Extending Kato's result to elliptic curves with *p*-isogenies

Christian Wuthrich

13th January 2006

Abstract

Let E be an elliptic curve without complex multiplication defined over \mathbb{Q} and let p be an odd prime number at which E has good and ordinary reduction. Kato has proved in [Kat04] the first half of the main conjecture for E under the condition that the representation $\rho_p: G_{\mathbb{Q}} \longrightarrow \operatorname{Aut}(T_p E)$ of the absolute Galois group of \mathbb{Q} attached to the Tate module $T_p E$ is surjective. We prove here that the result still holds if the E admits an isogeny of degree p. As a by-product, we show that the p-adic L-functions attached to an elliptic curve with good ordinary reduction at p is always an integral series.11G05, 11G40, 11R23, 11F67

1 Introduction

Let E be an elliptic curve without complex multiplication defined over \mathbb{Q} and let p > 2be a prime number. Suppose that E has good ordinary reduction at p. We denote by $\rho_p: G_{\mathbb{Q}} \longrightarrow \operatorname{Aut}(T_p E)$ the representation of the absolute Galois group of \mathbb{Q} attached to the Tate module $T_p E$.

Let $E_{p^{\infty}}$ be the group of all points on E whose order is a power of p. Let ${}_{\infty}\mathbb{Q}$ be the cyclotomic \mathbb{Z}_{p} -extension and ${}_{n}\mathbb{Q}$ its *n*-th layer. The Selmer group of E is defined as the kernel of the map

$$\mathcal{S}(E/n\mathbb{Q}) = \ker (\mathrm{H}^1(n\mathbb{Q}, E_{p^{\infty}}) \longrightarrow \prod_{\upsilon} \mathrm{H}^1(n\mathbb{Q}_{\upsilon}, E)),$$

where the product runs over all places v in ${}_{n}\mathbb{Q}$. The Pontryagin dual of the direct limit of these groups under the restriction maps

$$X(E/_{\infty}\mathbb{Q}) = \operatorname{Hom}\left(\varinjlim \mathbb{S}(E/_{n}\mathbb{Q}), \mathbb{Q}_{p}/_{\mathbb{Z}_{p}}\right)$$

has naturally the structure of a finitely generated Λ -module, if Λ denotes the Iwasawa algebra of the \mathbb{Z}_p -extension ${}_{\infty}\mathbb{Q}/\mathbb{Q}$. By Theorem 17.4 of [Kat04], we know that $X(E/{}_{\infty}\mathbb{Q})$ is Λ -torsion. The characteristic ideal char $_{\Lambda}(X(E/{}_{\infty}\mathbb{Q}))$ in Λ is an important algebraic object attached to E and p.

On the analytic side, Mazur and Swinnerton-Dyer have constructed in [MSD74] a p-adic L-function $\mathcal{L}_p(E/\mathbb{Q},T)$ in $\Lambda \otimes \mathbb{Q}_p$. See section 3 for more details. It was conjectured that this series has integral coefficients. We will prove the following extension of Proposition 3.7 in [GV00].

Theorem 5.

The analytic p-adic L-function $\mathcal{L}_p(E/\mathbb{Q},T)$ belongs to Λ for all elliptic curves E/\mathbb{Q} with good ordinary reduction at p > 2.

The conclusion can certainly not be extended to the supersingular case since the p-adic L-functions in this case will never be integral. The supersingular case is well explained in [Pol03] where it is shown how one can extract integral power series.

The main conjecture asserts that the element $\mathcal{L}_p(E/\mathbb{Q}, T)$ generates the characteristic ideal char_A($X(E/_{\infty}\mathbb{Q})$). Kato has proved in [Kat04] the first half of the main conjecture under the assumption that the representation ρ_p is surjective. Our aim is to extend his result to curves where the $G_{\mathbb{Q}}$ -module E[p] is reducible.

Theorem 4.

Let E/\mathbb{Q} be an elliptic curve without complex multiplication and let p > 2 be a prime. Suppose that E has good ordinary reduction at p and that the representation ρ_p is either surjective or that E[p] is reducible. Then $\operatorname{char}_{\Lambda}(X(E/\infty\mathbb{Q}))$ divides the ideal generated by $\mathcal{L}_p(E/\mathbb{Q},T)$.

