ON ASYMPTOTIC EQUIVALENCE OF ELLIPTIC CURVES OVER \mathbb{Q}

IVAN FESENKO

Let a, b be coprime integers. The affine equation of elliptic curve\footnote{this curve is sometimes called the Frey or Frey–Hellegouarch curve} $E_{a,b}$

$$y^2 = x(x + a)(x - b)$$

can be written in the Weierstrass form as

$$Y^2 = X^3 - 27c_4X - 54c_6, \quad c_4 = 16(a^2 + ab + b^2), \quad c_6 = 32(b - a)(2a + b)(a + 2b),$$

We have $\Delta = (c_4^3 - c_6^2)/1728 = 16(ab(a + b))^2$.

In particular,

$$\phi = (a^2 + ab + b^2)^3 = ((b - a)(2a + b)(a + 2b)/2)^2 + 3^3(ab(a + b)/2)^2.$$ \footnote{See e.g. sect. 12.5 of [BG] E. Bombieri, W. Gubler, Heights in Diophantine geometry, CUP 2007. Note that there is a misprint on p.434, top line 2: Δ should be replaced with Δ'.}

The j-invariant of the Weierstrass equation is

$$j_{a,b} = 2^8 \cdot \frac{(a^2 + ab + b^2)^3}{(ab(a + b))^2} = 2^6 \cdot \frac{((b - a)(2a + b)(a + 2b))^2}{(ab(a + b))^2} + 2^6 \cdot 3^3.$$ \footnote{Date: May 2019.}

For a non-zero integer its radical rad is the product of its prime divisors taken each with multiplicity one and its odd radical rad' is the product of its odd prime divisors taken each with multiplicity one. If $16 | ab(a + b)$ then $\text{cond}(E_{a,b}) < 2^{12} \text{rad}'(ab(a + b))$. If $16 | ab(a + b)$ and say $2 | (a - 1)$, $16 | b$ then $\text{cond}(E_{a,b}) = \text{rad}(2^{-4}ab(a + b)) \leq \text{rad}(ab(a + b))$. All this is very well known.\footnote{See e.g. sect. 12.5 of [BG] E. Bombieri, W. Gubler, Heights in Diophantine geometry, CUP 2007. Note that there is a misprint on p.434, top line 2: Δ should be replaced with Δ'.}

Now let in addition $0 < a < b$, a, b are still coprime. Put $c = a + b$. Define

$$A = (b - a)/d, B = (2a + b)/d, C = A + B = (a + 2b)/d,$$

where $d = \gcd(b - a, 2a + b)$ (= 1 or 3). Then $0 < A < B$, $(A, B) = 1$,

$$a^2 + ab + b^2 = d^2(A^2 + AB + B^2)/3,$$

$$ab(a + b) = d^3(B - A)(A + 2B)/(2A + B)/3^3,$$

$$(b - a)(2a + b)(a + 2b) = d^3AB(A + B).$$

The map $\phi: (a, b) \mapsto (A, B)$ is an involuition: $\phi^2 = \text{id}$. It is a special map relating the two terms on the RHS of (†).

By (†), we have

$$\phi = (a^2 + ab + b^2)^3 = ((b - a)(2a + b)(a + 2b)/2)^2 + 3^3(ab(a + b)/2)^2.$$ \footnote{Date: May 2019.}

and

$$\phi = (A^2 + AB + B^2)^3 = 3^3(AB(A + B)/2)^2 + ((B - A)(2A + B)(A + 2B)/2)^2.$$ \footnote{Date: May 2019.}

We also have $j_{A,B} = 12^3 j_{a,b}/(j_{a,b} - 12^3) = (12^{-3} - j_{a,b}^{-1})^{-1}$. \footnote{Date: May 2019.}
Question. Are $\text{rad}(abc)$ and $\text{rad}(ABC)$ (effectively) asymptotically equal? I.e. is it true that for every $\varepsilon > 0$ there are constants $c_\varepsilon, c'_\varepsilon$, effectively depending on ε, such that for all relatively prime positive $a < b$

$$\text{rad}(abc) < c_\varepsilon \cdot \text{rad}(ABC)^{1+\varepsilon}, \quad \text{rad}(ABC) < c'_\varepsilon \cdot \text{rad}(abc)^{1+\varepsilon}.$$

It is sufficient to know that $\text{rad}(ABC) \ll_\varepsilon \text{rad}(abc)^{1+\varepsilon}$, then by symmetry this will imply the asymptotic equality of $\text{rad}(abc)$ and $\text{rad}(ABC)$.

The involution ϕ corresponds to $x \mapsto (1-x)/(2x+1)$ on \mathbb{P}^1 sending the divisor $[0]+[1]+[\infty]$ to $[0]+[1]+[-1/2]$. We have $\text{rad}(abc) = \text{cond}_{[0]+[1]+[\infty]}(a:b) = \text{cond}_{[0]+[1]+[-1/2]}(A:B)$ and $\text{rad}(ABC) = \text{cond}_{[0]+[1]+[\infty]}(A:B)$.

The following problem includes several equivalent statements to the question. The proof of equivalence is straightforward.

Problem. Prove or disprove the following equivalent statements.

1. For every $\varepsilon > 0$ there is a positive constant κ_ε such that for all positive coprime integers $a < b$

$$\text{rad}((b-a)(2a+b)(a+2b)) < \kappa_\varepsilon \cdot \text{rad}(ab(a+b))^{1+\varepsilon}$$

with κ_ε effectively dependent on ε.

