CLASS FIELD THEORY, ITS THREE MAIN GENERALISATIONS, AND APPLICATIONS

IVAN FESENKO

Class Field Theory (CFT) is the main achievement of algebraic number theory of the 20th century. Its reach, beauty and power, stemming from the first steps in algebraic number theory by Gauß, has influenced so much in number theory. Shafarevich wrote: 'Weil was undoubtedly right when he asserted, in the preface to the Russian edition of his book on number theory\(^1\), that since class field theory pertains to the foundation of mathematics, every mathematician should be as familiar with it as with Galois theory. Moreover, just like Galois theory before it, class field theory was reputed to be very complicated and accessible only to experts ... For class field theory, on the other hand, there is a wide range of essentially different expositions, so that it is not immediately obvious even whether the subject is the same'.\(^2\) Weil's opinion has proved to be quixotic: these days even many number theorists are unfortunately not familiar with the substance of CFT.

This text reviews a complex and multi-vocal nature of CFT and its generalisations. It has been an enduring process of discovering new branches of CFT and its generalisations, among which many were complicated at their early stages and some were difficult to understand for their contemporaries. Three main generalisations of CFT and their further extensions will be presented and some of their key fundamental features will be discussed. One of outcomes of this text is eight new fundamental problems stated in the text.

We start with Kummer theory, a purely algebraic exercise, whose highly non-trivial arithmetic analogues over arithmetic fields are supplied by CFT. Kummer theory is an algebraic predecessor of CFT including its existence theorem. Then we discuss the fundamental split of (one-dimensional) CFT into special CFT (SCFT) and general CFT (GCFT), which has enormously affected many developments in number theory. Section 3 delves into four fundamental parts of CFT including the reciprocity map, existence theorem, explicit formulas for the Hilbert symbol and its generalisations, and interaction with ramification theory. These days it is not rare that researchers mean only the first part of CFT, i.e. the reciprocity map, when referring to CFT. Section 4 briefly touches on higher Kummer theory using Milnor K-groups, i.e. the norm residue isomorphism property.

Three generalisations of CFT: Langlands correspondences (LC), higher CFT, and anabelian geometry are discussed in section 5. We note that the split of CFT into SCFT and GCFT is currently somehow reproduced at the level of generalisations of CFT: LC does not yet have any development parallel to GCFT, while higher CFT is parallel to GCFT and it does not have substantial developments similar to SCFT. In particular, 50 years after the start of developments in LC, we are still in its ‘pre-Takagi’ stage, in the sense of absence of theories generalising or parallel to GCFT.

In the last section we specialise to elliptic curves over global fields, as an illustration. There we consider two further developments: Mochizuki’s inter-universal Teichmüller theory (IUT) which is pivoted on anabelian geometry and two-dimensional adelic analysis and geometry which uses structures of two-dimensional CFT. We also consider the fundamental role of zeta integrals which may unite different generalisations of CFT. Similarly to the situation with LC, all current studies of special values of zeta- and L-functions of elliptic

\(^1\) [62]

\(^2\) in Foreword to [12].
curves over number fields, except two-dimensional adelic analysis and geometry, use special structures and are not of general type.

There is no attempt to mention all the main results in CFT and all of its generalisations or all of their parts, and the text does not include all of bibliographical references.

Talks on the subject of this paper were given in Oxford and Tokyo, and ten hours of lectures were delivered in Kyoto. I am grateful to Sh. Mochizuki and L. Lafforgue for many valuable discussions, remarks and kind help, to V. Drinfeld, R. Langlands, E. Frenkel, A. Beilinson, A. Topaz, V. Shokurov for their comments and suggestions, and to R. Taylor, E. Frenkel, D. Arinkin, V. Lafforgue, S. Lysenko for their answers to my questions.

This work was partially supported by EPSRC Programme grant EP/M024830 and by RIMS.

1. **Kummer Theory**

For a field k denote its absolute Galois group by G_k and its maximal abelian quotient by $G_k^{ab} = G_k/[G_k, G_k]$. For a positive integer m the group of roots of unity of order m is denoted by μ_m.

For a field k whose characteristic does not divide integer $m > 1$, the exact sequence of G_k-modules

$$1 \to \mu_m \to k^\times \to k^\times \to 1,$$

where k is a separable closure of k, gives the Kummer map

$$k^\times / k^{\times m} \simeq H^1(G_k, \mu_m).$$

This is an H^1-theory.

If the μ_m is in k, then RHS $= \text{Hom}(G_k, \mathbb{Z}/m\mathbb{Z})$, and we get the Kummer pairing

$$k^\times / k^{\times m} \times G_k / ([G_k, G_k] G_k^{\mu_m}) \to \mathbb{Z}/m\mathbb{Z}.$$

Finite abelian extensions of k of exponent m are in explicit one-to-one correspondence with subgroups B of k^\times of exponent m: $B \to k(\sqrt[m]{B})$. The analogue of this property in CFT is existence theorem of CFT, see sect. 3.

This theory is not of much value for arithmetic fields, e.g. \mathbb{Q} and \mathbb{Q}_p and their finite extensions, since they contain too few roots, unlike function fields over algebraically closed fields. One can slightly extend Kummer theory, working with $\mathbb{Q}(\mu_m)$, for prime m, using the fact that $|\mathbb{Q}(\mu_m) : \mathbb{Q}|$ is prime to m, but this does not go too far.

First results in anabelian geometry show that every continuous automorphism of $G_\mathbb{Q}$ is inner. For nonarchimedean completions k_v of number fields not every continuous automorphism of the absolute Galois group G_{k_v} is inner. We do know an algebraic description of the absolute Galois groups of k_v (Demushkin, Yakovlev, Jannsen–Winberg), but relations of this description with higher ramification filtration are in need of further work. For number fields we still know little about G_k, unlike G_k^{ab} due to CFT. The Shafarevich conjecture: $[G_\mathbb{Q}, G_\mathbb{Q}]$ is free in the category of profinite groups, remains open.

Key Fundamental Problem. *How to reach to the maximal separable extension, maximal abelian extension, maximal nilpotent extension of fixed nilpotent class of arithmetic fields, and how to describe their finite subextensions in terms of objects associated to the ground field and in ways which allow a good range of applications? Which structures of arithmetic fields to use for such descriptions?*

This problem for abelian extensions is solved by various types of CFT and by higher CFT, for nilpotent extensions of local fields it is partially solved by arithmetic non-abelian local class field theory, whereas the
Langlands correspondence provides some conjectural answers using representation theory, while anabelian geometry provides very different insights into the full structure of the absolute Galois group. A polymathic development, using appropriate features of CFT and its three generalisations, may lead to a new powerful theory which will see much further and deeper.

