galois subextension L in K7 corresponds to the only proper normal subgroup
PSL2(F7) in PGL2(F7). To determine L it suffices to note that the map from Gal(K7/Q) to
Gal(L/Q) = {±1} sends a Frobenius element at p to (p

7 ), for any prime p - 14. By quadratic
reciprocity (p

7 ) = (−7
p ) and hence L = Q(

√
−7) = K2 is contained in K7. So we see that K14 = K7

is an extension with Galois group PGL2(F7). The self-point PC is defined over the subextension of
K14 fixed by the Borel subgroup of G14 ⊂ PGL2(Z/14Z).

If the self-point PC is constructed with a cyclic subgroup of order 14 containing T ∈ E(Q)[2],
then PC is defined over a degree 8 extension of Q inside K14, otherwise over a degree 16 extension
inside K14 containing Q(

√
−7). The relations induced by the degeneracy map from X0(2) are the

following: The sum of the 8 self-points of degree 8 is torsion. The remaining 16 self-points form
two groups which each sum up to a torsion point. Finally there are the relations coming from
X0(7) involving each 3 points, one of degree 8 and two of degree 16.

For any divisor d of N = 14, let Vd be a Q-vector space of maps f : P1(Z/dZ) → Q. Endowing
Vd with the obvious action of PGL2(Z/dZ), it becomes a Q[Gd]-module. Put

Wd =
{

f ∈ Vd

∣∣∣∣ ∑
x∈P1

f(x) = 0
}

which is a Q[Gd]-submodule of Vd. For d = 2 or 7, the dimension of Wd is #P1(Z/dZ)− 1 = d.
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For d = 2, we find that W2 decomposes as 1 ⊕ 1(
√
−7) where 1(

√
−7) is the 1-dimensional

Q-vector space with Galois action by the Dirichlet character associated to K2 = Q(
√
−7). Now it is

not difficult to show that W7 is an irreducible Q[H7]-module with H7 = Gal(K7/K2) = PSL2(F7).
The representation W7 is called a Steinberg representation.

Since P1(Z/14Z) ∼= P1(F7)× P1(F2), we find that W14 decomposes as

W14 = W7 ⊗W2 = W7 ⊕W7(
√
−7)

into irreducible Q[G14]-modules. Here W7(
√
−7) is the twist of W7 by 1(

√
−7).

Proposition 2. All the self-points PC on E =14a1 are of infinite order.

Proof. We use first the same approach as in the proof of theorem 1. Fix an embedding of Q̄ into
Q̄7. The curve E has split multiplicative reduction at p = 7, so it is isomorphic to a Tate curve
Q×

7 /qZ
E with

qE = 6 · 73 + 4 · 74 + 6 · 75 + 76 + 3 · 77 + O(78) .

Under this isomorphism the rational 2-torsion point T = (1,−1) corresponds to −1 modulo qZ
E.

So there is a cyclic subgroup C0 of order 14 containing T such that x0 = (E,C0) is close to ∞ on
X0(14)(Q̄7), i.e. C0

∼= µ[14] over Q̄7. So x1 belongs to the neighbourhood of ∞ parametrized by q
as described in [KM85]. We can apply the formula used in the proof of proposition 3 in [DW07].
We get

logE(PC0) = qE +
a2

2
q2

E +
a3

3
q3

E + · · · = 6 · 73 + 4 · 74 + 6 · 75 + 4 · 76 + 4 · 77 + O(78)

where logE : Ê(pZZp) � pZZp is the formal p-adic logarithm and

fE =
∑
n>0

an qn = q − q2 − 2 q3 + q4 + 2 q6 + · · ·

is the newform associated to the isogeny class of E. Hence we find that the self-point

PC0 =
(
7−6 · (1 + 3 · 7 + 4 · 72 + 73 + 2 · 74 + O(75)), 7−9 · (1 + 7 + 2 · 72 + 2 · 73 + 74 + O(75))

)
is of infinite order in E(Q7). So all the self-points conjugate to PC0 are of infinite order; these are
exactly the 8 self-points over the degree 8 extension corresponding to cyclic subgroups C of order
14 containing T .

Let now C1 be a cyclic subgroup of order 14 in E such that its 7-torsion part corresponds to
µ[7] over Q7, but the 2-torsion part corresponds to u =

√
qE and not to µ[2]. Then x1 = (E,C1)

is not in the neighbourhood of ∞ ∈ X0(14) parametrized by q. But if we apply the Atkin-Lehner
involution w2 to x1 we find a point w2(x1) which close to ∞ with q = u. Note that Atkin and
Lehner have shown in [AL70] that ϕE(w2(x1)) = −a2 · ϕE(x1) = PC1 . Using the same formula as
above we find

logE(PC1) = u +
a2

2
u2 +

a3

3
u3 + · · ·

which converges in Q7(
√
−7) as |u|7 = 73/2. Also the exponential map expE converges and we find

a point of infinite order in E defined over Q7(
√
−7), the completion of K2 at the unique place

above 7. The conjugates of PC1 are exactly the 16 remaining self-points defined over an extension
of degree 16 of Q.

