ABOUT CERTAIN ASPECTS OF THE STUDY AND DISSEMINATION
OF SHINICHI MOCHIZUKI’S IUT THEORY

IVAN FESENKO

This text aims to communicate in a compact form some of factual information related to the study of Shinichi Mochizuki’s IUT theory\(^1\) and its dissemination, as well as some related aspects including non-experts behaviour. Some of more general issues are discussed in two other papers\(^2\)\(^3\). Without repeating the content of those papers, this text deals with some concrete issues, rather related to some mathematicians than to mathematics. The summary of what follows is this.

The main prerequisite for IUT is the vast area of (arithmetic) anabelian geometry developed since 1990 in Japan. In 2012 there were few experts in arithmetic anabelian geometry outside Japan. IUT is not an increase of mathematical knowledge in an area in which there are many specialists able to study it. It is a rare pioneering vast development with many new concepts and ideas, and with a great potential for future developments. To become an expert in IUT, one has to invest an adequate large amount of time in a dedicated serious focused study of the theory starting with its prerequisites. This cannot be done in the period of few weeks or months. If one does not study, one does not learn. To help mathematicians to study IUT, a very large amount of time and effort has been dedicated to the dissemination of IUT, via various workshops, including large international, via seminars, lectures and study groups. No valid math evidence of any serious fault in IUT, confirmed by experts, has been found by anyone. Minor oversights have been found and corrected. To this day there remains no mathematically substantive reason whatsoever to doubt the validity of IUT. The number of researchers who have mastered IUT, by investing a large amount of time and effort, is steadily growing and is probably more than 20. These researchers have sent a 4-digit number of questions and remarks to the author, all addressed. 13 surveys of IUT and a highly popular book on IUT, by 8 mathematicians from 6 countries, individually present the theory in different ways. There are more mathematicians able to produce expert reports on the IUT papers than the number of such reports on previous very rare major math breakthrough at the time of their publication. In 2018–2019 two year long IUT seminars at RIMS for new learners were conducted. 2021 is a special RIMS year with 4 international workshops on anabelian geometry, combinatorial anabelian geometry and IUT.\(^4\)

Few have choses to ‘show a want of knowledge that must be the result of years of study’. Some have tried to study IUT, just for a short while, and obviously failed. There is a number of younger researchers who in the course of several years of their study of IUT have asked interesting or deep questions and contributed to new original developments. And there was a smallish group of researchers, lacking the expertise in anabelian geometry but active in publicly making negative remarks about IUT, always devoid of any valid math evidence.

\(^1\) The IUT papers made public in August 2012 are available from section Inter-universal Teichmüller Theory of its author page http://www.kurims.kyoto-u.ac.jp/~motizuki/papers-english.html. See those pages for various information on seminars and workshops on IUT. See also this page https://www.maths.nottingham.ac.uk/plp/pmzibf/guidestoIUT.html.

\(^3\) I. Fesenko, Remarks on aspects of modern pioneering mathematical research, available from https://www.maths.nottingham.ac.uk/plp/pmzibf/rpp.pdf

\(^4\) see also an interview to the AMS available at http://www.ams.org/news?news_id=3711
of faults in the theory.\footnote{compare with ‘we are also fighting on a second front that we did not anticipate, fighting a battle against misinformation and disinformation in a hyper-partisan environment ... the world has changed in profound ways since even 2010. Social media, hyper-partisanship, the broad populist distrust of experts, plummeting standards of factfulness’; https://twitter.com/CT_Bergstrom/status/1243252341756669953} A tiny number of researchers obviously lacking the experience of working with the étale fundamental group of curves over number fields found appropriate to spread fake news and disinformation about IUT, thus becoming ‘prisoners of their own device’. Their reckless action might have affected some people, unable to distinguish an expert in the relevant subject area from a non-expert. Even much worse, it might have discouraged some very promising mathematicians to work on fundamental challenges in modern mathematics.

