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Abstract

Let E be an elliptic curve without complex multiplication defined over Q and let
p be an odd prime number at which E has good and ordinary reduction. Kato has
proved in [Kat04] the first half of the main conjecture for E under the condition that
the representation ρp : GQ � Aut(TpE) of the absolute Galois group of Q attached
to the Tate module TpE is surjective. We prove here that the result still holds if the E
admits an isogeny of degree p. As a by-product, we show that the p-adic L-functions
attached to an elliptic curve with good ordinary reduction at p is always an integral
series.11G05, 11G40, 11R23, 11F67

1 Introduction

Let E be an elliptic curve without complex multiplication defined over Q and let p > 2
be a prime number. Suppose that E has good ordinary reduction at p. We denote by
ρp : GQ � Aut(TpE) the representation of the absolute Galois group of Q attached
to the Tate module TpE.

Let Ep∞ be the group of all points on E whose order is a power of p. Let ∞Q be
the cyclotomic Zp-extension and nQ its n-th layer. The Selmer group of E is defined
as the kernel of the map

S(E/nQ) = ker
`

H1(nQ, Ep∞) �
Y

υ

H1(nQυ, E)
´

,

where the product runs over all places υ in nQ. The Pontryagin dual of the direct limit
of these groups under the restriction maps

X(E/∞Q) = Hom
`

lim
−→

S(E/nQ), Qp/Zp

´

has naturally the structure of a finitely generated Λ-module, if Λ denotes the Iwa-
sawa algebra of the Zp-extension ∞Q/Q. By Theorem 17.4 of [Kat04], we know that
X(E/∞Q) is Λ-torsion. The characteristic ideal charΛ(X(E/∞Q)) in Λ is an important
algebraic object attached to E and p.

On the analytic side, Mazur and Swinnerton-Dyer have constructed in [MSD74] a
p-adic L-function Lp(E/Q, T ) in Λ⊗Qp. See section 3 for more details. It was conjec-
tured that this series has integral coefficients. We will prove the following extension of
Proposition 3.7 in [GV00].

Theorem 5.

The analytic p-adic L-function Lp(E/Q, T ) belongs to Λ for all elliptic curves E/Q
with good ordinary reduction at p > 2.

The conclusion can certainly not be extended to the supersingular case since the
p-adic L-functions in this case will never be integral. The supersingular case is well
explained in [Pol03] where it is shown how one can extract integral power series.
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The main conjecture asserts that the element Lp(E/Q, T ) generates the character-
istic ideal charΛ(X(E/∞Q)). Kato has proved in [Kat04] the first half of the main
conjecture under the assumption that the representation ρp is surjective. Our aim is
to extend his result to curves where the GQ-module E[p] is reducible.

Theorem 4.

Let E/Q be an elliptic curve without complex multiplication and let p > 2 be a prime.
Suppose that E has good ordinary reduction at p and that the representation ρp is either
surjective or that E[p] is reducible. Then charΛ(X(E/∞Q)) divides the ideal generated
by Lp(E/Q, T ).

The same argument does not extend to the remaining cases; for them we only obtain
a conditional result. See Proposition 7.

In special cases, Greenberg and Vatsal have proved in [GV00] the full main conjec-
ture. Namely if the E admits an isogeny of degree p whose kernel is either ramified at
p and odd or unramified at p and even.

The paper consists of two parts. The first part concerns tha so-called fine Selmer
group. The existence of Kato’s Euler system gives directly a bound on this group. We
use a result of Coates and Sujatha in [CS05] to strengthen the usual bound.

The second part transfers the bound from the fine Selmer group to the Selmer group
using global duality. The proof of theorem 4 is first done on the so-called optimal curve
where one knows already that the p-adic L-function is integral.

The author wishes to thank John Coates, Robert Pollack, and Karl Rubin for helpful
discussions.

