Why Iwasawa theorists need *p*-adic L-functions

christian wuthrich

February 23

• k a finite field with q elements

Tate $V_p E$ The temple V gh
eq hg

- k a finite field with q elements
- K a global field with constants k

Tate $V_p E$ The temple V gh
eq hg

- k a finite field with q elements
- K a global field with constants k
- E/K an elliptic curve with $j(E) \not\in k$

- k a finite field with q elements
- K a global field with constants k
- E/K an elliptic curve with $j(E) \not\in k$
- $L(E/K, s) = f_E(T)$ with $T = q^{-s}$ and $f_E(T) \in \mathbb{Z}[T]$

- k a finite field with q elements
- K a global field with constants k
- E/K an elliptic curve with $j(E) \not\in k$
- ullet $L(E/K,s)=f_{\scriptscriptstyle E}(T)$ with $T=q^{-s}$ and $f_{\scriptscriptstyle E}(T)\in\mathbb{Z}[T]$

Birch and Swinnerton-Dyer conjecture

• $\operatorname{ord}_{s=1} L(E/K, s) = \operatorname{ord}_{(1-qT)} f_E(T) = \operatorname{rk} E(K)$.

- k a finite field with q elements
- K a global field with constants k
- E/K an elliptic curve with $j(E) \not\in k$
- $L(E/K, s) = f_E(T)$ with $T = q^{-s}$ and $f_E(T) \in \mathbb{Z}[T]$

Birch and Swinnerton-Dyer conjecture

- $\operatorname{ord}_{s=1} L(E/K, s) = \operatorname{ord}_{(1-aT)} f_E(T) = \operatorname{rk} E(K)$.
- The leading term is $\operatorname{Reg}(E/K) \cdot \# \coprod (E/K)$.

- k a finite field with q elements
- K a global field with constants k
- E/K an elliptic curve with $j(E) \notin k$
- $L(E/K, s) = f_E(T)$ with $T = q^{-s}$ and $f_E(T) \in \mathbb{Z}[T]$

Birch and Swinnerton-Dyer conjecture

- $\operatorname{ord}_{s=1} L(E/K, s) = \operatorname{ord}_{(1-aT)} f_E(T) = \operatorname{rk} E(K)$.
- The leading term is $\operatorname{Reg}(E/K) \cdot \# \coprod (E/K)$.

Artin-Tate

• $\operatorname{ord}_{(1-aT)} f_E(T) \geqslant \operatorname{rk} E(K)$

- k a finite field with q elements
- K a global field with constants k
- E/K an elliptic curve with $j(E) \not\in k$
- $L(E/K, s) = f_E(T)$ with $T = q^{-s}$ and $f_E(T) \in \mathbb{Z}[T]$

Birch and Swinnerton-Dyer conjecture

- The leading term is $\operatorname{Reg}(E/K) \cdot \# \coprod (E/K)$.

Artin-Tate

- ord_(1-aT) $f_E(T) \geqslant \operatorname{rk} E(K)$
- If $\coprod (E/K)(p)$ is finite for one prime p, then BSD holds.

 $K \iff C/k$, a smooth projective curve

 $K \iff C/k$, a smooth projective curve $E/K \iff \mathcal{E} \to C$, an elliptic surface

$$\begin{array}{cccc} K & \leftrightsquigarrow & C/k \text{, a smooth projective curve} \\ E/K & \leftrightsquigarrow & \mathcal{E} \to C \text{, an elliptic surface} \\ E(K) & \leftrightsquigarrow & \mathrm{NS}(\mathcal{E}) \end{array}$$

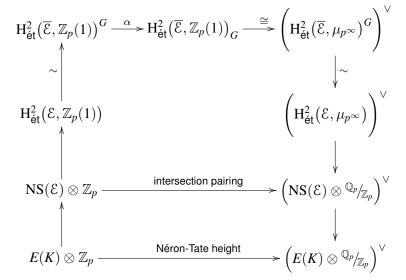
$$\begin{array}{ccc} K & \leftrightsquigarrow & C/k \text{, a smooth projective curve} \\ E/K & \leftrightsquigarrow & \mathcal{E} \to C \text{, an elliptic surface} \\ E(K) & \leftrightsquigarrow & \mathrm{NS}(\mathcal{E}) \\ \mathrm{Sel}_p(E/K) & \leftrightsquigarrow & \mathrm{H}^2_{\mathrm{\acute{e}t}}\big(\mathcal{E},\mathbb{Z}_p(1)\big) \end{array}$$