2. For every $\varepsilon > 0$ there is a positive constant κ'_ε such that for all positive coprime integers $a < b$

$$\text{rad}(ABC) < \kappa'_\varepsilon \cdot \text{rad}(abc)^{1+\varepsilon},$$

with $(a,b) \mapsto (A,B)$ defined above and with κ'_ε effectively dependent on ε.

3. $\text{rad}(c_0(E_{a,b}))$ and $\text{rad}(\Delta(E_{a,b}))$ are effectively asymptotically equivalent.

4. $\text{rad}(\Delta(E_{a,b}))$ and $\text{rad}(\Delta(E_{A,B}))$ are effectively asymptotically equivalent.

5. $\text{cond}(E_{a,b})$ and $\text{cond}(E_{A,B})$ are effectively asymptotically equivalent.

Thus, the positive answer to the problem signifies a new asymptotic symmetry of the moduli space of elliptic curves over rational numbers with a non-trivial rational point of order 2.

Among several motivations for the stated problem, one comes from the study of an issue to deduce the $1+\varepsilon$-version of abc inequality from another of its versions, and we now describe this aspect.

Szpiro3 stated the following version: let a, b be coprime positive integers, then for every $\varepsilon > 0$ there is effectively given $c_\varepsilon > 0$ such that

$$\log(ab(a+b)) \leq 3(1+\varepsilon) \cdot \log \text{rad}(ab(a+b)) + C_\varepsilon \quad (\dagger)$$

In view of (\dagger), consider the equation $x^3 = y^2 + 3z^2$ with $(x, y, z) = 1; x, y, z > 0$. The following is a kind of variation of some arguments in sect. 12.5 of [BG].

Applying (\dagger), we obtain $x^3y^2z^2 \ll_\varepsilon \text{rad}(xyz)^3(1+\varepsilon)$. Since $y^2 \cdot 3z^2 \leq x^6/4$, we deduce $yz \ll_\varepsilon \text{rad}(xyz)^{1+\varepsilon}$. Assume that $y^2 \leq 3z^2$, then we deduce $y \ll_\varepsilon \text{rad}(xyz)^{(1+\varepsilon)/2}$, and since $x^3 \geq 2 \cdot 3z^2$, we get $x^3 \cdot y^2 \ll_\varepsilon \text{rad}(xyz)^3(1+\varepsilon)$ and $x^3 \cdot y^6 \ll_\varepsilon \text{rad}(xyz)^{5(1+\varepsilon)}$. Substituting the latter in the RHS of $y \ll_\varepsilon \text{rad}(xyz)^{(1+\varepsilon)/2}$, we obtain $y \ll_\varepsilon \text{rad}(z)^{(1+\varepsilon)}$. From $x^3 \cdot y^2 \ll_\varepsilon \text{rad}(xyz)^{3(1+\varepsilon)}$ we deduce $x^3 \ll_\varepsilon \cdot \text{rad}(z)^{(1+\varepsilon)} < \text{rad}(z)^{6(1+\varepsilon)}$, hence $x \ll_\varepsilon \text{rad}(z)^{2(1+\varepsilon)}$. Thus, (\dagger) implies: if $y^2 \leq 3z^2$ then $x^3, y^2 \ll_\varepsilon \text{rad}(z)^{6(1+\varepsilon)}$ and, similarly, if $y^2 \geq 3z^2$ then $x^3, z^2 \ll_\varepsilon \text{rad}(y)^{6(1+\varepsilon)}$, with effective implied constants.

Now, using $x = a^2 + ab + b^2$, $y = (b-a)(2a+b)(a+2b)/2$, $z = ab(a+b)/2$ in (\dagger), we deduce from (\dagger):

3 Szpiro, L. Discriminant et conducteur des courbes elliptiques, Astérisque 183(1990) 7–18.
if \(((b - a)(2a + b)(a + 2b)) \leq 3^3(ab(a + b))\) then \(a^2 + ab + b^2 \ll \varepsilon \text{rad}(abc)^{2+\varepsilon}\) and hence \(\max\{a, b, c\} \ll \varepsilon \text{rad}(abc)^{1+\varepsilon}\); if \(((b - a)(2a + b)(a + 2b)) \geq 3^3(ab(a + b))\) then \(A^2 + AB + B^2 \ll \varepsilon \text{rad}(ABC)^{2+\varepsilon}\) and hence \(\max\{a, b, c\} \ll \varepsilon \text{rad}(ABC)^{1+\varepsilon}\), with effective implied constants.

Therefore, \((\sharp)\) implies: for coprime positive integers \(a, b\) (with \(c = a + b\) and \(A, B, C\) as above)

\[c \ll \varepsilon \max\{\text{rad}(abc), \text{rad}(ABC)\}^{1+\varepsilon},\]

with an effective implied constant.

Thus we obtain that \((\sharp)\) via \((\circ)\) and the positive answer to the stated problem imply the stronger inequality \(\max\{a, b, c\} \ll \varepsilon \text{rad}(abc)^{1+\varepsilon}\) with an effective implied constant depending on \(\varepsilon\).

It is not currently known whether the conjectural inequality \(\max\{a, b, c\} \ll \varepsilon \text{rad}(abc)^{1+\varepsilon}\) implies the positive answer to the stated problem.