1. On mathematical environment around IUT, briefly. Class field theory, the heart of algebraic number theory, has several important generalisations. They include the Langlands correspondences, anabelian geometry and higher class field theory. By various reasons the first generalisation\footnote{even though it is still lacking a version parallel to general class field theory, see the next footnote} has attracted many times more researchers than the second and the third, but all of these generalisations of class field theory are fundamentally important. Most of the central problems in the second and third generalisations of class field theory have been settled\footnote{for more details and related math issues see https://www.maths.nottingham.ac.uk/plp/pnz1bf/232.pdf}. One can imagine another universe where higher class field theory and anabelian geometry attract many more researchers than in this universe and where general class field theory concepts are well understood by all number theorists.

The main prerequisite for IUT theory of Sh. Mochizuki is arithmetic anabelian geometry, including his famous proofs of the Grothendieck conjecture and his mono-anabelian geometry. Arithmetic anabelian geometry was started in works of Neukirch–Ikeda–Uchida–Iwasawa for small fields (such as number fields or their completions) in characteristic zero, and from a different motivation for hyperbolic curves over number fields it was proposed by Grothendieck. The main leading country in arithmetic anabelian geometry is Japan, and the first three contributors to anabelian geometry were H. Nakamura, A. Tamagawa and Sh. Mochizuki.\footnote{In the 1990s, a series of results about anabelian properties of Galois groups of global and higher global fields, i.e. birational anabelian geometry, were obtained by F. Pop. Since the early 1990s, F. Bogomolov suggested and developed, later in collaboration with Yu. Tschinkel, his birational anabelian geometry for varieties of dimension > 1 over algebraically closed fields, this theory is quite different from arithmetic anabelian geometry in many respects.} Below ‘anabelian geometry’ will mean ‘arithmetic anabelian geometry’. In the last thirty year a vast body of fundamentally important results in anabelian geometry were established. These developments were essentially left unnoticed in many countries and outside a small group of experts.

The IUT theory uses some key theorems in anabelian geometry, as well as its later developments such as absolute anabelian geometry and mono-anabelian geometry. The total volume of relevant papers in anabelian geometry used in one or another extent in IUT is huge. One starting observation for arithmetic deformation theory, i.e. IUT, is that unlike the usual algebraic geometry in which working with schemes locally corresponds to working with commutative rings, working with certain anabelian objects corresponds to working with large nonabelian topological groups, thus using one operation instead of two, with new options to perform kinds of arithmetic deformation, not available in the standard arithmetic geometry. There is an associated difficulty to measure the deviation of certain diagrams of groups and maps between groups from being commutative, which IUT solves, thus eventually providing bounds on certain deformations.

2. The study of IUT. Links to various study materials about IUT are available from pages of the author of IUT\footnote{http://www.kurims.kyoto-u.ac.jp/~motizuki/top-english.html}. The total amount of time dedicated to the verification process of IUT by mathematicians is several decades, and it looks to be the largest time ever spent in the history of mathematics on the verification of a mathematical work prior to its publication. Several international conferences were organised in 2014–2016. Numerous intensive seminars have been held in Japan (2012–2019), UK (2015–2018), China (2015–2016), they involved nationals of many countries. In addition to the referees’ comments, active learners of IUT sent a 4-digit number of
comments, questions, remarks, all had been carefully taken into account by the author. Several learners of IUT shared their understanding of it, by having written texts and surveys. There are already more surveys of IUT than of any previous rare breakthrough work at the time of its publication.\footnote{For their incomplete list see e.g. \url{http://www.maths.nottingham.ac.uk/plp/pmzibf/guidestoiut.html}.}

Small numbers of experts in anabelian geometry, overall poor digestion of Grothendieck’s 50 years old math heritage, a relatively large distance from anabelian geometry and IUT to currently popular directions, a large number of new concepts in IUT and its relatively large volume, as well the general current situation with top fundamental research in number theory have substantially affected the study IUT.

Some people applied serious efforts to study IUT for some time, but stopped—indeed, the task is huge. IUT can be a difficult theory to study for experts from other standard number theoretical areas, since they cannot easily apply their previous expertise without diligently learning first, as PhD students, new for them areas such as arithmetic anabelian geometry. It is crucial to appreciate for everyone that whatever are one’s previous contributions to other areas of number theory, they do not make one an expert in anabelian geometry and IUT.