2. CFT OF TWO TYPES

CFT includes a construction of reciprocity map, a homomorphism from an appropriate group associated to the ground field, to the Galois group of the maximal abelian extension of the field, and existence theorem which associates in 1-1 fashion, a finite abelian extension of the ground field to an appropriate open subgroup of the appropriate group: this open subgroup is the norm group of the abelian extension. Thus, the transfer/norm map plays the key role in CFT\(^3\), and one of key features of general CFT (see below) is its functoriality with respect to finite separable extensions of the fields.

It is of fundamental importance to distinguish two different types of CFT:

\[
\begin{array}{c|c|c}
\text{CFT} & \text{SCFT} & \text{GCFT} \\
\end{array}
\]

Type I: SCFT = special CFT. These use special structures such as torsion/division points or values of appropriate functions at torsion points and Galois action on them. The global number fields versions of these theories work over certain small fields only and hence are not functorial, the local and functional case theories work over any field. The list of SCFTs includes:

- **Cyclotomic** (historically, the first) Kronecker, Weber, Hilbert.
- **Using elliptic curves with CM** (historically, the second) Kronecker, Weber, Takagi.
- **Using abelian varieties with CM**, Shimura.

These theories are not extendable to arbitrary number fields.\(^4\)

Positive characteristic: Hayes and Drinfeld (rank 1 Drinfeld modules). These theories work over all global fields of positive characteristic.

Local theory using Lubin–Tate formal groups. It works over any local field with finite residue field and does not work over local fields with infinite perfect residue field.

SCFT are not easy. Weber published several erroneous proofs of the complex multiplication CFT, due to mistakes with the 2-primary part.\(^5\) In comparison to latest versions of GCFT, SCFT perhaps stays too near\(^6\) to detailed structures and is not able to see more general easier structures. Hilbert Problem 12 was about extensions of SCFT to number fields, the best was achieved by Shimura, the general task is too optimistic and does not look to be realisable.

Type II: GCFT = general CFT. These theories follow very different conceptual patterns than SCFT. They work over any global or local field. In particular, there are fundamental conceptual issues of GCFT which one does not see in SCFT. Working at the level of small number fields (e.g. using computer calculations, all

\(^3\) as well as in motivic cohomologies

\(^4\) It is incorrect that the cyclotomic theory and some general algebraic functoriality can produce general CFT for all arithmetic fields; number fields require more of individual attention.

\(^5\) See [54].

\(^6\) as to an impressionist painting
of which can only be performed over small number fields) does not uncover various general structures which make GCFT work over any finite separable extension of the ground field.

The list of GCFTs for arithmetic fields includes:
- Hilbert, Furtwängler: some elements of such GCFT but for some number fields only, without an associated local theory;
- Takagi, the first work in GCFT, existence theorem and its applications;
- Artin reciprocity map, whose full construction used Chebotarev’s work, that was missed in its first versions;
- Hasse, the use of the Brauer group in CFT, the first local CFT, local-to-global;
- Chevalley’s invention of ideles, local-to-global, global reciprocity law as the product of local reciprocity laws, which is equal to the identity automorphism on the diagonal image of global elements.

Classical approaches to CFT presented, among many sources, in Hasse’s Klassenkörperbericht, and in Weil’s and Lang’s books.

Cohomological approaches: [2] is a classical cohomological presentation, and there are many other presentations of varying degree of understanding of what is actually going on. All these class field theories are not especially easy to embrace. Finding explicit formulas for the Hilbert pairing and its generalisations, see below sect. 3, was one of the ways to make some information about the reciprocity map more explicit.

Positive characteristic general CFTs: among various approaches, including some parallel to the number fields case. The easiest approach is Kawada–Satake theory, [30]. It uses Witt duality for the most difficult \(p \)-primary part – it does not have a number fields analogue and it is different from the SCFT approach of Hayes–Drinfeld.

Explicit, post-cohomological and cohomologically-free theories, local CFT: Tate–Dwork (Dwork’s Lemma proved by Tate), Hazewinkel, Neukich, Fesenko, global CFT: Neukirch. These theories clarified and made explicit some of the key structures of CFT. These are less dependent on torsion and they do not use the Brauer group: it seems to be still not well known that the Brauer group computation is not needed for CFT. These explicit CFT are easy and in some sense for the first time they explain CFT. It is somehow paradoxical that explicit GCFT, working over any global and local field, is easier than SCFT working over small number fields only. Note the very different type of explicitness in explicit GCFT in comparison to that in SCFT. The explicit GCFT was also highly useful in developing aspects of higher CFT.

3. FOUR FUNDAMENTAL PARTS OF CFT

Part I Functorial reciprocity map

\[\Psi_k: C_k \rightarrow G_k^{ab} \]

is almost a topological isomorphism, from the topological abelian group \(C_k \) (the multiplicative group of a local field or the idele class group of a global field) associated to the ground field \(k \). It induces the isomorphism

\[C_k/\mathcal{N}_l/k C_l \simeq G(l/k)^{ab} \]

for finite Galois extensions.

Part II Existence theorem, describing finite abelian extensions of the ground field \(k \) in terms of open subgroups of finite index of \(C_k \). Important for many applications. Existence theorem is the origin of the name ‘class field’: open subgroups of finite index in \(C_k \) are in one-to-one correspondence with finite abelian extensions \(l/k \):
Existence theorem allows to construct and study abelian extensions by operating with open subgroups of finite index.

Part III Explicit formulas for the (wild) Hilbert pairing, already asked for in Hilbert Problem 9. Important for numerous applications and computations. The nature of explicitness here differs from that in explicit CFT.

Part IV Compatibility with ramification theory is an additional arithmetic flavour of CFT. The local reciprocity map (a) makes compatible the filtration on groups of units by higher subgroups of principal units with the higher ramification groups filtration on the abelian part of the absolute Galois group. The latter filtration, on any Galois group of a local field, is due to an application of (b) Herbrand’s theorem on the compatibility of the upper ramification filtration with taking quotients of Galois groups, and it satisfies (c) the Hasse–Arf theorem: higher ramification jumps of abelian extensions are integers.

Now we discuss various features of Part I and Part III of CFT.

Cohomological approach: several, all are relatively well known. One of them uses the Kummer map, locally

\[
\text{Hom}(G_k, \mathbb{Z}/m\mathbb{Z}) \times k^\times /k^m \rightarrow H^1(G_k, \mathbb{Z}/m\mathbb{Z}) \times H^1(G_k, \mu_m) \rightarrow H^2(G_k, \mu_m) = m\text{Br}(k) \simeq \mathbb{Z}/m\mathbb{Z},
\]

which gives the map \(k^\times \rightarrow \lim \leftarrow k^\times /k^m \rightarrow \mathcal{O}_k^{ab} \). The map \(H^1 \times H^1 \rightarrow H^2 \) is defined using the cup product. The cup product is non-explicit, which implies the non-explicit nature of cohomological class field theory.