$$K \iff C/k$$
, a smooth projective curve $E/K \iff \mathcal{E} \to C$, an elliptic surface $E(K) \iff \mathrm{NS}(\mathcal{E})$ $\mathrm{Sel}_p(E/K) \iff \mathrm{H}^2_{\operatorname{\acute{e}t}}\big(\mathcal{E},\mathbb{Z}_p(1)\big)$ $L(E/K,s)=f_{\mathcal{E}}(T) \iff \det(1-\operatorname{Frob} T) \text{ on } \mathrm{H}^2_{\operatorname{\acute{e}t}}\big(\overline{\mathcal{E}},\mathbb{Z}_p(1)\big)$

Here
$$\operatorname{Frob} \in G = \operatorname{Gal}(\bar{k}/k)$$
 and $\overline{\mathcal{E}} = \mathcal{E} \times \bar{k}$

$$\begin{split} & \operatorname{H}^{2}_{\operatorname{\acute{e}t}}(\overline{\mathcal{E}}, \mathbb{Z}_{p}(1))^{G} \stackrel{\alpha}{\longrightarrow} \operatorname{H}^{2}_{\operatorname{\acute{e}t}}(\overline{\mathcal{E}}, \mathbb{Z}_{p}(1))_{G} \stackrel{\cong}{\longrightarrow} \left(\operatorname{H}^{2}_{\operatorname{\acute{e}t}}(\overline{\mathcal{E}}, \mu_{p^{\infty}})^{G} \right)^{\vee} \\ & & & \downarrow^{\sim} \\ & & \downarrow^{\sim} \\ & & \left(\operatorname{H}^{2}_{\operatorname{\acute{e}t}}(\mathcal{E}, \mathbb{Z}_{p}(1)) \right) & \left(\operatorname{H}^{2}_{\operatorname{\acute{e}t}}(\mathcal{E}, \mu_{p^{\infty}}) \right)^{\vee} \end{split}$$

$$\begin{split} & \operatorname{H}^{2}_{\operatorname{\acute{e}t}}(\overline{\mathcal{E}}, \mathbb{Z}_{p}(1))^{G} \stackrel{\alpha}{\longrightarrow} \operatorname{H}^{2}_{\operatorname{\acute{e}t}}(\overline{\mathcal{E}}, \mathbb{Z}_{p}(1))_{G} \stackrel{\cong}{\longrightarrow} \left(\operatorname{H}^{2}_{\operatorname{\acute{e}t}}(\overline{\mathcal{E}}, \mu_{p^{\infty}})^{G} \right)^{\vee} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$



Lemma

Let be M a \mathbb{Z}_p -module of finite type with a G-action and $\alpha \colon M^G \to M \to M_G$.

• Then $ker(\alpha)$ and $coker(\alpha)$ are finite if and only if

$$\operatorname{ord}_T \det(T - 1 + \operatorname{Frob} | M) = \operatorname{rk} M^G.$$

• If so, then the leading term is

$$\frac{\#\operatorname{coker}(\alpha)}{\#\ker(\alpha)},$$

up to a unit in \mathbb{Z}_p .

K number field

Tate $V_{p}E$ The temple V $gh
eq h_{2}$

- K number field
- *E/K* elliptic curve

Tate $V_{m p}E$ The temple V gh
eq h

- K number field
- *E/K* elliptic curve
- *p* > 2 prime

- K number field
- E/K elliptic curve
- p > 2 prime
- K_{∞}/K a \mathbb{Z}_p -extension with group Γ

- K number field
- E/K elliptic curve
- p > 2 prime
- K_{∞}/K a \mathbb{Z}_p -extension with group Γ
- $\bullet \ [K_n:K]=p^n$

- K number field
- E/K elliptic curve
- p > 2 prime
- K_{∞}/K a \mathbb{Z}_p -extension with group Γ
- $\bullet \ [K_n:K]=p^n$
- Σ a finite set of places in K, containing the bad and infinite

- K number field
- E/K elliptic curve
- p > 2 prime
- K_{∞}/K a \mathbb{Z}_p -extension with group Γ
- $\bullet \ [K_n:K]=p^n$
- Σ a finite set of places in K, containing the bad and infinite
- $\bullet \ \operatorname{H}^{i}_{\scriptscriptstyle{\Sigma}}(K,\cdot) = \operatorname{H}^{i}(G_{\scriptscriptstyle{\Sigma}}(K),\cdot)$