The same argument does not extend to the remaining cases; for them we only obtain a conditional result. See Proposition 7.

In special cases, Greenberg and Vatsal have proved in [GV00] the full main conjecture. Namely if the E admits an isogeny of degree p whose kernel is either ramified at p and odd or unramified at p and even.

The paper consists of two parts. The first part concerns tha so-called fine Selmer group. The existence of Kato's Euler system gives directly a bound on this group. We use a result of Coates and Sujatha in [CS05] to strengthen the usual bound.

The second part transfers the bound from the fine Selmer group to the Selmer group using global duality. The proof of theorem 4 is first done on the so-called optimal curve where one knows already that the p-adic L-function is integral.

The author wishes to thank John Coates, Robert Pollack, and Karl Rubin for helpful discussions.

2 The fine Selmer group

Let E be an elliptic curve defined over \mathbb{Q} and let p be any odd prime. We define the fine¹ Selmer group to be the subgroup of $S(E/n\mathbb{Q})$ defined by imposing stronger conditions at the completion ${}_n\mathbb{Q}_p$ of ${}_n\mathbb{Q}$ at the unique prime p above p:

$$0 \longrightarrow \mathcal{R}(E/_n \mathbb{Q}) \longrightarrow \mathcal{S}(E/_n \mathbb{Q}) \longrightarrow \mathrm{H}^1(_n \mathbb{Q}_{\mathfrak{p}}, E_{p^{\infty}})$$

The dual of the direct limit of the groups $\Re(E/_n\mathbb{Q})$ will be denoted by $Y(E/_\infty\mathbb{Q})$; it is again a finitely generated Λ -module. Theorem 12.4.1 in [Kat04] proves that $Y(E/_\infty\mathbb{Q})$ is Λ -torsion. Denote by char $_{\Lambda}(Y(E/_{\infty}\mathbb{Q}))$ the characteristic ideal of $Y(E/_{\infty}\mathbb{Q})$ in Λ .

Kato constructs an Euler system **c** attached to E and p. This is a collection of cohomology classes $\mathbf{c}_K \in H^1(K, T_p E)$ for sufficiently many abelian extensions K of \mathbb{Q} , including $K = \mathbb{Q}(\mu[p^k])$ for all $k \ge 0$. The norm compatibility imposed on an Euler system, provides us with an element $\mathbf{x} \mathbf{c}$ in the projective limit

$$_{\infty}\mathbf{c} \in \lim_{n} \mathrm{H}^{1}(_{n}\mathbb{Q}, T_{p}E) = _{\infty}\mathrm{H}^{1}(\mathbb{Q}, T_{p}E)$$

where the limit follows the corestriction map. We also recall that ${}_{\infty}\mathrm{H}^{1}(\mathbb{Q}, T_{p}E)$ is a Λ -module of rank 1. The ideal

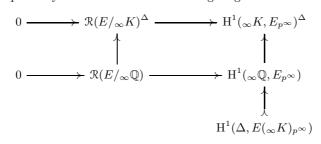
$$\operatorname{ind}_{\Lambda}({}_{\infty}\mathbf{c}) = \{\phi({}_{\infty}\mathbf{c}) \mid \phi \in \operatorname{Hom}_{\Lambda}({}_{\infty}\operatorname{H}^{1}(\mathbb{Q}, T_{p}E), \Lambda)\}$$

in Λ measures the Λ -divisibility of ${}_{\infty}\mathbf{c}$ in ${}_{\infty}\mathrm{H}^{1}(\mathbb{Q}, T_{p}E)$.

Lemma 1. Let E be an elliptic curve and p an odd prime such that E admits an isogeny of degree p. Then the fine Selmer group $Y(E/_{\infty}\mathbb{Q})$ is a finitely generated \mathbb{Z}_p -module, *i.e.* its μ -invariant vanishes.

¹This group is sometimes called the "strict" or "restricted" Selmer group.