Recommendations to mathematicians interested to study IUT. Pathways to study IUT are available from many sources including www-links in footnotes of this text. If you find a piece of IUT looking to you as an error and you cannot resolve it, document your evidence and contact the author or experts to discuss. Some may be waiting for a ready-to-digest version of the theory but it will take time for it to be produced.\footnote{Galois theory was “notoriously difficult for his contemporaries to understand, especially to the level where they could expand on it”, and its digestion took decades; its best presentation by E. Artin appeared many decades later.}

3. On negative aspects of reaction to IUT.

3.1. On reaction to IUT from some mathematicians. Of course, many mathematicians are interested to know more about IUT. As always in mathematics, they can ask experts. Talking exclusively with non-experts cannot produce positive outcomes. And it is possible to contribute useful questions, comments, remarks, e.g. in relation to more conventional parts of the theory, e.g. such as those that came in 2012.

Mathematicians who can understand conventional things quickly, who can master a domain that has already been well established may have not so good chances to progress in the study of IUT.\footnote{Compare with \url{https://www.bbc.co.uk/news/world-europe-50856999}.} Several expected candidates to study the theory chose to be as unambitious as it can get by doing essentially nothing about its study for seven years. Some preferred to adopt the convenient stance of sceptical attitude not based on any expert knowledge of the subject area.

One can occasionally hear a naive request to provide more details and explanations for the IUT papers, with associated psychologically comfortable attitude to wait for this to happen. This demonstrates sheer lack of basic knowledge of the situation: the level of presentation of IUT was very detailed in 2012 and in the last 7.5 years the volume of the IUT papers had increased by some 100 pages more, reaching almost 600 pages, there are already 13 surveys of IUT and even a book for the general audience.

Who can doubt that any professional consensus about any mathematical theory can only come from experts in its subject area. Mochizuki’s work includes fundamental contributions in numerous directions: Hodge–Arakelov theory, anabelian geometry, mono-anabelian geometry, combinatorial anabelian geometry, Grothendieck–Teichmüller group, p-adic Teichmüller theory, inter-universal Teichmüller theory. Except for the last direction, none of his work has ever been criticised because it was read and appreciated by experts. Some mathematicians have publicly talked in a benighted way about IUT and its study, while being fully aware they do not have any expertise in the subject area. There was only expert in arithmetic anabelian geometry in the USA in 2012, while most of incorrect negative comments originate from a tiny group of US mathematicians.\footnote{It is an open question to which extent various negative aspects of social media have affected their behaviour.}

Some chose to spread a malicious distortion of the math truth or false rumours. One of them is talking about some kind of controversy about the status of IUT — however, to have a controversy about a mathematical work it would make sense to first study it.\footnote{See e.g. the report about the Oxford IUT workshop \url{https://www.maths.nottingham.ac.uk/plp/pmzibf/files/iut-i-rep.html}.}
there should be genuine experts on both sides of the argument able to provide valid math arguments, but this is not the case for IUT. There is no proven study or expertise in anabelian geometry and IUT among grumblers and no valid math evidence to justify their position. This explains why not the trial of a serious math peer review but the choice of shallow posting is the only venue for their non-expert public chats about IUT.

One can meet an uninformed opinion among people far away from anabelian geometry that there are allegedly two respected mathematical sides in their take on IUT. This is wrong: there is only one side, the side of experts in IUT, which includes many those who have worked for years to learn the subject area and the theory. They, together with the referees and the group of editors processing the IUT papers, have all concluded that the IUT papers have no mathematical flaws. Part of this process was a truly unprecedented event with the author of IUT kept investing a lot of time in answering more than 1000 of questions for more than 7 years.\(^1\)

A. Beilinson wrote ‘I believe that in mathematics, as everywhere else, you can say that something is correct or not only if you have understood this yourself. Since we do not have time to do everything, in mathematics I tend to believe that something is correct if I can understand some pieces of the proof or theory. If I do not understand anything, I try to refrain from making judgement.’\(^2\) This attitude is shared by most mathematicians. What are the real reasons that some mathematicians made public their ignorant negative opinions about a fundamental development in the subject area where they have empty research record, with no evidence of their serious study of it, and without providing any math evidence of errors in the theory?