Remark. Already Hasse used information about the Brauer group to deduce the reciprocity map. However, the information about the Brauer group is much less helpful for existence theorem and explicit formulas. CFT is not reduced to the computation of the Brauer group and the Brauer group is not needed in explicit CFT, see above.

Cohomological CFT is an \(H^2 \)-theory. It seems fair to note that generations of number theorists went rather fast through the cohomological approach to CFT, not learning the substance of CFT well and thus potentially missing some key arithmetic insights of CFT. 50 years ago Hasse wrote, ‘the sharply profiled lines and individual features of this magnificent edifice seem to me to have lost somewhat of their original splendour and plasticity by the penetration of class field theory with cohomological concepts and methods’.\(^9\)

The class formations approach was a long search for clarification of CFT in the following sense: deduce as much as possible in CFT from as few axioms as possible. Typically, the axioms are about \(H^0 \) (index of the norm group) and \(H^1 \) (Hilbert Theorem 90) for cyclic extensions. Many papers are devoted to the CFT mechanism, which is how one deduces all the main theorems of CFT from a small number of assumptions (CFT axioms) in a purely topological group theoretical way, hence without using ring structures. Thus, from the point of view of anabelian geometry, the CFT mechanism can play a special role.\(^10\) At the same time, proving CFT axioms in all known types of CFT involves the ring structure.

Explicit CFT provides much more information about the image in \(C_k/N_l/kC_l \) of a Galois automorphism \(\sigma \) of a finite Galois extension \(l/k \), \([51], [52]\). The Neukirch method has a very short description, and, due to its fundamental importance and it potential value for future developments, we briefly present it now. One of its key points is to work with appropriate infinite extensions to get information about finite extensions. In the Neukirch

\(^7\) In various generalisations of the classical class field theory such as class field theory for local fields with quasi-finite or perfect residue field, \([4]\), the topology associated with norm subgroups is strictly stronger than the discrete valuation topology on the multiplicative group.

\(^8\) See also \([13]\) which connects aspects of existence theorem with topological reflexivity with respect to a related explicit pairing.

\(^9\) Quoting from \([19]\).

\(^10\) See more on this in ‘Reciprocity and IUT’, https://www.maths.nottingham.ac.uk/plp/pmzibf/j1.pdf.
finite extension Σ

ξ element in the Galois group of L

the fixed field of $\tilde{\xi}$

open subgroup v
to deg K

$Z\pi$

G

use the unique $\hat{\xi}$ Q

usual sense) $\hat{\xi}$ and it induces an isomorphism G

$(\pi$

where a

global reciprocity map does not depend on this choice, since using G

k

Explicit formulas for the (local) Hilbert pairing. Let k
to deg with a $\in \hat{\xi} \times$
changes v to av and the pairs (deg, v) and $(a \text{deg}, av)$ define the same reciprocity map.

In characteristic p one uses the maximal constant field extensions and one can also use Artin–Schreier–Witt theory to explicitly get the p-primary part of CFT.

Explicit formulas for the (local) Hilbert pairing. Let k

roots of unity of order m, μ_m. The Hilbert pairing

$(\cdot, \cdot)_m: k^\times/k^\times m \times k^\times/k^\times m \rightarrow \mu_m$
The Hilbert pairing satisfies the norm property: $(a, b)_m = 1$ iff $b \in N_k(\sqrt[\mu_m]{a})/k(\sqrt[\mu_m]{a})^\times$. This implies the Steinberg property $(a, 1 - a)_m = 1$ for $a \neq 1$. So the Hilbert pairing is a symbol map and induces a map from Milnor $K_2(k)$ to μ_m. If m is the cardinality of roots of unity in k, the mth Hilbert pairing is a universal continuous map from $K_2(k)$ to finite abelian groups, see e.g. Ch. IX of [12].

For any field k of characteristic not dividing m, using the Kummer map and the cup-product, one gets the 2-Kummer map:

$$k^\times/k^{\times m} \times k^\times/k^{\times m} \rightarrow H^1(G_k, \mu_m) \times H^1(G_k, \mu_m) \rightarrow H^2(G_k, \mu_m \otimes \mu_m).$$
If \(k \) is local, this is closely related to the Hilbert pairing. The 2-Kummer map satisfies the Steinberg property, hence induces the norm residue symbol

\[
K_2(k)/mK_2(k) \rightarrow H^2(G_k, \mu_m \otimes \mu_m).
\]

Key results about the norm residue symbol include: the norm residue symbol is an isomorphism for local and global fields (Tate, using CFT); the norm residue symbol is an isomorphism for all fields (Merkuriev–Suslin); the generalisation \(K_r(k)/mK_r(k) \rightarrow H^r(G_k, \mu_m \otimes \mu_m) \) of the norm residue symbol to Milnor \(K_r \) is an isomorphism for all \(r \) (Voevodsky, previous results of Suslin, Morel and Rost play an important role, for the first complete presentation of the proof see [17]).

Milnor \(K \)-groups of higher fields play a fundamental role in higher CFT.

The classical result of Matsumoto tells that for an infinite field \(k \) its Milnor \(K_2(k) \) is isomorphic to the fundamental group \(\pi_1(G) \) for any any split, simply connected, semi-simple, almost simple, algebraic group \(G \) over \(k \), not of symplectic type. Due to the work\(^\text{11}\) of Morel and Voevodsky and a more recent work by Morel and Sawant, the sheaf of Milnor \(K_2 \) is canonically isomorphic to the motivic sheaf \(\pi^{\mathbb{A}^1}_1(G) \) with \(G \) the same as above.

5. Three Generalisations of CFT

Each of the following three generalisations was started approximately half a century ago.

\[
\text{LC} \quad \text{higher CFT} \quad \text{anabelian geometry}
\]

\[
\text{CFT}
\]

These generalisations use fundamental groups: the étale fundamental group in anabelian geometry, representations of the étale fundamental group (thus, forgetting something essential about the full fundamental group) in Langlands correspondences and the (abelian) motivic \(\mathbb{A}^1 \) fundamental group (i.e. Milnor \(K_2 \)) in two-dimensional (2d) higher class field theory.

5.1. Langlands correspondences (LC). These theories are well known, they all use representation theory. Unlike CFT, whose modern expositions do not require to involve any analytic results, the main arithmetic version of LC substantially involves analytic considerations. Its central analytic objects are two types of \(L \)-functions associated to Galois representations and to automorphic representations.

There are no known full analogues of Parts II, III of CFT in LC. For some very partial analogue of Part III of CFT in LC see e.g. sect. 1-2 of [1]. There is higher ramification groups order formula for the Artin conductor, but this is rather not an analogue of Part IV of CFT in LC.

Problem 1. Try to construct fuller analogues of Parts II-IV of CFT in LC.