The fine Selmer group

$$Y_0 = \ker \Big(H_{\Sigma}^2(K, T_p E) \to \bigoplus_{v \in \Sigma} H^2(K_v, T_p E) \Big)$$

The fine Selmer group

$$Y_0 = \ker \Big(H_{\Sigma}^2(K, T_p E) \to \bigoplus_{v \in \Sigma} H^2(K_v, T_p E) \Big)$$

Y₀ is dual to

$$\ker\left(\mathrm{H}^1_{\Sigma}(K, E_{p^{\infty}}) \to \bigoplus_{v \in \Sigma} \mathrm{H}^1(K_v, E_{p^{\infty}})\right)$$

• The fine Selmer group

$$Y_0 = \ker \Big(H_{\Sigma}^2(K, T_p E) \to \bigoplus_{v \in \Sigma} H^2(K_v, T_p E) \Big)$$

Y₀ is dual to

$$\ker\Big(\mathrm{H}^1_{\Sigma}(K, E_{p^{\infty}}) \to \bigoplus_{v \in \Sigma} \mathrm{H}^1(K_v, E_{p^{\infty}})\Big)$$

• $(Y_0)^{\vee}$ contains the fine Mordell-Weil group

$$\mathcal{M} = \ker \Big(E(K) \otimes \mathbb{Q}_p /_{\mathbb{Z}_p} \to \bigoplus_{v \mid p} E(K_v) \otimes \mathbb{Q}_p /_{\mathbb{Z}_p} \Big)$$

(probably with finite index)

• The fine Selmer group

$$Y_n = \ker \Big(\mathrm{H}^2_{\Sigma}(K_n, T_p E) \to \bigoplus_{v \in \Sigma} \mathrm{H}^2(K_{n,v}, T_p E) \Big)$$

• Y_n is dual to

$$\ker\Big(\mathrm{H}^1_{\Sigma}(K_n,E_{p^{\infty}}) \to \bigoplus_{v \in \Sigma} \mathrm{H}^1(K_{n,v},E_{p^{\infty}})\Big)$$

• $(Y_0)^{\vee}$ contains the fine Mordell-Weil group

$$\mathcal{M} = \ker \Big(E(K) \otimes \mathbb{Q}_p /_{\mathbb{Z}_p} \to \bigoplus_{v \mid p} E(K_v) \otimes \mathbb{Q}_p /_{\mathbb{Z}_p} \Big)$$

(probably with finite index)

$$\bullet \ \ Y = \varprojlim Y_n$$

If this p-adic height pairing is non-degenerate, then

If this p-adic height pairing is non-degenerate, then

• Y is Λ -torsion

If this *p*-adic height pairing is non-degenerate, then

- Y is Λ-torsion
- $\bullet \ \mathrm{H}^2_{\scriptscriptstyle \Sigma}(K_\infty, E_{p^\infty}) = 0$

If this *p*-adic height pairing is non-degenerate, then

- Y is Λ-torsion
- $\bullet \ \mathrm{H}^2_{\Sigma}(K_{\infty}, E_{p^{\infty}}) = 0$
- " \sim ?" is " \sim ".

If this *p*-adic height pairing is non-degenerate, then

- Y is Λ -torsion
- $\bullet \ \mathrm{H}^2_{\Sigma}(K_{\infty}, E_{p^{\infty}}) = 0$
- " \sim ?" is " \sim ".

Weak Leopoldt conjecture

Lemma

Let be Y a torsion Λ -module and $\alpha \colon Y^{\Gamma} \to Y_{\Gamma}$.

• Then $ker(\alpha)$ and $coker(\alpha)$ are finite if and only if

$$\operatorname{ord}_T \operatorname{char}_{\Lambda}(Y) = \operatorname{rk} Y^{\Gamma}.$$

• If so, then the leading term is

$$\frac{\#\operatorname{coker}(\alpha)}{\#\ker(\alpha)},$$

up to a unit in \mathbb{Z}_p .

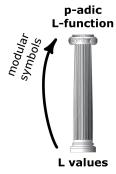
L values

Selmer groups

p-adic L-function

L values

Selmer groups



Selmer groups

Suppose E/\mathbb{Q} has good reduction.

