The sub-leading coefficient of the L-function of an elliptic curve

Christian Wuthrich

August 23, 2016

Abstract

We show that there is a relation between the leading term at $s = 1$ of an L-function of an elliptic curve defined over a number field and the term that follows.

Let E be an elliptic curve defined over a number field K. We will assume that the L-function $L(E, s)$ admits an analytic continuation to $s = 1$ and that it satisfies the functional equation. By modularity [1], we know that this holds when $K = \mathbb{Q}$. The conjecture of Birch and Swinnerton-Dyer predicts that the behaviour at $s = 1$ is linked to arithmetic information. More precisely, if

$$L(E, s) = a_r (s - 1)^r + a_{r+1} (s - 1)^{r+1} + \cdots$$

is the Taylor expansion at $s = 1$ with $a_r \not= 0$, then r should be the rank of the Mordell-Weil group $E(K)$ and the leading term a_r is equal to a precise formula involving the Tate-Shafarevich group of E. It seems to have passed unnoticed that the sub-leading coefficient a_{r+1} is also determined by the following formula.

Theorem 1. With the above assumption, we have the equality

$$a_{r+1} = \left([K : \mathbb{Q}] \cdot (\gamma + \log(2\pi)) - \frac{1}{2} \log(N) - \log |\Delta_K| \right) \cdot a_r$$

where $\gamma \approx 0.577216 \ldots$ is Euler's constant, N is the absolute norm of the conductor ideal of E/K and Δ_K is the absolute discriminant of K/\mathbb{Q}.

In particular, the conjecture of Birch and Swinnerton-Dyer also predicts completely what the sub-leading coefficient a_{r+1} should be. One consequence for $K = \mathbb{Q}$ is that for all curves with conductor $N > 125$, and this is all but 404 isomorphism classes of curves, the sign of a_{r+1} is the opposite of a_r.

Of course, it is believed that a_r is positive for all E/\mathbb{Q}.

Proof. Set $f(s) = B^s \cdot \Gamma(s)^n$ with $n = [K : \mathbb{Q}]$ and $B = \sqrt{N \cdot |\Delta_K|/(2\pi)^n}$. Then $\Lambda(s) = f(s) \cdot L(E, s)$ is the completed L-function, which satisfies the functional equation $\Lambda(s) = (-1)^r \cdot \Lambda(2 - s)$, see [3].

For $i \equiv r + 1 \pmod 2$ it follows that $\frac{d^i}{ds^i} \Lambda(s) |_{s = 1} = 0$. Hence for $i = r + 1$, we obtain that

$$(r + 1) \cdot f'(s) \cdot \frac{d^r}{ds^r} L(E, s) + f(s) \cdot \frac{d^{r+1}}{ds^{r+1}} L(E, s)$$

is zero at $s = 1$. Therefore $(r + 1) \cdot f'(1) r! a_r + f(1) (r + 1)! a_{r+1} = 0$. It remains to note that $f(1) = B$ and $f'(1) = B \cdot (\log(B) + n \cdot \Gamma'(1))$ together with $\Gamma'(1) = -\gamma$.

Obviously a similar formula holds for the L-function of a modular form of weight 2 for $\Gamma_0(N)$.

More generally, for any L-function with a functional equation there is a relation between the leading and the sub-leading coefficient of the Taylor expansion of the L-function at the central point.

Sub-leading coefficients of Dirichlet L-functions have been investigated; for instance Colmez [2] makes a conjecture, which is partially known. However these concern the much harder case when s is not at the centre but the boundary of the critical strip of the L-function.
References