One way to characterise the correspondence in LC is to say that LC conjecturally classifies (irreducible) linear continuous representations of the Galois group (or related more complicated objects, such as the Weil or Weil–Deligne groups), using Artin \(L \)-functions and their generalisations, in terms of certain automorphic representations of local or adelic algebraic groups, using automorphic \(L \)-functions, in a way compatible with the classification of one-dimensional representations supplied by CFT. The \(L \)-functions, analytic objects, play

\(^{11}\text{See [50].}\)
fundamentally important role in the current form of LC for global fields and their completions. Recall that one can rewrite some of Part I of CFT for number fields as the property that for the \(L \)-function associated to a character of a finite abelian extension of number fields there is a unique primitive Hecke character of the ground number fields with the same Hecke \(L \)-function. However, modern expositions of CFT do not use \(L \)-functions or any complex functions. A person with class field theory background may find some of parts of LC over number fields and their completions involving too much of complex functions, and not much of new explicit arithmetic (non-analytic) arguments and insights in comparison to CFT. One can hope that in due course, when a better understanding of LC arrives, its presentation changes and involves more arithmetic arguments, which currently stay hidden.

To some extent LC may be viewed as a linear theory over abelian CFT. Since it is a representation theory, LC inevitably misses various important features of the full absolute Galois group that are not of linear representation nature. Krein–Tannaka duality implies that one can reconstruct any compact topological group from the category of its finite-dimensional representations equipped with the structure of tensor product, but to apply this duality to various concrete issues has proved very difficult if not impossible. For example, anabelian geometry uses the following two group theoretical properties of the absolute Galois group of a number field or of its nonarchimedean completion: each of its open subgroups is centre-free, each nontrivial normal closed subgroup \(H \) of any open subgroup, with the property that \(H \) is topologically finitely generated as a group, is open.\(^{12}\) How can one use these properties at the level of representations of these Galois groups?

L. Lafforgue wrote, ‘In the case of the absolute Galois group of a field, set-theoretic actions of this group correspond to separable extensions of the field. The world of its linear representations is so different that it is usually extremely difficult and deep to derive concrete consequences for separable extensions of results obtained for linear representations of this group and ‘From the point of view of classifying toposes, going to linear representations is just a base change: instead of studying the classifying topos of a profinite group relatively to the absolute base, the topos of sets, you study it after base change with the classifying topos of the theory of vector spaces over some coefficient field. The fact that such a base change makes such a difference is extremely surprising.’\(^{13}\)

The main conjectures of LC are stated over all global and local fields. There are important classes of representations of Galois groups naturally arising from torsion or division points of arithmetic objects or from appropriate cohomology groups. Over number fields and their completions, there has been progress in several directions, but we are still quite far from solutions of the key fundamental problems. Langlands wrote, ‘It appears that accidental, conditional phenomena are being used to establish general principles, a philosophically disagreeable circumstance’.\(^{14}\)

Currently, the main arithmetic achievements in LC are of special type only.\(^{15}\) In the case of \(\mathbb{Q} \), one of them is the work of Wiles and R. Taylor, et al, on modularity of \(L \)-functions of elliptic curves over \(\mathbb{Q} \)\(^{16}\) and its slight extensions to some small number fields. However, even the general Taniyama–Shimura conjecture over all number fields still stands unsolved, and its future general solution, as well as solutions of general conjectures of LC will be very different from the special methods used so far.

\(^{12}\) Profinite groups with the property that each nontrivial normal closed subgroup of any open subgroup is open are called hereditarily just-infinite, they form an important class in the classification of profinite groups, one representative is the Nottingham group and some of its hereditarily just-infinite subgroups can be realised as Galois groups of arithmetically profinite extensions of local fields, [5].

\(^{13}\) From L. Lafforgue’s email message, Feb 21 2018.

\(^{14}\) From p. 467 of [40].

\(^{15}\) Compare with p. 467 of [40].

\(^{16}\) With the well known application to FLT, using the Hellegouarch–Frey curve.
There are Harris–Taylor and Henniart’s results about the local case for general linear groups using global methods, and still no fully local proof of local LC for all $GL(n)$ is known. The $GL_2(\mathbb{Q})$ case is still open, ‘We still don’t know how to associate an Artin representation to a Galois Maass form’ and ‘the problem of Galois Maass forms is just the tip of an iceberg’\(^\text{17}\).

Together with the correspondence issue (which is not a purely analytic statement), the second most important issue is functoriality (an analytic statement). Langlands wrote, ‘progress in functoriality, as a part of the theory of automorphic forms, has been largely analytic, exploiting very few arithmetic arguments ... Relations between the analytic theory and the arithmetical have often been uneasy... ’\(^\text{18}\) The proof of the fundamental lemma, a local statement, by Ngô, using Hitchin systems (which played an important role in geometric LC), was another highlight in all characteristics. Using it, Arthur established his trace formulas and various arithmetic applications. An important recent progress by L. Lafforgue, both in characteristic zero and in positive characteristic, \(^\text{[37]}\), reformulates, using the spectral decomposition and converse theorems, and without using the Arthur–Selberg trace formula, the conjectural automorphic transfer in functoriality as the existence of a non-linear Fourier transform satisfying an appropriate Poisson formula. This reformulation asks for a definition of the Fourier transform on functional spaces for a general reductive algebraic group where one cannot use the obvious relation of $GL(n)$ to matrices, without using the spectral decomposition results.

Fifty years after its start, most fundamental problems in arithmetic LC remain open. Is this a testament to the difficulty of the problems or to them not yet stated in the ‘right’ form? Work on this text revealed that researchers in LC often do not have a good knowledge of GCFT. Could that be one of key reasons why we still have not answered most fundamental problems in arithmetic LC? Some new fundamental arithmetic insights about LC are missing. Linear algebraic and geometric methods and vision cannot fully cover or substitute various profound arithmetic issues, in particular those revealed by CFT and its other generalisations.

LC is non-abelian but not utmost non-abelian in comparison to anabelian geometry.

Question. Can the conjectures in arithmetic LC be fully established remaining solely inside the use of representation theory for adelic objects and Galois groups and of class field theory? Or should one use more information about the absolute Galois group of global and local fields, which cannot be reached via representation theory, e.g. such as in anabelian geometry, in order to establish all the main expected properties of the representation-theoretical LC?

The third important prediction of LC is that the L-factors of zeta functions of regular proper arithmetic schemes coincide with appropriate automorphic L-functions, \(^\text{[40]}\). The best result in this direction is the theorem of Wiles and its extension for all elliptic curves of \mathbb{Q}. See below sect. 6 for a 2dAAG approach to the zeta functions.