2 The fine Selmer group

Let E be an elliptic curve defined over Q and let p be any odd prime. We define
the fine1 Selmer group to be the subgroup of S(E/nQ) defined by imposing stronger
conditions at the completion nQp of nQ at the unique prime p above p :

0 � R(E/nQ) � S(E/nQ) � H1(nQp, Ep∞)

The dual of the direct limit of the groups R(E/nQ) will be denoted by Y (E/∞Q); it is
again a finitely generated Λ-module. Theorem 12.4.1 in [Kat04] proves that Y (E/∞Q)
is Λ-torsion. Denote by charΛ(Y (E/∞Q)) the characteristic ideal of Y (E/∞Q) in Λ.

Kato constructs an Euler system c attached to E and p. This is a collection of
cohomology classes cK ∈ H

1(K,TpE) for sufficiently many abelian extensions K of Q,
including K = Q(µ[pk]) for all k > 0. The norm compatibility imposed on an Euler
system, provides us with an element ∞c in the projective limit

∞c ∈ lim
←−

n

H1(nQ, TpE) = ∞H1(Q, TpE)

where the limit follows the corestriction map. We also recall that ∞H1(Q, TpE) is a
Λ-module of rank 1. The ideal

indΛ(∞c) = {φ(∞c) | φ ∈ HomΛ(∞H1(Q, TpE),Λ)}

in Λ measures the Λ-divisibility of ∞c in ∞H1(Q, TpE).

Lemma 1. Let E be an elliptic curve and p an odd prime such that E admits an isogeny
of degree p. Then the fine Selmer group Y (E/∞Q) is a finitely generated Zp-module,
i.e. its µ-invariant vanishes.

1This group is sometimes called the “strict” or “restricted” Selmer group.
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Proof. The extension K of Q fixed by the kernel of ρφ : GQ � Aut(E[φ]) is a cyclic
extension of degree dividing p−1. Let ∆ be the Galois group of K/Q. Over the abelian
field K, the curve admits a p-torsion point. We can therefore apply Corollary 3.6
in [CS05] (a consequence of the theorem of Ferrero-Washington) to Y (E/∞K) where

∞K is the cyclotomic Zp-extension of K. This proves that Y (E/∞K) is a finitely
generated Zp-module. Write R(E/∞Q) and R(E/∞K) for the dual of Y (E/∞Q) and
Y (E/∞K) respectively. Then we have the following diagram

0 � R(E/∞K)∆ � H1(∞K,Ep∞)∆

0 � R(E/∞Q)

f

� H1(∞Q, Ep∞)

f

H1(∆, E(∞K)p∞)

f

f

and since the group ∆ is of order prime to p, the kernel on the right is trivial.
We deduce that the left hand side is injective, too, and hence that the dual map
Y (E/∞K) � Y (E/∞Q) is surjective. Therefore Y (E/∞Q) is a finitely generated
Zp-module.

Theorem 2.

If E/Q is an elliptic curve without complex multiplication and p > 2 a prime such that
the presentation ρp : GQ � Aut(TpE) is either surjective or that E[p] is reducible
then charΛ(Y (E/∞Q)) divides indΛ(∞c).

Proof. If we are in the surjective case, then the theorem is a known consequence of
Kato’s Euler system. See Theorem 2.3.3 and Proposition 3.5.8 in [Rub00]. In the latter
case when ρp is not surjective, we know that there exists an isogeny φ : E � E ′ of
degree p defined over Q. The Euler system argument gives us only a divisibility of the
form

charΛ(Y (E/∞Q))
˛

˛ pt · indΛ(∞c)

for some integer t > 0, see Theorem 2.3.4 in [Rub00]. The previous lemma shows now
that charΛ(Y (E/∞Q)) is not divisible by p and hence we can take t to be equal to
0.