Proof. The extension K of \mathbb{Q} fixed by the kernel of $\rho_{\phi}: G_{\mathbb{Q}} \longrightarrow \operatorname{Aut}(E[\phi])$ is a cyclic extension of degree dividing p-1. Let Δ be the Galois group of K/\mathbb{Q} . Over the abelian field K, the curve admits a p-torsion point. We can therefore apply Corollary 3.6 in [CS05] (a consequence of the theorem of Ferrero-Washington) to $Y(E/_{\infty}K)$ where $_{\infty}K$ is the cyclotomic \mathbb{Z}_p -extension of K. This proves that $Y(E/_{\infty}K)$ is a finitely generated \mathbb{Z}_p -module. Write $\mathcal{R}(E/_{\infty}\mathbb{Q})$ and $\mathcal{R}(E/_{\infty}K)$ for the dual of $Y(E/_{\infty}\mathbb{Q})$ and $Y(E/_{\infty}K)$ respectively. Then we have the following diagram



and since the group Δ is of order prime to p, the kernel on the right is trivial. We deduce that the left hand side is injective, too, and hence that the dual map $Y(E/_{\infty}K) \longrightarrow Y(E/_{\infty}\mathbb{Q})$ is surjective. Therefore $Y(E/_{\infty}\mathbb{Q})$ is a finitely generated \mathbb{Z}_p -module.

Theorem 2.

If E/\mathbb{Q} is an elliptic curve without complex multiplication and p > 2 a prime such that the presentation $\rho_p: G_{\mathbb{Q}} \longrightarrow \operatorname{Aut}(T_p E)$ is either surjective or that E[p] is reducible then $\operatorname{char}_{\Lambda}(Y(E/_{\infty}\mathbb{Q}))$ divides $\operatorname{ind}_{\Lambda}(_{\infty}\mathbf{c})$.

Proof. If we are in the surjective case, then the theorem is a known consequence of Kato's Euler system. See Theorem 2.3.3 and Proposition 3.5.8 in [Rub00]. In the latter case when ρ_p is not surjective, we know that there exists an isogeny $\phi: E \longrightarrow E'$ of degree p defined over \mathbb{Q} . The Euler system argument gives us only a divisibility of the form

$$\operatorname{char}_{\Lambda}(Y(E/_{\infty}\mathbb{Q})) \mid p^{t} \cdot \operatorname{ind}_{\Lambda}(_{\infty}\mathbf{c})$$

for some integer $t \ge 0$, see Theorem 2.3.4 in [Rub00]. The previous lemma shows now that $\operatorname{char}_{\Lambda}(Y(E/_{\infty}\mathbb{Q}))$ is not divisible by p and hence we can take t to be equal to 0.

3 The Selmer group

Suppose now that the curve E has good and ordinary reduction at the odd prime p. It is known that there exists an element $\mathcal{L}_p(E/\mathbb{Q},T) \in \Lambda \otimes \mathbb{Q}_p$, called the analytic padic L-function, which interpolates in a certain precise way the Hasse-Weil L-function associated to E which we are going to recall now. Let γ be a topological generator of $\Gamma = \text{Gal}(\infty \mathbb{Q}/\mathbb{Q})$. Let $\chi \colon \Gamma \longrightarrow \mu_{p^{\infty}}$ be a Dirichlet character of conductor p^{k+1} . It is determined by its image $\chi(\gamma) = \zeta$ which is a primitive root of unity of order p^k . Then $\mathcal{L}_p(E/\mathbb{Q},T)$ is characterised by

$$\mathcal{L}_p(E/\mathbb{Q}, \zeta - 1) = \frac{1}{\alpha^{k+1}} \cdot \frac{p^{k+1}}{\tau(\chi^{-1})} \cdot \cdot \frac{L_E(\chi^{-1}, 1)}{\Omega_E}.$$
(1)

Here $\tau(\chi^{-1})$ is the usual Gauss sum and α is the unit root of the characteristic polynomial of Frobenius acting on T_pE . The real Néron period of E is denoted by Ω_E and $L_E(\chi^{-1}, s)$ is the Hasse-Weil *L*-function attached to E twisted by the character χ^{-1} .