In positive characteristic there has been much more progress using geometrical tools which are not available in the standard approaches to LC over number fields. The local GL_r case was established by Laumon, Stuhler and Rapoport for $r \geq 2$. The global GL_r case was established by Drinfeld for $r = 2$, and by L. Lafforgue for all r, \(^\text{[36]}\), using Drinfeld modules and FH-sheaves\(^\text{19}\). Further important work on functoriality by V. Lafforgue, using in particular ideas from the geometric theory, described how to go from the automorphic side to the Galois side in positive characteristic for arbitrary reductive algebraic groups, \(^\text{[38]}\). To establish functoriality one currently has to go through Galois representations.

\(^{17}\) From R. Taylor’s email messages of Mar 4 and Mar 13 2018.

\(^{18}\) From p. 458 of \(^\text{[40]}\).

\(^{19}\) Named so by G. Harder and D. Kazhdan in \(^\text{[18]}\). F for Frobenius, H for Hecke, instead of the original name πτυχα (pl.). One of the main translations of πτυχα (sing.) is whatsit, thingummy, gizmo.
L. Lafforgue wrote, ‘the methods used to construct LC for function fields or pieces of this correspondence (for number fields) are highly non-explicit, as they consist in considering and studying l-adic cohomology spaces of sophisticated algebraic varieties. Galois representations constructed as components of cohomology spaces are not at all objects one can describe.’

The geometric Langlands correspondence\(^{21}\), further away from arithmetical aspects of CFT, was initiated by Deligne and Laumon and developed by Beilinson–Drinfeld, Gaitsgory, Frenkel, and others. Hitchin systems proved to be very useful for this theory. A categorical geometric Langlands correspondence was proposed by Gaitsgory in [16]. While one of the the key features of CFT is its functoriality with respect to finite separable base change, both LC and geometric LC currently experience difficulties with its analogues. Basic problems remain unsolved or even non-stated, e.g. functoriality; partial progress uses the theta sheaf constructed by Lysenko, [42]. It is still not clear, even conjecturally, what happens when one passes from a curve to its finite étale cover, and the ramified case remains substantially open too. There is a suggestion of Langlands in [41] on an analytic approach to the geometrical theory of automorphic forms. A recent paper by Frenkel [15] well articulates essential obstructions in this direction and proposes a totally different approach.

Remark. Apparently, no significant development within LC is parallel to (or can be viewed as a generalisation of or parallel to) GCFT. Thus, in the arithmetic Langlands correspondence, 50 years after its start, we are still in the ‘pre-Takagi’ stage, similar to where we were 100 years ago in CFT.

Problem 2. Find an approach to arithmetic LC parallel to GCFT.

Problem 3. Find an approach to LC which is parallel to SCFT but which works over all number fields.

Problem 4. Find an approach to LC which is parallel to some of post-cohomological CFT, thus circumventing the problem of using non-abelian cohomology.

Concerning Problem 3, such a mixture is a property of Mochizuki’s IUT theory, a further development of anabelian geometry. It is is of special type and works over all number fields.

It is likely that better knowledge and use of GCFT can be useful for further progress. Langlands emphasised the importance of Hasse’s Klassenkörperbericht.\(^{22}\)

A very different approach to the description of certain non-commutative Galois extensions of function fields of curves over finite fields was started by Ihara, [21]. For example, this theory describes the maximal unramified cover of the projective line over \mathbb{F}_p^2 minus three points which is at most tamely ramified at the three points and in which some special finite set of points decomposes completely, in terms of subgroups of finite index of the quotient of the subgroup of $SL_2(\mathbb{Z}[1/p])$ congruent to the identity mod 2 by its cyclic subgroup of order 2.

5.2. 2d (and higher) CFTs. Classical Lang’s geometric CFT for function fields of varieties over finite fields used commutative algebraic groups over finite fields and their isogenies, [39]. It can be deduced from higher CFT, see [28].

CFT for n-dimensional schemes take into account CFT at the $(n - 1)$-residue level. Almost all higher CFTs typically use Milnor K-groups. They are of GCFT type. Almost all main properties in higher CFT have been established.

\(^{20}\) From L. Lafforgue’s email message, Feb 21 2018.

\(^{21}\) For the most recent review see [14].

\(^{22}\) In two email messages of Feb 9 2016 and Feb 24 2018.
Cohomological higher CFT was developed by Kato (higher local fields), [26], [27], while local-global and
global theories were developed by Kato, Sh. Saito, Kato–Sh. Saito, [28], [29], Bloch, Spieß, Jannsen–Sh. Saito. They generalise some of the cohomological approaches to CFT. The local part of Kato’s theory works with $H^3(G_F, \mu_m \otimes \mu_m)$ instead of the m-torsion part of the Brauer group. The cohomological 2dCFT is an H^3-theory. Other 1d cohomological approaches cannot be (easily) generalised to 2d. In particular, for a finite Galois extension L/F the homomorphism $K_2(F) \rightarrow K_2(L)^{G(L/F)}$ is neither injective nor surjective in general, so the 1d class formations approach does not generalise directly.

An explicit higher local CFT in any characteristic, including the most difficult case of mixed characteristic fields, was constructed in [3], it generalised the Neukirch method and worked with several topologies on Milnor K-groups of higher fields and their quotient K', making use of a higher Vostokov symbol and higher Artin–Schreier–Witt pairing, [60]. These pairings are higher analogues of explicit formulas of Part III of CFT and exist independently of CFT. A different explicit approach to higher CFT in positive characteristic by Parshin, [53], is an extension of the classical Kawada–Satake GCFT, [30], using higher Artin–Schreier–Witt pairing.

The shortest way to state the reciprocity map of 2dCFT is probably this: the 2d reciprocity map for a 2d global field K is a continuous homomorphism

$$\Psi_K : K'_2(A)/(K'_2(B) + K'_2(C)) \rightarrow G_K,$$

where A is 2d geometric adeles associated to a proper regular model of K, B is its subspace corresponding to divisors and C corresponds to closed points, $K'_2(A) = K_2(A)/(\bigcap_{l \geq 1} lK_2(A))$ and $K'_2(B), K'_2(C)$ are images in $K'_2(A)$ of $K_2(B)$ and $K_2(C)$, [8].

All these 2dCFT are GCFT, they do have analogues of Parts II, III of CFT, but not of Part IV due to lack of a satisfactory 2d ramification theory satisfying analogues of each of (a), (b), (c) at the end of sect. 3. There are many different approaches to 2d local ramification theory, including those by Kato, Hyodo, Zhukov, Fesenko, Kato–T. Saito, Borger, Abbes–T. Saito, each having merits and disadvantages, and none capable to serve as a comprehensive 2d ramification theory.

Problem 5. Develop a general ramification theory for surfaces compatible with 2dCFT and taking into careful account ramification theory at the one-dimensional residue level.