3 The Selmer group

Suppose now that the curve E has good and ordinary reduction at the odd prime p.
It is known that there exists an element Lp(E/Q, T ) ∈ Λ ⊗ Qp, called the analytic p-
adic L-function, which interpolates in a certain precise way the Hasse-Weil L-function
associated to E which we are going to recall now. Let γ be a topological generator of
Γ = Gal(∞Q/Q). Let χ : Γ � µp∞ be a Dirichlet character of conductor pk+1. It is
determined by its image χ(γ) = ζ which is a primitive root of unity of order pk. Then
Lp(E/Q, T ) is characterised by

Lp(E/Q, ζ − 1) =
1

αk+1
·
pk+1

τ (χ−1)
· ·
LE(χ−1, 1)

ΩE

. (1)

Here τ (χ−1) is the usual Gauss sum and α is the unit root of the characteristic poly-
nomial of Frobenius acting on TpE. The real Néron period of E is denoted by ΩE and
LE(χ−1, s) is the Hasse-Weil L-function attached to E twisted by the character χ−1.

We recall from [Ste89] that an elliptic curve E/Q is called optimal among the curves
in the isogeny class of E if the map ϕ∗ : Pic0(E) � Pic0(X1(N)) induced by the
modular parametrisation ϕ : X1(N) � E is injective. It is conjectured that the
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optimal curve is a curve with minimal analytic µ-invariant. It is also conjectured that
the µ-invariant of the optimal curve is zero. Greenberg and Vatsal have shown in
Proposition 3.7 of [GV00] that the p-adic L-series of an optimal curve is integral, i.e.
Lp(E/Q, T ) ∈ Λ.

Lemma 3. Let p > 2 be a prime. Let E/Q be an elliptic curve without complex
multiplication with good ordinary reduction at p and such that E[p] is reducible. Suppose
E is the optimal curve in the isogeny class. Then charΛ(X(E/∞Q)) divides the ideal
Lp(E/Q, T ) · Λ.

Proof. We follow the proof of Theorem 2.3.8 in [Rub00].
Let ∞Qp be the cyclotomic Zp-extension of Qp. Define the singular local cohomology

group Z(E/∞Q) = ∞H1
s(Qp, TpE) to be the dual of E(∞Qp)⊗Qp/Zp. It is a Λ-module

of rank 1. By global duality (see Proposition 1.3.2 in [PR95]), we have the following
exact sequence

0 ≺ Y (E/∞Q) ≺ X(E/∞Q) ≺ Z(E/∞Q) ≺ ∞H1(Q, TpE) ≺ 0. (2)

Write ∞cs for the image of ∞c in Z(E/∞Q). Theorem 16.6.2 in [Kat04] states that
the image of ∞cs via the Perrin-Riou–Coleman map Col : Z(E/∞Q) � � Λ is up to
a p-adic unit the analytic p-adic L-function Lp(E/Q, T ). Here we use that Greenberg
and Vatsal [GV00, Theorem 3.1] have shown that the canonical period associated to
the newform corresponding to E differs from ΩE by a p-adic unit, if E is the optimal
curve.

Rohrlich [Roh84] has shown that Lp(E/Q, T ) is non-zero. Hence ∞cs is not torsion
and the characteristic ideal of the Λ-torsion module Z(E/∞Q)/∞csΛ, which is equal
to Col(Z(E/∞Q))/Lp(E/Q, T )Λ contains Lp(E/Q, T )Λ.

The sequence (2) induces an exact sequence of Λ-modules

0 ≺ Y (E/∞Q) ≺ X(E/∞Q) ≺
Z(E/∞Q)

∞csΛ
≺

∞H1(Q, TpE)

∞cΛ

in which all terms are known to be torsion Λ-modules. We know that ∞H1(Q, TpE) is a
Λ-module of rank 1 and hence there is a Λ-morphism ψ from ∞H1(Q, TpE) to Λ whose
kernel is Λ-torsion and whose cokernel is pseudo-null. Since ∞c cannot be torsion, the
quotient on the right hand side of the above sequence is Λ-torsion and its characteristic
ideal is contained in ψ(∞c) Λ. The latter is contained in indΛ(∞c).