We recall from [Ste89] that an elliptic curve E/\mathbb{Q} is called *optimal* among the curves in the isogeny class of E if the map $\varphi^* \colon \operatorname{Pic}^0(E) \longrightarrow \operatorname{Pic}^0(X_1(N))$ induced by the modular parametrisation $\varphi \colon X_1(N) \longrightarrow E$ is injective. It is conjectured that the optimal curve is a curve with minimal analytic μ -invariant. It is also conjectured that the μ -invariant of the optimal curve is zero. Greenberg and Vatsal have shown in Proposition 3.7 of [GV00] that the *p*-adic *L*-series of an optimal curve is integral, i.e. $\mathcal{L}_p(E/\mathbb{Q},T) \in \Lambda$.

Lemma 3. Let p > 2 be a prime. Let E/\mathbb{Q} be an elliptic curve without complex multiplication with good ordinary reduction at p and such that E[p] is reducible. Suppose E is the optimal curve in the isogeny class. Then $\operatorname{char}_{\Lambda}(X(E/\infty\mathbb{Q}))$ divides the ideal $\mathcal{L}_p(E/\mathbb{Q},T) \cdot \Lambda$.

Proof. We follow the proof of Theorem 2.3.8 in [Rub00].

Let ${}_{\infty}\mathbb{Q}_{\mathfrak{p}}$ be the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q}_p . Define the singular local cohomology group $Z(E/{}_{\infty}\mathbb{Q}) = {}_{\infty}\mathrm{H}^1_s(\mathbb{Q}_p, T_pE)$ to be the dual of $E({}_{\infty}\mathbb{Q}_p) \otimes \mathbb{Q}_p/\mathbb{Z}_p$. It is a Λ -module of rank 1. By global duality (see Proposition 1.3.2 in [PR95]), we have the following exact sequence

$$0 \longleftarrow Y(E/_{\infty}\mathbb{Q}) \longleftarrow X(E/_{\infty}\mathbb{Q}) \longleftarrow Z(E/_{\infty}\mathbb{Q}) \longleftarrow {}_{\infty}\mathrm{H}^{1}(\mathbb{Q}, T_{p}E) \longleftarrow 0.$$
(2)

Write ${}_{\infty}\mathbf{c}_s$ for the image of ${}_{\infty}\mathbf{c}$ in $Z(E/{}_{\infty}\mathbb{Q})$. Theorem 16.6.2 in [Kat04] states that the image of ${}_{\infty}\mathbf{c}_s$ via the Perrin-Riou–Coleman map Col: $Z(E/{}_{\infty}\mathbb{Q}) \succ \rightarrow \Lambda$ is up to a *p*-adic unit the analytic *p*-adic *L*-function $\mathcal{L}_p(E/\mathbb{Q},T)$. Here we use that Greenberg and Vatsal [GV00, Theorem 3.1] have shown that the canonical period associated to the newform corresponding to *E* differs from Ω_E by a *p*-adic unit, if *E* is the optimal curve.

Rohrlich [Roh84] has shown that $\mathcal{L}_p(E/\mathbb{Q},T)$ is non-zero. Hence ${}_{\infty}\mathbf{c}_s$ is not torsion and the characteristic ideal of the Λ -torsion module $Z(E/{}_{\infty}\mathbb{Q})/{}_{\infty}\mathbf{c}_s\Lambda$, which is equal to $\operatorname{Col}(Z(E/{}_{\infty}\mathbb{Q}))/\mathcal{L}_p(E/\mathbb{Q},T)\Lambda$ contains $\mathcal{L}_p(E/\mathbb{Q},T)\Lambda$.