An approach to parts of higher global CFT in any characteristic, which uses the étale fundamental group and does not use Milnor K-groups, was developed by Wiesend, [63]. It analyses which finite compatible covers of closed points and curves on a regular arithmetic scheme correspond to a finite Galois cover of the scheme. This leads to a simplified approach to parts of global higher CFT. Unusually for CFT, this approach does not have local and local-to-global parts.\(^{24}\)

Remark. Unlike the classical one-dimensional case, 2dCFT is somehow separated from geometry. The distance between full 2d geometric adeles A and the function field K is two-step, intermediate local-global adelic objects are B and C. The Picard group of a proper regular model of K is isomorphic to $B^\times/(K^\times \cdot \text{units})$.

Remark. No significant development within higher CFT is parallel to (or can be viewed as a generalisation of) SCFT.

Problem 6. Develop a special higher CFT which uses torsion structures, to provide new insights into 2dCFT.

Thus, we observe that the split of CFT into SCFT and GCFT is currently somehow reproduced in the split of generalisations of CFT in LC and higher CFT.

\(^{23}\) Substantial errors and gaps in [53] were fixed in [13].

\(^{24}\) Some corrections, extensions and applications of Wiesend’s approach were later produced by Schmidt and Kerz, [32], [31].
Remark. For the \(p \)-primary part of CFT in characteristic \(p \) one cannot use Kummer theory. However, Kawada–Satake method and its generalisations \cite{13}, using Witt theory, makes the \(p \)-primary part the easiest part of CFT in characteristic \(p \). The nature of existence theorem is clarified: it corresponds to topological reflexivity of (generally non-locally compact) groups with respect to a generalised explicit pairing.

Remark. Inaba’s work on matrix Artin–Schreier theory, \cite{24}, describes all finite Galois extensions of degree a power of \(p \) of fields of characteristic \(p \). It may lead to a simplified \(p \)-primary part of LC in characteristic \(p \).

5.3. Anabelian geometry. The contributors include Neukirch, Iwasawa, Ikeda, Uchida (for 1d fields, it uses the computation of the Brauer group of arithmetic fields); Pop (birational anabelian geometry for finitely generated fields); Belyi; Nakamura, Tamagawa, Mochizuki (hyperbolic curves over finite fields and subfields of local number fields); Stix (hyperbolic curves over fields of positive characteristic). A very different birational geometry for function fields of varieties of dimension \(>2 \) over \(\mathbb{C} \), which uses Milnor \(K \)-groups, was pioneered by Bogomolov and developed by Bogomolov–Tscheinkel, and contributed to later by Pop and Topaz.

There is no analogue of Parts II, III of CFT in anabelian geometry, but there might be some analogue of Part IV of CFT.

Anabelian geometry is a sort of utmost non-abelian and non-linear theory, working with full topological groups such as the absolute Galois groups and fundamental groups of hyperbolic curves (smooth projective geometrically connected curve whose Euler characteristic is negative). Rigidity of certain Galois and fundamental groups is a key feature of anabelian geometry. Quoting Sh. Mochizuki, those fundamental and Galois groups’ ‘intrinsic structure is sufficiently rich to allow one to establish rigidity properties that are sufficiently “potent” to compensate for the “loss of structure” that arises from sacrificing compatibility with classical scheme-/ring-theoretic structures’, \cite{49}.

Tamagawa’s theorem states that for two non-proper hyperbolic curves \(C_1, C_2 \) over a finitely generated field \(k \) over \(\mathbb{Q} \), the natural morphism from \(k \)-isomorphisms of \(k \)-schemes \(C_1 \) to \(C_2 \) to continuous \(G_k \)-isomorphisms of their étale fundamental groups modulo inner automorphisms of the étale fundamental group of \(C_2 \times_k k_{\text{alg}} \) is bijective, \cite{57}. One of Mochizuki’s theorem extends this property to all hyperbolic curves, \cite{44}. His other theorem states that the natural morphism from dominant \(k \)-morphisms of hyperbolic curves \(C_1, C_2 \) over a subfield \(k \) of a field finitely generated over \(p \)-adic numbers to open continuous \(G_k \)-homomorphisms of their étale fundamental groups, considered up to composition with an inner automorphism of the étale fundamental group of \(C_2 \times_k k_{\text{alg}} \), is bijective, \cite{45}.

Mono-anabelian geometry developed by Mochizuki further extends anabelian geometry. It includes strong results on algorithmical reconstruction of an arithmetic object from certain fundamentals groups. One of the main theorems of mono-anabelian geometry is Mochizuki’s algorithmic reconstruction of \(k \) and the function field of a smooth hyperbolic curve of strictly Belyi type over \(k \), with \(k \) either a number field or its non-archimedean completion, from the étale fundamental group of the curve, \cite{46}-III. Recall that in general one cannot reconstruct a finite extension of \(\mathbb{Q}_p \) from its absolute Galois group, thus the previous theorem demonstrates that using the next dimension by involving certain hyperbolic curves over the field fundamentally improves the situation.

Grothendieck’s theory of the Teichmüller tower already had implication for \(G_{\mathbb{Q}} \), as well as Belyi’s theorem and its consequences. A key problem is the study of the (profinite) Grothendieck–Teichmüller group (GT) in relation to its subgroup \(G_{\mathbb{Q}} \). Recent work of Mochizuki–Hoshi–Minamide \cite{20} shows that GT is, up to \(S_{n+3} \), just the group of automorphisms of the étale fundamental group of the \(n \)-dimensional configuration space, \(n > 1 \), associated to a hyperbolic curve of genus 0 with 3 punctures over an algebraically closed field of characteristic
zero. This result suggests G_Q as a proper subgroup of GT. One of corollaries, by Minamide and Nakamura, is the description of the profinite Grothendieck–Teichmüller group as the automorphism group of the mapping class group of a topological torus with two marked points, [43]. Another recent result by Tsujimura establishes a surjective homomorphism from the (largest) p-adic Grothendieck–Teichmüller group to G_{Q_p} whose restriction on G_{Q_p} is the identity map, [59].

Remarks. It is interesting to note that Neukirch’s explicit approach to CFT was partially motivated by his experience in anabelian geometry for number fields.

The anabelian geometry viewpoint provides a new understanding of the role of the class formations in axiomatic approaches to CFT. Checking the validity of axioms of CFT requires the use of the ring structure, while the CFT mechanisms, i.e. deducing the reciprocity map and other properties from the axioms of CFT, is purely group theoretical.

6. THREE GENERALISATIONS OF CFT AND ARITHMETIC OF ELLIPTIC CURVES

In this last section we look at the example of elliptic curves E over number fields k. Choose a proper regular model \mathcal{E} flat over the ring of integers of k. Denote $K = k(E) = k(\mathcal{E})$.

