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Abstract

We show that there is a relation between the leading term at s = 1 of an L-function of an elliptic
curve defined over an number field and the term that follows.

Let E be an elliptic curve defined over a number field K. We will assume that the L-function
L(E, s) admits an analytic continuation to s = 1 and that it satisfies the functional equation. By
modularity [1], we know that this holds when K = Q. The conjecture of Birch and Swinnerton-Dyer
predicts that the behaviour at s = 1 is linked to arithmetic information. More precisely, if

L(E, s) = ar (s− 1)r + ar+1 (s− 1)r+1 + · · ·

is the Taylor expansion at s = 1 with ar 6= 0, then r should be the rank of the Mordell-Weil group
E(K) and the leading term ar is equal to a precise formula involving the Tate-Shafarevich group of
E. It seems to have passed unnoticed that the sub-leading coefficient ar+1 is also determined by the
following formula.

Theorem 1. With the above assumption, we have the equality

ar+1 =
(

[K : Q] · (γ + log(2π))− 1
2

log(N)− log |∆K |
)
· ar (1)

where γ = 0.577216 . . . is Euler’s constant, N is the absolute norm of the conductor ideal of E/K
and ∆K is the absolute discriminant of K/Q.

In particular, the conjecture of Birch and Swinnerton-Dyer also predicts completely what the sub-
leading coefficient ar+1 should be. One consequence for K = Q is that for all curves with conductor
N > 125, and this is all but 404 isomorphism classes of curves, the sign of ar+1 is the opposite of ar.
Of course, it is believed that ar is positive for all E/Q.

Proof. Set f(s) = Bs ·Γ(s)n with n = [K : Q] and B =
√
N · |∆K |/(2π)n. Then Λ(s) = f(s) ·L(E, s)

is the completed L-function, which satisfies the functional equation Λ(s) = (−1)r · Λ(2 − s), see [3].

For i ≡ r + 1 (mod 2) it follows that di

dsi
Λ(s)

∣∣
s=1

= 0. Hence for i = r + 1, we obtain that

(r + 1) · f ′(s) · d
r

dsr
L(E, s) + f(s) · d

r+1

dsr+1
L(E, s)

is zero at s = 1. Therefore (r+1) f ′(1) r! ar +f(1) (r+1)! ar+1 = 0. It remains to note that f(1) = B
and f ′(1) = B ·

(
log(B) + n · Γ′(1)

)
together with Γ′(1) = −γ.

Obviously a similar formula holds for the L-function of a modular form of weight 2 for Γ0(N).
More generally, for any L-function with a functional equation there is a relation between the leading
and the sub-leading coefficient of the Taylor expansion of the L-function at the central point.

Sub-leading coefficients of Dirichlet L-functions have been investigated; for instance Colmez [2]
makes a conjecture, which is partially known. However these concern the much harder case when s
is not at the centre but the boundary of the critical strip of the L-function.
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