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Artin-Tate’s analogue of BSD in postitive characteristic

@ £ afinite field with ¢ elements

@ K a global field with constants k&

@ E/K an elliptic curve with j(E) & k

@ L(E/K,s) =f(T)with T = g and f,(T) € ZI[T]

Birch and Swinnerton-Dyer conjecture
@ ords— L(E/K,s) = ord(i_q1) fe(T) = rk E(K).

o The leading term is #* & Reo(E/K) - #TT1(E/K).

Artin-Tate

@ ord(|_q7) fe(T) = tk E(K)
o If III(E/K)(p) is finite for one prime p, then BSD holds.
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Translation to geometry

K «~

E/K o

Sel, (E/K) e
L(E/K,s) =f(T) <~

C/k, a smooth projective curve
& — C, an elliptic surface
NS(€)

HE(8.2,(1)) )
det(1 — Frob T) on HZ,(€,Z,(1))

Here Frob € G = Gal(k/k) and € = € x k
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Lemma

Let be M a Z,-module of finite type with a G-action and
a: MS — M — Mg.

@ Then ker(«) and coker(«) are finite if and only if
ordr det(T — 1 + Frob |M) = rk M©.
@ If so, then the leading term is

# coker(a)
#ker(a)

up to a unit in Z,.
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Iwasawa theory for elliptic curves

@ K number field

@ E/K elliptic curve

@ p > 2 prime

@ K. /K a Z,-extension with group I'

® [K,:K|=p"

@ X afinite set of places in K, containing the bad and infinite
® HL(K, ) = H(Gx(K), )



@ The fine Selmer group

= ker (H2 — PH (K, ,TE) )

vEX



@ The fine Selmer group

Yo =

@ Y, is dualto

ker <H2

ker (HlE (K ,E

— PH(K, ,TE)

vEX

— PH'K, ,E,,oo))

vEX



The temple

@ The fine Selmer group

Yo = ker <H2

@ Y, is dualto

ker (HlE (K ,E

— PH(K, ,TE)

vEX

— DH'(K, Ep))
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@ The fine Selmer group
ker(H2 @Hz (Knws TE) )
vEX

@ Y, is dualto

ker( (Kny Epe) — D H' (Kn, Epee )

vEY

@ (Yy)V contains the fine Mordell-Weil group

N—

M = ker(E(K)@QP/Zp — PEK,) ® Y,
vlp

(probably with finite index)
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duality YF a

(le (KOO= Ep°° )F> !

N?T -

\ -adic height
(H’g (K, Epee )) pradie el Yo

If this p-adic height pairing is non-degenerate, then
@ Y is A-torsion
® H%(KmvEp“) =0

Y “N?” iS ~

Weak Leopoldt conjecture
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Lemma

Let be Y a torsion A-module and «: Y'' — Yr.
@ Then ker(«) and coker(«) are finite if and only if

ordy char, (Y) = rk YT
@ If so, then the leading term is

# coker(a)
#ker(a) ’

up to a unit in Z,.
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Suppose E/Q has good reduction. Let « be a root of
X% — a, X + p with ord,,(a) < 1.

p-adic L-function
There exists a p-adic L-function L, € A ® Q, such that

n =l
Lal) = x(La) = £ m

for all characters 1 # x on I' of conductor p".
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@ D,(E) = Q,w @ Q,n, Dieudonné module with = xw with ¢
@ A C H c Q,[T], logarithmic growth
@ There exists a p-adic L-function £, € H ® D,(E) such that

_ Ly (E.x~"1) _
(7 -Q

@ Written in the basis of eigenvectors e,, ¢3 such that
eq +eg=wonD,(E), weget L, =Lqe, + Lgep

(pe)"x(£p)
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o Hj, = limHL(Q,, T,E) = HL(Q, TE® A)
@ Coleman map by Perrin-Riou (logarithme élargi)

Col: wa — K ®Dp(E)

@ J the image of Col
@ [ =J-char,(Y)
@ Think of I as the char, of the usual Selmer group

Main conjecture

LoA=1
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Kato
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Kato’s Theorem

Suppose E/Q has good reduction at p and that
pp: Gal(Q/Q) — Aut(E[p]) is surjective.

@ Y is A-torsion
@ L, belongs to
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p-adic Birch and Swinnerton-Dyer conjecture
L, vanishes to the order tk E(Q) and the leading term is

B Reo (£/Q) - #11(E/Q).

Theorem
@ ordr L, > 1k E(Q).

@ If we have equality and the p-adic height is
non-degenerate, then leading term gives an upper bound

for #ITI(E/Q) (p)-
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So, why do we need p-adic L-functions?

@ To prove the weak Leopoldt conjecture

@ To have an upper bound on the characteristic series
@ Compute Selmer groups of Q.

@ Compute E(Qx)



v

lwasawa theory for Galois representations

V a finite dimensional vector space with an action by Gal(Q/Q).
Suppose V is crystalline.
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p-adic L-function
in a localised K,
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