Suppose E/\mathbb{Q} has good reduction. Let α be a root of $X^2 - a_p X + p$ with $\operatorname{ord}_p(\alpha) < 1$.

Suppose E/\mathbb{Q} has good reduction. Let α be a root of $X^2 - a_p X + p$ with $\operatorname{ord}_p(\alpha) < 1$.

p-adic L-function

There exists a *p*-adic L-function $\mathcal{L}_{\alpha} \in \Lambda \otimes \mathbb{Q}_p$ such that

$$\mathcal{L}_{\alpha}(\chi) = \chi(\mathcal{L}_{\alpha}) = \frac{p^{n}}{\alpha^{n}} \cdot \frac{L(E, \chi^{-1}, 1)}{\tau(\chi^{-1}) \cdot \Omega}$$

for all characters $1 \neq \chi$ on Γ of conductor p^n .

• $D_p(E)=\mathbb{Q}_p\omega\oplus\mathbb{Q}_p\eta$, Dieudonné module with $\eta=x\omega$ with φ

- $D_p(E) = \mathbb{Q}_p\omega \oplus \mathbb{Q}_p\eta$, Dieudonné module with $\eta = x\omega$ with φ
- $\Lambda \subset \mathcal{H} \subset \mathbb{Q}_p[\![T]\!]$, logarithmic growth

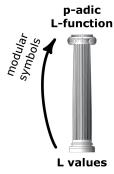
- $D_p(E) = \mathbb{Q}_p \omega \oplus \mathbb{Q}_p \eta$, Dieudonné module with $\eta = x\omega$ with φ
- $\Lambda \subset \mathcal{H} \subset \mathbb{Q}_p[\![T]\!]$, logarithmic growth
- There exists a p-adic L-function $\mathcal{L}_p \in \mathcal{H} \otimes D_p(E)$ such that

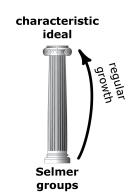
$$(p\varphi)^n \chi(\mathcal{L}_p) = \frac{L_{\{p\}}(E, \chi^{-1}, 1)}{\tau(\chi^{-1}) \cdot \Omega} \cdot \omega$$

- $D_p(E) = \mathbb{Q}_p \omega \oplus \mathbb{Q}_p \eta$, Dieudonné module with $\eta = x\omega$ with φ
- $\Lambda \subset \mathcal{H} \subset \mathbb{Q}_p[\![T]\!]$, logarithmic growth
- There exists a p-adic L-function $\mathcal{L}_p \in \mathcal{H} \otimes D_p(E)$ such that

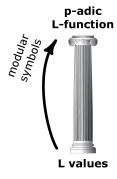
$$(p\varphi)^n \chi(\mathcal{L}_p) = \frac{L_{\{p\}}(E, \chi^{-1}, 1)}{\tau(\chi^{-1}) \cdot \Omega} \cdot \omega$$

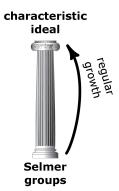
• Written in the basis of eigenvectors e_{α} , e_{β} such that $e_{\alpha} + e_{\beta} = \omega$ on $D_p(E)$, we get $\mathcal{L}_p = \mathcal{L}_{\alpha}e_{\alpha} + \mathcal{L}_{\beta}e_{\beta}$





Main Conjecture





•
$$\mathbb{H}^1_{\mathsf{Iw}} = \varprojlim H^1_{\Sigma}(\mathbb{Q}_n, T_p E) = H^1_{\Sigma}(\mathbb{Q}, T_p E \otimes \Lambda)$$

- $\mathbb{H}^1_{\mathsf{IW}} = \varprojlim H^1_{\Sigma}(\mathbb{Q}_n, T_p E) = H^1_{\Sigma}(\mathbb{Q}, T_p E \otimes \Lambda)$
- Coleman map by Perrin-Riou (logarithme élargi)

Col:
$$\mathbb{H}^1_{\mathsf{Iw}} \to \mathcal{H} \otimes D_p(E)$$

- $\mathbb{H}^1_{\mathsf{IW}} = \varprojlim H^1_{\Sigma}(\mathbb{Q}_n, T_p E) = H^1_{\Sigma}(\mathbb{Q}, T_p E \otimes \Lambda)$
- Coleman map by Perrin-Riou (logarithme élargi)