Theorem 3. The self-points for E =14a1 generate a group of rank 14 in E(K14).

In other words we will show that the 10 relations described using (1) are the only relations
among the 24 self-points.
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Proof. There is a G14-equivariant map

ι : V14 � E(K14)⊗Q
eC � PC

where eC : P1(Z/14Z) � Q is the map sending C to 1 and all other points to 0. The relations
from X0(2) show that the subspaces consisting of f ∈ V14 such that f(C) = f(C ′) for all C, C ′

with C[2] = C ′[2]. Similarly for X0(7). We deduce that ι induced a G14-equivariant map from W14

to E(K14)⊗Q. We know that W14 splits into two irreducible Q[G14]-modules. By the first part of
the proof of the previous proposition, we know that the map from W7 to the Mordell-Weil group
is non-trivial (and hence injective) as there is a self-point of infinite order PC0 . The second part
shows that the map from W7(

√
−7) is injective. So the image of ι has dimension 7 + 7 = 14.

For this curve, we may also compute the self-points explicitly, at least those of degree 8 over
Q. The field Q(C) is defined by a root θ of the polynomial

X8 − 3 X7 + 7 X6 + 7 X5 + 35 X4 + 63 X3 + 77 X2 + 53 X − 40 .

The class group of Q(C) is of order 2 generated by any of the two primes above 2. The self-point
PC is given by

x(PC) = 2−6·5−1·7−1·101−1·(274149 θ7−592823 θ6+400715 θ5+5060363 θ4

+10722663 θ3+9077635 θ2−927367 θ−2264895)

y(PC) = 2−9·7−1·101−1·(8040223 θ7−31741605 θ6+51338609 θ5+104708513 θ4

+72654981 θ3−147056119 θ2−245694757 θ+117487875)

Its canonical height is ĥ(PC) = 1.84388.

3 Two higher self-points on the curve of conductor 14

We use now the isogenies E → E′ defined over Q to produce higher self-points ϕE(E′, C ′). The
higher self-points where E′ is 2-isogenous to E do not give us any new points : In fact (E′, C ′)
is equal to w2(xC), where w2 is the Atkin-Lehner involution on X0(14) for some C. So as before
ϕE(E′, C ′) = −a2 · ϕE(E,C) = PC .

But if we use a 3-isogenies on E → E′, we discover a new points. Fix a cyclic subgroup C of
order 14 in E. Let C ′ be the image of C in E′, which is cyclic of order 14 in E′. The self-point
P ′

C = ϕE(E′, C ′) is a point defined over Q(C), the field of definition of PC . The point providing
from the curve 14a4 is

x(P ′
C) = 2−2·5−1·7−1·101−1·(−704 θ7+1848 θ6−4235 θ5−3423 θ4−10458 θ3−4970 θ2+11977 θ+10925)

y(P ′
C) = 2−3·7−1·(11 θ7−35 θ6+21 θ5−105 θ4−175 θ3−273 θ2−217 θ+93)

and the point from the curve 14a3 is

x(P ′′
C ) = 5−1·7−1·101−1·(368 θ7−1976 θ6+8400 θ5−13464 θ4+24496 θ3+43480 θ2+32016 θ+92615)

y(P ′′
C ) = 5−1·7−1·101−1·(−884 θ7−3992 θ6+21100 θ5−87408 θ4−30388 θ3−150160 θ2−678868 θ−406215) .

The canonical heights are ĥ(P ′
C) = 1.35464 and ĥ(P ′′

C ) = 2.62801 which gives a height determinant
of 30.7767. This shows that the three points PC , P ′

C and P ′′
C are linearly independent. Therefore

rank E(Q(C)) > 3. We do not know any way of proving the independence of these three points in
any other way than explicitly computing the points.

With a 2-descent, we find that the 2-Selmer group Sel2(E/Q(C)) is an F2-vector space of dimen-
sion 6. Since the torsion subgroup of E(Q(C)) is still of order six, we deduce that rank(E(Q(C)) 6
5.
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By the formula in [Dok05], we can compute easily that the root number, defined as a product
of local root numbers, is w(E/Q(C)) = −1. Using the methods of Shuter in [Shu06], we also find
that the 7-Selmer group must have odd rank. Hence unless the Tate-Shafarevich group of E over
Q(C) is infinite, we must believe that the rank of E over Q(C) is either 3 or 5.
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