The sequence (2) induces an exact sequence of Λ -modules

$$0 \longleftarrow Y(E/_{\infty}\mathbb{Q}) \longleftarrow X(E/_{\infty}\mathbb{Q}) \longleftarrow \frac{Z(E/_{\infty}\mathbb{Q})}{_{\infty}\mathbf{c}_{s}\Lambda} \longleftarrow \frac{_{\infty}\mathrm{H}^{1}(\mathbb{Q},T_{p}E)}{_{\infty}\mathbf{c}\Lambda}$$

in which all terms are known to be torsion Λ -modules. We know that ${}_{\infty}\mathrm{H}^{1}(\mathbb{Q}, T_{p}E)$ is a Λ -module of rank 1 and hence there is a Λ -morphism ψ from ${}_{\infty}\mathrm{H}^{1}(\mathbb{Q}, T_{p}E)$ to Λ whose kernel is Λ -torsion and whose cokernel is pseudo-null. Since ${}_{\infty}\mathbf{c}$ cannot be torsion, the quotient on the right hand side of the above sequence is Λ -torsion and its characteristic ideal is contained in $\psi({}_{\infty}\mathbf{c})\Lambda$. The latter is contained in $\mathrm{ind}_{\Lambda}({}_{\infty}\mathbf{c})$.

So, using theorem 2, we conclude that

$$\operatorname{char}_{\Lambda}(X(E/_{\infty}\mathbb{Q})) \supset \operatorname{char}_{\Lambda}(Y(E/_{\infty}\mathbb{Q})) \cdot \operatorname{char}_{\Lambda}\left(\frac{Z(E/_{\infty}\mathbb{Q})}{_{\infty}\mathbf{c}_{s}\Lambda}\right) \cdot \operatorname{char}_{\Lambda}\left(\frac{_{\infty}\mathrm{H}^{1}(\mathbb{Q}, T_{p}E)}{_{\infty}\mathbf{c}\Lambda}\right)^{-1}$$
$$\supset \operatorname{ind}_{\Lambda}(_{\infty}\mathbf{c}) \cdot \mathcal{L}_{p}(E/\mathbb{Q}, T) \Lambda \cdot \left(\operatorname{ind}_{\Lambda}(_{\infty}\mathbf{c})\right)^{-1}$$
$$\supset \mathcal{L}_{p}(E/\mathbb{Q}, T) \Lambda$$

Theorem 4.

Let E/\mathbb{Q} be an elliptic curve without complex multiplication and let p > 2 be a prime. Suppose that E has good ordinary reduction at p and that the representation ρ_p is either surjective or that E[p] is reducible. Then $\operatorname{char}_{\Lambda}(X(E/\infty\mathbb{Q}))$ divides the ideal generated by $\mathcal{L}_p(E/\mathbb{Q},T)$.

Proof. If the representation ρ_p is surjective, then this is Theorem 17.4. of Kato [Kat04].

Suppose now that E[p] is reducible. Then there is an isogeny ϕ from E to the optimal curve E^{opt} in the isogeny class of E. Note that (1) and the formula for the change of the μ -invariant by Perrin-Riou [PR87, Appendice] show that the statement that $\operatorname{char}_{\Lambda}(X(E/_{\infty}\mathbb{Q}))$ contains $\mathcal{L}_p(E/\mathbb{Q},T)\Lambda$ is invariant under isogeny. So the conclusion drawn for E^{opt} in the previous lemma applies also to E.

Theorem 5.

The analytic p-adic L-function $\mathcal{L}_p(E/\mathbb{Q},T)$ belongs to Λ for all elliptic curves E/\mathbb{Q} with good ordinary reduction at p > 2.

Proof. If the elliptic curve E admits no isogenies of degree dividing p this is well-known by [GV00, Proposition 3.7]. If this is not the case, then E[p] is reducible and we have seen in the previous theorem 4 that the ideal generated by $\mathcal{L}_p(E/\mathbb{Q},T)$ is divisible by an integral ideal char_{Λ}($X(E/_{\infty}\mathbb{Q})$).

Corollary 6. If E/\mathbb{Q} is a semi-stable elliptic curve and p > 3 a prime of good ordinary reduction, then char_A($X(E/_{\infty}\mathbb{Q})$) divides the ideal generated by $\mathcal{L}_p(E/\mathbb{Q},T)$.