So, using theorem 2, we conclude that

charΛ(X(E/∞Q)) ⊃ charΛ(Y (E/∞Q)) · charΛ
“Z(E/∞Q)

∞csΛ

”

· charΛ
“

∞H1(Q, TpE)

∞cΛ

”

−1

⊃ indΛ(∞c) · Lp(E/Q, T )Λ ·
`

indΛ(∞c)
´

−1

⊃ Lp(E/Q, T )Λ

Theorem 4.

Let E/Q be an elliptic curve without complex multiplication and let p > 2 be a prime.
Suppose that E has good ordinary reduction at p and that the representation ρp is either
surjective or that E[p] is reducible. Then charΛ(X(E/∞Q)) divides the ideal generated
by Lp(E/Q, T ).

Proof. If the representation ρp is surjective, then this is Theorem 17.4. of Kato [Kat04].
Suppose now that E[p] is reducible. Then there is an isogeny φ from E to the optimal

curve Eopt in the isogeny class of E. Note that (1) and the formula for the change
of the µ-invariant by Perrin-Riou [PR87, Appendice] show that the statement that
charΛ(X(E/∞Q)) contains Lp(E/Q, T )Λ is invariant under isogeny. So the conclusion
drawn for Eopt in the previous lemma applies also to E.

4



Theorem 5.

The analytic p-adic L-function Lp(E/Q, T ) belongs to Λ for all elliptic curves E/Q
with good ordinary reduction at p > 2.

Proof. If the elliptic curve E admits no isogenies of degree dividing p this is well-known
by [GV00, Proposition 3.7]. If this is not the case, then E[p] is reducible and we have
seen in the previous theorem 4 that the ideal generated by Lp(E/Q, T ) is divisible by
an integral ideal charΛ(X(E/∞Q)).

Corollary 6. If E/Q is a semi-stable elliptic curve and p > 3 a prime of good ordinary
reduction, then charΛ(X(E/∞Q)) divides the ideal generated by Lp(E/Q, T ).

Proof. By a theorem of Serre ([Ser96, Proposition 1] and [Ser72, Proposition 21]), we
know that the image of the representation ρ̄p : GQ � Aut(E[p]) is either the whole of
GL2(Fp) or it is contained in a Borel subgroup. In the latter case the representation ρp

is reducible and in the first case the representation ρp : GQ � Aut(TpE) is surjective
by another result of Serre [Ser81, Lemme 15].

Unfortunately, the hypothesis that E is semi-stable can not be dropped. There are
curves E/Q such that ρ̄p has its image in the normaliser of a Cartan subgroup. In this
case there are no p-torsion points defined over an abelian extension of Q. Similar there
are also curves without complex multiplications for p = 5 such that the image of ρ5

maps to the exceptional subgroup S4 in PGL(F5).
The methods in this article are not sufficient to extend the main theorem 4 to these

cases. The best we can do is the following

Proposition 7. Let E/Q be an elliptic curve without complex multiplication, with good
and ordinary reduction at p > 13 or p = 7. If the conjecture of Iwasawa on the vanishing
of the classical µ-invariant in cyclotomic Zp-extensions is valid for abelian extensions
of imaginary quadratic fields, then charΛ(X(E/∞Q)) divides the ideal generated by
Lp(E/Q, T ).

Proof. By theorem 4, we may assume that the image of ρ̄p is contained in the nor-
maliser of a Cartan subgroup. The case of the exceptional subgroups is excluded by
the hypothesis on p by Lemme 18 in [Ser81].

The idea of the proof is the same as for the proofs of Theorem 2 and Theorem 4, but
we replace the Corollary 3.6 in [CS05] by the previous Corollary 3.5 with L being the
field Q(E[p]). In our case L is an abelian extension of an imaginary quadratic field.
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