LC: here the main achievement is of Wiles–Taylor et al for elliptic curves over \mathbb{Q}. It is of special type. The Taniyama–Shimara conjecture is still not solved over an arbitrary number field and that would require a general type of LC. The associated Galois and l-adic representations of G_k use torsion points of E over a separable closure of k. Current approaches to LC for elliptic curves over number fields work with the generic fibre of \mathcal{E} (hence with horizontal curves on \mathcal{E}) or with special fibres of \mathcal{E}, but rather not with the full arithmetic surface \mathcal{E} as a two-dimensional geometric object.

2dCFT: The 2d reciprocity map $\Psi_K : K_2^r(\mathbb{A})/(K_2^r(\mathbb{B}) + K_2^r(\mathbb{C})) \rightarrow G_k^{ab}$ is the outcome of two global reciprocity laws with respect to $K_2^r(\mathbb{B})$ and $K_2^r(\mathbb{C})$, associated to curves and to points of \mathcal{E}, of 2d adelic product of 2d local reciprocity maps $\Psi_F : K_2^r(F) \rightarrow G_F^{ab}$ where F is a 2d local field associated to a point on a curve on \mathcal{E}. The local reciprocity map sends K_2^r-prime elements such as $\{t_1, t_2\}$, where t_2 is a local parameter of F and t_1 is a lift to F of a local parameter of its residue field, to an automorphism of the maximal abelian extension of F which when restricted to the maximal prime-to-p-cycloctomic extension of F equals to its Frobenius automorphism over F. A generalisation of the 1d Neukirch method works perfectly well for K_2^r-objects, [3].

Anabelian geometry: one can work with various hyperbolic curves associated to E, e.g. $X = E \setminus \{0\}$ over k, and with the homomorphism $\pi_1(X) \rightarrow G_k$. As proved in [46], from $\pi_1(X) \rightarrow G_k$ one can algorithmically recover $k(X)$ and the fields k and completions k_v of k. It is well known that from G_k one cannot in general recover k_v.

Anabelian geometry is intensively used in Mochizuki’s IUT = inter-universal Teichmüller theory = arithmetic deformation theory and its applications to some of the abc inequalities, and the Szpiro and Vojta conjectures, [48], [49]. It is interesting to observe that similarly to the Neukirch explicit CFT and the Vostokov symbol in explicit formulas for the Hilbert pairing, IUT involves several indeterminacies at its crucial stage of multi-radial representation. IUT uses generalised Kummer theory and the computation of the local Brauer group, it does not use anything else from CFT. It works with values of certain nonarchimedean functions (étale theta functions) at torsion points, in this respect it is nearer to SCFT; on the other hand, it works over any number field and in this respect it is nearer to GCFT.26

25 For the list of reviews and surveys of IUT see https://www.maths.nottingham.ac.uk/plp/pmzibf/guidestoiut.html.
26 See also Remark 2.3.3 of IUT-IV paper [48] and sect. 4.2 of [49].
Informally speaking, IUT deals with Galois groups as tangent bundles. In fact, global class field theory does kind of the same with abelian Galois groups: abelian Galois groups over a global field correspond to idele classes, while adeles are dual to generalised differential forms.

2dAAG = 2d adelic analysis and geometry studies properties of the zeta function of \(E \) by involving 2d analytic adeles and 2d zeta integrals.\(^{27}\) Recall that the (Hasse) zeta function of \(E \) is

\[
\zeta_E(s) = \prod_x (1 - |k(x)|^{-s})^{-1},
\]

\(x \) runs through all closed points of \(E \). Its conjectural functional equation is

\[
c_\mathcal{E}^2 - c_\mathcal{E} \zeta_E(2 - s)^2 = c_\mathcal{E}^2 \zeta_E(s)^2
\]

with some positive rational \(c_\mathcal{E} \) not depending on the archimedean data; note the absence of the \(\Gamma \)-factors. This functional equation is known to hold if \(k = \mathbb{Q} \) by the work of Wiles and Taylor and others. Dependent on the generic fibre \(E \) of \(\mathcal{E} \) only, the (Hasse–Weil) zeta function \(\zeta_E(s) \) of \(E \) satisfies the equation

\[
\zeta_E(s) = n_E(s) \zeta_E(s)
\]

where the factor \(n_E(s) \) is the product of finitely many zeta functions of affine lines over finite fields, corresponding to what happens at singular fibres of \(\mathcal{E} \). If \(\mathcal{E} \) is the global minimal Weierstraß model of \(E \), then \(n_E(s) = 1 \). The \(L \)-factor (i.e. the Hasse–Weil \(L \)-function of \(E \)) is the denominator of \(\zeta_E(s) = \zeta_E(\mathcal{E}(k)(s))/L_E(s) \). Thus, the conjectural functional equation of \(L_E \) is more complicated than that of \(\zeta_E \), and its Gamma-factor has its origin due to the 1d Gamma-factor in the functional equation of \(\zeta_E(s) \zeta_E(s - 1) \).

The \(L \)-factors of zeta-functions of proper regular arithmetic schemes are like micro/quantum objects, whose non-commutative study requires the use of representation theory, once developed for the needs of quantum mechanics and then finding applications in various parts of mathematics including number theory. Thus, in some sense they are more complicated objects than the zeta functions of proper regular arithmetic schemes which are like macro objects and can be studied without using representation theory, using commutative (but higher dimensional) methods.

Now was consider the role of zeta integrals in the classical setting of the Iwasawa–Tate theory, and in 2dAAG and LC.

Zeta integrals. Classically, i.e. in the Iwasawa–Tate theory,\(^ {25}, [58] \), a completed zeta function is written as a zeta integral

\[
\int_{A_k^\times} f(\alpha) |\alpha|^s d\mu_{A_k^\times}(\alpha)
\]

over ideles \(A_k^\times \) of the product of a Bruhat–Schwartz function \(f \) and the module function raised to complex power \(s \), against a nontrivial translation invariant measure on the locally compact group of ideles. More generally, one can replace \(|\alpha|^s\) with the an arbitrary quasi-character \(\chi \) of \(A_k^\times \) vanishing on \(k^\times \). Adelic symmetries result in the functional equation and meromorphic continuation of the zeta function. The theory of zeta integrals uses objects from appropriate 1d CFT, such as \(A_k^\times \), \(\mathfrak{A}_k^\times /k^\times \), but not 1d CFT itself.

Recall that some of Part I of CFT for global fields is equivalent to the following property: the \(L \)-function of a global field associated to a character of its absolute Galois group, after being appropriately completed with Gamma-factors, equals to

\[
\int_{A_k^\times} f(\alpha) \chi(\alpha) d\mu_{A_k^\times}(\alpha)
\]

for an appropriate quasi-character \(\chi \) of \(A_k^\times \) vanishing on \(k^\times \). For one-dimensional objects of number theory, the three zeta/L-functions coincide: scheme theoretic, abelian Galois representation theoretic and abelian automorphic representation theoretic.

The role of appropriately generalised zeta integrals in 2dAAG and LC is fundamental.