Proof. By a theorem of Serre ([Ser96, Proposition 1] and [Ser72, Proposition 21]), we know that the image of the representation $\bar{\rho}_p: G_{\mathbb{Q}} \longrightarrow \operatorname{Aut}(E[p])$ is either the whole of $\operatorname{GL}_2(\mathbb{F}_p)$ or it is contained in a Borel subgroup. In the latter case the representation ρ_p is reducible and in the first case the representation $\rho_p: G_{\mathbb{Q}} \longrightarrow \operatorname{Aut}(T_pE)$ is surjective by another result of Serre [Ser81, Lemme 15].

Unfortunately, the hypothesis that E is semi-stable can not be dropped. There are curves E/\mathbb{Q} such that $\bar{\rho}_p$ has its image in the normaliser of a Cartan subgroup. In this case there are no *p*-torsion points defined over an abelian extension of \mathbb{Q} . Similar there are also curves without complex multiplications for p = 5 such that the image of ρ_5 maps to the exceptional subgroup S_4 in PGL(\mathbb{F}_5).

The methods in this article are not sufficient to extend the main theorem 4 to these cases. The best we can do is the following

Proposition 7. Let E/\mathbb{Q} be an elliptic curve without complex multiplication, with good and ordinary reduction at p > 13 or p = 7. If the conjecture of Iwasawa on the vanishing of the classical μ -invariant in cyclotomic \mathbb{Z}_p -extensions is valid for abelian extensions of imaginary quadratic fields, then char_A($X(E/_{\infty}\mathbb{Q})$) divides the ideal generated by $\mathcal{L}_p(E/\mathbb{Q},T)$.

Proof. By theorem 4, we may assume that the image of $\bar{\rho}_p$ is contained in the normaliser of a Cartan subgroup. The case of the exceptional subgroups is excluded by the hypothesis on p by Lemme 18 in [Ser81].

The idea of the proof is the same as for the proofs of Theorem 2 and Theorem 4, but we replace the Corollary 3.6 in [CS05] by the previous Corollary 3.5 with L being the field $\mathbb{Q}(E[p])$. In our case L is an abelian extension of an imaginary quadratic field. \Box

References

- [CS05] John Coates and Ramdorai Sujatha, Fine Selmer groups of elliptic curves over p-adic Lie extensions, Math. Ann. 331 (2005), no. 4, 809 – 839.
- [GV00] Ralph Greenberg and Vinayak Vatsal, On the Iwasawa invariants of elliptic curves, Invent. Math. **142** (2000), no. 1, 17–63.
- [Kat04] Kazuya Kato, p-adic Hodge theory and values of zeta functions of modular forms, Cohomologies p-adiques et application arithmétiques. III, Astérisque, vol. 295, Société Mathématique de France, Paris, 2004.
- [MSD74] Barry Mazur and Peter Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), 1–61.
- [Pol03] Robert Pollack, On the p-adic L-function of a modular form at a supersingular prime, Duke Math. J. 118 (2003), no. 3, 523–558.
- [PR87] Bernadette Perrin-Riou, Fonctions L p-adiques, théorie d'Iwasawa et points de Heegner, Bull. Soc. Math. France 115 (1987), no. 4, 399–456.

[PR95]	$_$, Fonctions L	p-adiques	des	$repr\'esentations$	p-adiques,	Astérisque
	(1995), no. 229, 198.					

- [Roh84] David E. Rohrlich, On L-functions of elliptic curves and cyclotomic towers, Invent. Math. 75 (1984), no. 3, 409–423.
- [Rub00] Karl Rubin, Euler systems, Annals of Mathematics Studies, vol. 147, Princeton University Press, Princeton, NJ, 2000, Hermann Weyl Lectures. The Institute for Advanced Study.
- [Ser72] Jean-Pierre Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331.
- [Ser81] _____, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. (1981), no. 54, 323–401.
- [Ser96] _____, Travaux de Wiles (et Taylor, ...). I, Astérisque (1996), no. 237, Exp. No. 803, 5, 319–332, Séminaire Bourbaki, Vol. 1994/95.
- [Ste89] Glenn Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math. 98 (1989), no. 1, 75–106.