Col:
$$\mathbb{H}^1_{\mathsf{IW}} \to \mathcal{H} \otimes D_p(E)$$

• *J* the image of Col

- $\mathbb{H}^1_{\mathsf{IW}} = \varprojlim H^1_{\Sigma}(\mathbb{Q}_n, T_p E) = H^1_{\Sigma}(\mathbb{Q}, T_p E \otimes \Lambda)$
- Coleman map by Perrin-Riou (logarithme élargi)

Col:
$$\mathbb{H}^1_{\mathsf{IW}} \to \mathcal{H} \otimes D_p(E)$$

- J the image of Col
- $I = J \cdot \operatorname{char}_{\Lambda}(Y)$

- $\mathbb{H}^1_{\mathsf{Iw}} = \varprojlim H^1_{\Sigma}(\mathbb{Q}_n, T_p E) = H^1_{\Sigma}(\mathbb{Q}, T_p E \otimes \Lambda)$
- Coleman map by Perrin-Riou (logarithme élargi)

Col:
$$\mathbb{H}^1_{\mathsf{Iw}} \to \mathcal{H} \otimes D_p(E)$$

- J the image of Col
- $I = J \cdot \operatorname{char}_{\Lambda}(Y)$
- Think of I as the char_{Λ} of the usual Selmer group

- $\mathbb{H}^1_{\mathsf{IW}} = \underline{\lim} \, \mathrm{H}^1_{\Sigma}(\mathbb{Q}_n, T_p E) = \mathrm{H}^1_{\Sigma}(\mathbb{Q}, T_p E \otimes \Lambda)$
- Coleman map by Perrin-Riou (logarithme élargi)

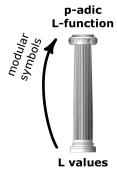
Col:
$$\mathbb{H}^1_{\mathsf{Iw}} \to \mathcal{H} \otimes D_p(E)$$

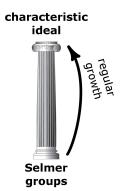
- J the image of Col
- $I = J \cdot \operatorname{char}_{\Lambda}(Y)$
- Think of I as the $char_{\Lambda}$ of the usual Selmer group

Main conjecture

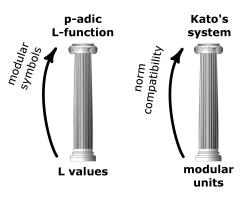
$$\mathcal{L}_p \Lambda = I$$

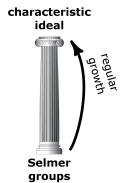
Main Conjecture

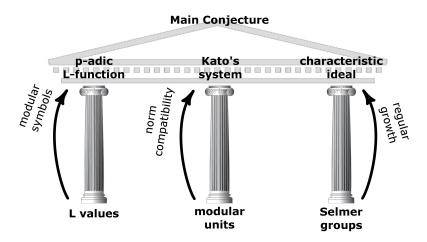


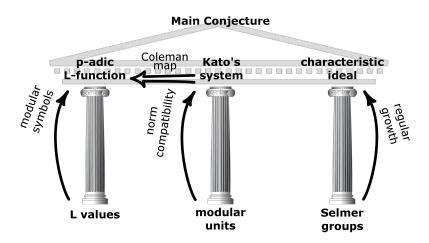


Main Conjecture









$$\bullet \ \mathbb{H}^1_{\mathsf{lw}} = \varprojlim H^1_{\Sigma}(\mathbb{Q}_n, T_p E)$$

- $\bullet \ \mathbb{H}^1_{\mathsf{Iw}} = \varprojlim H^1_{\Sigma}(\mathbb{Q}_n, T_p E)$
- ullet Kato's Euler system $\mathbf{c} \in \mathbb{H}^1_{\mathsf{lw}} \otimes \mathbb{Q}_p$

- $\bullet \ \mathbb{H}^1_{\mathsf{lw}} = \varprojlim \mathsf{H}^1_{\Sigma}(\mathbb{Q}_n, T_p E)$
- Kato's Euler system $\mathbf{c} \in \mathbb{H}^1_{\mathsf{lw}} \otimes \mathbb{Q}_p$
- Coleman map