\(^{27}\) See sect. I.J.K of https://www.maths.nottingham.ac.uk/personal/ibf/mp.html.
2dAAG includes a 2d zeta integral presentation

\[\int_{k^* \times A^*} f(\alpha) \| \alpha \|^s d\mu_{k^* \times A^*}(\alpha) \]

of the square of \(\zeta_E(s) \) times appropriately scaled squares of 1d zeta integrals of finitely many horizontal curves on \(\mathcal{E} \), where \(f \) is a 2d Bruhat–Schwartz function and \(\| \| \) is a twisted module homomorphism, against a 2d translation invariant measure on the multiplicative group of 2d analytic adeles \(A \) (which are fundamentally different from the 2d geometric adeles \(A \) and from the 1d adeles \(A_k \)), [8]. This study has applications to the meromorphic continuation and functional equality of \(\zeta_E(s) \) via a 2d theta-formula and resulting boundary term and mean-periodicity conjecture, [8], [55]; to the GRH for \(\zeta_E(s) \) via the Laplace–Carleman spectrum of the boundary term, [8], [56]; and to the BSD conjecture via the boundary term and an interaction between the multiplicative groups of 2d geometric and analytic adeles, [8]. In particular, an interaction between the multiplicative groups of the two adelic structures \(K_1(A) \times K_1(A) \rightarrow K_2(A) \), originating from explicit existence theorem in 2dCFT, an analogue of Part II of CFT, leads to a relation between the analytic and geometric adelic structures that can be viewed as an adelic lift of the rank part prediction by the BSD conjecture, [8]. This seems to be the only general approach to the study of special values of the zeta function \(\zeta_E(s) \). All this information about \(\zeta_E(s) \) implies corresponding information about \(L_E(s) \). Thus, similar to the property of mono-anabelian geometry mentioned in sect. 5.3, the use of 2d objects in 2dAAG allows one to see deeper properties of the zeta-function and \(L \)-function of an elliptic curve over a global field. The mean-periodic conjecture was extended to the zeta functions of all proper regular arithmetic schemes in [11]. It directly tells, without looking at automorphicity of the \(L \)-factors, what is an equivalent condition for the zeta function to have a meromorphic extension and functional equation.

For the \(L \)-function of an irreducible \(GL(n) \)-representation of the absolute Galois group \(G_k \) of a global field \(k \), its conjectural automorphicity, due to the converse theorems, is closely related to the following conjectural property: its completed \(L \)-function and its twists by appropriate characters, after multiplying with appropriate Gamma-factors, is equal to an appropriate zeta integral, for an appropriate \(M(n, A_k) \)-Bruhat–Schwartz function \(f \),

\[\int_{GL(n, A_k)} f(\alpha) c(\alpha) |\det(\alpha)|^s d\mu_{GL(n, A_k)}(\alpha). \]

The additional factor \(c(\alpha) = \int_{GL(n, A_k)}/GL(n, k) g_1(\gamma) g_2(\gamma) d\mu(\gamma) \) for \(n > 1 \) involves two cuspidal functions \(g_1 \). Here \(GL(n, A_k) \) is the preimage of the unit circle with respect to the determinant, and a complex valued cuspidal function \(g \) is a smooth (in the adelic sense) function such that the \(\alpha \)-variable integral of \(g(\alpha\beta) \) over \(U_r(n, A_k)/U_r(n, k) \) is zero for all \(g \in GL(n, A_k) \), where \(U_r \) is the group of block upper-triangle matrices with two diagonal blocks being the identity matrices of order \(r \) and \(n-r, 1 \leq r \leq n-1 \). For \(n \geq 4 \) one may need a similar property of zeta integral presentation to hold for the twists of the \(L \)-function by appropriate \(L \)-functions of irreducible \(GL(m) \)-representations for all \(2 \leq m \leq n-2 \), to use the converse theorems.

One can ask what are analogues in IUT of complex functions such as zeta integrals. IUT replaces archimedean structures with nonarchimedean ones via the product formula. For a non-archimedean valuation at which \(E \) has split multiplicative reduction with Tate parameter \(q \) and a sufficiently large prime number \(\ell \), IUT works with nonarchimedean Gaussians \(\frac{q^{m^2}}{\prod_{1 \leq m \leq (\ell-1)/2}} \) where \(q \) is a \(2\ell \)th root of \(q \). This set might be some kind of IUT analogue of the zeta integral.

Problem 7. Find (archimedean) complex functions related to IUT, and relate them with complex functions playing the central role in the other two generalisations of CFT.
It is quite possible that such complex functions should include the Kurokawa-Selberg zeta function of the fundamental group of hyperbolic curves. This zeta function is defined in in sect. 1 of [35] which proposes a conjectural relation of three types of zeta/L-functions with the Kurokawa–Selberg zeta function.

Here are some relations between the three generalisations of CFT and their further developments:

\[
\begin{array}{ccc}
2dLC? & \rightarrow & 2dAAG \\
\downarrow & & \downarrow \\
LC & \rightarrow & 2dCFT \\
\downarrow & & \downarrow \\
CFT & \rightarrow & \text{anabelian geometry}
\end{array}
\]

2dLC should exist but not much is known about it. An object, generalising the quotient \(GL_2(\mathbb{A})/GL_2(k) \) in 1d case, certain functions on which may serve as 2d automorphic functions of \(\mathbb{C} \) is described in the last section of [7]. It is expected that local 2dLC will use higher translation invariant measure and integration on algebraic groups over 2d local fields developed in [8], [61].

Relations between 2dAAG and IUT include, in addition to those mentioned in [9], the following analogy. IUT uses (after fixing a prime number \(l \)) two fundamental symmetries: additive geometric and multiplicative arithmetic. 2dAAG uses adelic structures on arithmetic surfaces: geometric adeles (their additive structure is related to Zariski cohomology and the intersection pairing, their \(K_2 \)-structure is important for 2dCFT) and multiplicative analytic adeles \(\mathbb{A}^\times \) (used to study the 2d zeta integral, zero cycles).

As for potential relations between IUT and LC, one of the key activities in anabelian geometry is the restoration of ring structure, i.e. the second operation of addition, when the multiplicative structure is already known. It is interesting to compare with [37] which reformulates the functoriality in LC as a problem to find for an arbitrary reductive algebraic group an analogue of the relation between the group \(GL(n) \) and the ring of square matrices of order \(n \).

Problem 8. Find more direct relations between the generalisations of CFT. Use them to produce a single unified generalisation of CFT.\(^{28}\)

Such relations, when found, may lead to new approaches to LC which are parallel to general CFT, or, at least have some mixture of features of special CFT but work over all number fields, as they do in IUT. They may even lead to a unified powerful generalisation of CFT which specialises to its three generalisations.

REFERENCES

\(^{28}\) stated as the result of e-communication with V. Shokurov

