


papers and preprints
The subleading coefficient of the Lfunction of an elliptic curve
Publ. Math. Besançon Algèbre Théorie Lab. Math. Besançon, Besançon, (2016), 9596.
Preprint or on arxiv or published.
Numerical modular symbols for elliptic curves
Preprint or on arxiv, accepted for publication in Mathematics of Computation (2017).
The code for the computations is available here.
Vanishing of some Galois cohomology groups for elliptic curves
joint with Tyler Lawson
in Elliptic Curves, Modular Forms and Iwasawa Theory
edited by David Loeffler and Sarah Livia Zerbes, Springer Proceedings in Mathematics & Statistics, Volume 188, Springer, (2017), 373  399
Preprint or on the arxiv or the
published version.
Book review: "Fermat's Last Theorem" by T. Saito (two volumes).
Bull. London Math. Soc. (2015) 47 (5): 892894.
draft or the published version.
A moduli interpretation for the nonsplit Cartan modular curve
joint with Marusia Rebolledo
Preprint or on the arxiv, (2014).
On the Galois structures of Selmer groups
joint with David Burns and Daniel Macias Castillo.
International Mathematics Research Notices 22 (2015), 11909  11933.
Preprint or the published version
On MordellWeil groups and congruences between derivatives of twisted HasseWeil Lfunctions
joint with David Burns and Daniel Macias Castillo.
Preprint (2014) accepted in Journal für die reine und angewandte Mathematik
The sage code to compute that was used to compute numerical examples. etnc.py
Overview of some Iwasawa theory
in Iwasawa Theory 2012; State of the Art and Recent Advances
edited by Athanasios Bouganis and Otmar Venjakob, Contributions in Mathematical and Computational Sciences, Volume 7, Springer, (2014).
preprint or the
published version.
On the integrality of modular symbols and Kato's Euler system for elliptic curves
Documenta Mathematica 19 (2014), 381  402.
Preprint or the published version
The class group pairing and pdescent on elliptic curves
joint with Jean Gillibert.
Proceedings of the London Mathematical Society (3) 106 (2013), no. 2, 345–374.
Preprint (pdf) or
on the arXiv.
The two Sage files class_group_pairing.py and
pdescent.py can be used to do numerical computations using the
logarithmic class group pairing and isogeny via a pisogeny.
Algorithms for the Arithmetic of Elliptic Curves using Iwasawa Theory
joint with William Stein.
Mathematics of Computation 82 (2013), 17571792.
See here for a preprint version
and here for the published version.
Parity conjectures for elliptic curves over global fields
of positive characteristic
joint with Fabien Trihan.
Compositio Mathemtica, 147 (2011), issue 04, 11051128.
Available at
compositio
or on the arXiv.
Some remarks on selfpoints on elliptic curves
joint with Christophe Delaunay.
Actes de la Conférence "Fonctions L et Arithmétique", 6984, Publ. Math. Besançon Algèbre Théorie Nr., Lab. Math. Besançon, Besançon, 2010.
(ps)
(pdf)
Selfpoints on elliptic curves
Algebra and Number Theory 3 (2009), 283315.
(ps)
(pdf)
Selfpoints on elliptic curves of prime conductor
joint with Christophe Delaunay.
International Journal of Number Theory 5 (2009), 122.
(ps)
(pdf)
Selfpoints on an elliptic curve of conductor 14
RIMS Kôlyûroku Bessatsu 4 (2007), 189195.
(ps)
(pdf)
On padic elliptic logarithms and padic approximation lattices
no longer intended for publication.
(ps)
(pdf)
Extending Kato's result to curves with pisogenies
Mathematical Research Letters 13 (2006), no. 5, p. 713718
(ps)
(pdf)
Tadashi Ochiai found an important error in the paper. The paper "On the integrality of modular symbols ... " contains, among other things, the correction and generalisation of the main result of this paper.
Iwasawa theory of the fine Selmer group
Journal of Algebraic Geometry16 (2007), p. 83108.
(ps)
(pdf)
The fine TateShafarevich group
Mathematical Proceedings of the Cambridge Philosophical Society 142 (2007), no. 1, p. 112.
(ps)
(pdf)
There is further material
available on the computations.
On padic heights in families of elliptic curves
J. London Math. Soc. (2) 70 (2004) p. 2340
(ps)
(pdf)
Sur la hauteur padique dans une famille de courbes elliptiques
Ann. Sci. Math. Québec 28 (2004), no 12, 219223
(ps)
(pdf)
Une quintique de genre 1 qui contredit le principe de Hasse
Enseign. Math. (2) 47 (2001), p. 161172
(ps)
(pdf)
Errata