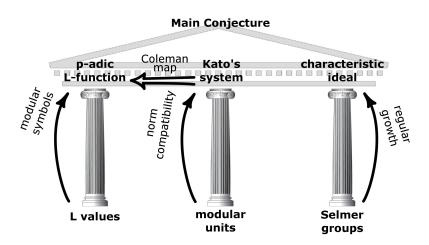
Col:
$$\mathbb{H}^1_{\mathsf{Iw}} \to \mathcal{H} \otimes D_p(E)$$

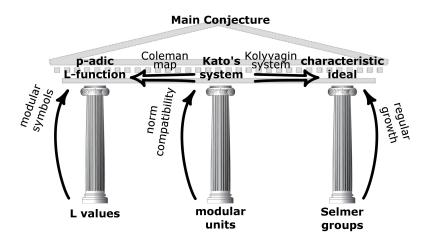
- $\bullet \ \mathbb{H}^1_{\mathsf{lw}} = \varprojlim H^1_{\Sigma}(\mathbb{Q}_n, T_p E)$
- ullet Kato's Euler system ${f c}\in {\mathbb H}^1_{\sf lw}\otimes {\mathbb Q}_p$
- Coleman map

Col:
$$\mathbb{H}^1_{\mathsf{Iw}} \to \mathcal{H} \otimes D_p(E)$$

Kato

$$Col(\mathbf{c}) = \mathcal{L}_p$$





Kato's Theorem

Suppose E/\mathbb{Q} has good reduction at p and that $\rho_p \colon \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(E[p])$ is surjective.

Kato's Theorem

Suppose E/\mathbb{Q} has good reduction at p and that $\rho_p\colon \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(E[p])$ is surjective.

• Y is Λ -torsion

Kato's Theorem

Suppose E/\mathbb{Q} has good reduction at p and that $\rho_p \colon \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(E[p])$ is surjective.

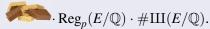
- Y is Λ -torsion
- \mathcal{L}_p belongs to I

p-adic Birch and Swinnerton-Dyer conjecture

 \mathcal{L}_p vanishes to the order $\operatorname{rk} E(\mathbb{Q})$

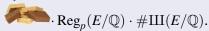
p-adic Birch and Swinnerton-Dyer conjecture

 \mathcal{L}_p vanishes to the order $\operatorname{rk} E(\mathbb{Q})$ and the leading term is



p-adic Birch and Swinnerton-Dyer conjecture

 \mathcal{L}_p vanishes to the order $\operatorname{rk} E(\mathbb{Q})$ and the leading term is



Theorem

• ord_T $\mathcal{L}_p \geqslant \operatorname{rk} E(\mathbb{Q})$.

p-adic Birch and Swinnerton-Dyer conjecture

 \mathcal{L}_p vanishes to the order $\operatorname{rk} E(\mathbb{Q})$ and the leading term is

Theorem

- ord_T $\mathcal{L}_p \geqslant \operatorname{rk} E(\mathbb{Q})$.
- If we have equality and the p-adic height is non-degenerate, then leading term gives an upper bound for $\# \coprod (E/\mathbb{Q})(p)$.

So, why do we need *p*-adic L-functions?

To prove the weak Leopoldt conjecture

ate $V_p E$ The temple V gh
eq hg

So, why do we need *p*-adic L-functions?

- To prove the weak Leopoldt conjecture
- To have an upper bound on the characteristic series

ate $V_p E$ The temple V gh
eq hg

So, why do we need *p*-adic L-functions?

- To prove the weak Leopoldt conjecture
- To have an upper bound on the characteristic series
- ullet Compute Selmer groups of \mathbb{Q}_{∞}

So, why do we need *p*-adic L-functions?

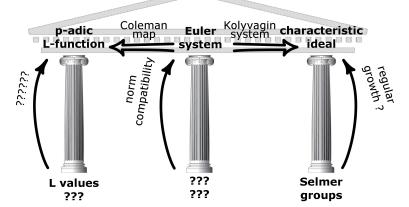
- To prove the weak Leopoldt conjecture
- To have an upper bound on the characteristic series
- \bullet Compute Selmer groups of \mathbb{Q}_{∞}
- Compute $E(\mathbb{Q}_{\infty})$

ate $V_p E$ The temple $m{V}$ gh
eq hg

Iwasawa theory for Galois representations

V a finite dimensional vector space with an action by $\mathrm{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$. Suppose V is crystalline.

Main Conjecture



Non-commutative Iwasawa theory

non-commutative Main Conjecture