3.2. Some articles about IUT in mass media. IUT has attracted a high level of interest from mass media. There are rare reasonably good written articles about IUT and its author. At the same time, there are articles presenting very wrong pictures by journalists lazy to do their work properly.

Most experts on IUT decline to answer journalists questions, so then journalists contact mathematicians who are not experts in anabelian geometry or even laypersons with zero publication record in number theory. Some of the interviewed mathematicians are good in their own areas, but that does not make them experts in areas they do not know; unfortunately, the articles including their interviews fail to make clear the level of their non-expertise. Experience in areas such as classical Diophantine geometry, algebraic geometry, modularity, Galois representations or aspects of p-adic geometry does not enable one with the expert intuition and knowledge of anabelian geometry and IUT. Interviewed mathematicians are well aware of that.

One of easiest ways for journalists to write their articles is to present opposite points of view but in the case of IUT the journalists often fail to appreciate that they mix experts opinions (all of which are positive) with ignorant opinions of non-specialists who are not kept in the loop in relation to the study of IUT.

Recommendation to serious journalists. Before interviewing a mathematician about IUT, first check the expertise level by asking several simple questions such as their knowledge of and expertise in anabelian geometry, talks on anabelian geometry at international conferences, the number of hours spent on the study of IUT and whether they asked questions about IUT to the author of IUT or experts in IUT.

3.3. One attempt to study IUT. In 2013–2017 not a single concrete mathematical remark indicating any essential issue in IUT was produced. P. Scholze, despite having no publications or expertise in anabelian geometry, kept talking publicly about faults in IUT since 2014 without ever providing any math evidence.\(^3\) By and by, after a lot of pressure, he visited RIMS, together with J. Stix, in March 2018, just for few days. They were asked to produce a text which could be read by any mathematician. Their first report is a caricature version of IUT, based on a gross oversimplification of IUT in which they identify all isomorphic rings and ‘forget’ about the fundamental role of automorphism groups in anabelian geometry. The report essentially

\(^1\) compare this intensive study and verification with the next section material
\(^2\) personal communication, January 2018
\(^3\) The author of this text wrote to Scholze several times asking to behave professionally and in particular to tell precisely what were the faults in IUT he knew about and discuss with experts, but no response had come. Eventually, Scholze sent just one most loosely stated question to Mochizuki in May 2015. The author of IUT responded to him with a long email that also offered to conduct discussions via email to address any questions, but Scholze declined to communicate further. Part of this is stated on p.3 of the main Mochizuki’s report, see footnote 19.
denies the use of anabelian geometry and infinitely many theatres in IUT18. One does not need to progress in the study of anabelian geometry and IUT to an advanced level to easily observe how absurd was that take on IUT; the reaction of experts to their report can be read in sect. 18 of a report19 of the author of IUT. They intended to put their report about the meeting online, however, after reading the comprehensive report20 of the author of IUT on their report, see especially its sect. 17-1821 and these comments22, they changed their mind to the extent of abandoning any plans to post their own report. In his comprehensive report on their report the author of IUT formulated few questions to the German mathematicians which may have helped them to appreciate how erroneous was their take on IUT.23 However, the second version of their report failed to address those few questions, while it included new incorrect statements such as a blunder in height theory and a fundamental misunderstanding of one of the Faltings work, and those reckless mistakes can be easily seen by researchers not familiar with anabelian geometry. Scholze unilaterally withdrew from any further correspondence or study of IUT. The rushed take on IUT by Scholze, who is even unable to answer very few questions asked by the author of IUT in his first report24, is rejected by all experts in IUT; it simply can not pass any careful peer review process. The author of IUT had to include their reports on his pages, so that any researcher can directly check their numerous flaws.25 Nevertheless, some non-experts and journalists may perceive the ignorant take on IUT by Scholze as ‘another side’ in the argument about IUT.26 That ‘study’ of IUT by the two mathematicians27 stands in stark contrast with diligent many months study of it by the other mathematicians.

4. Developments. There will be several new math developments related to IUT, in different directions.

Learners of IUT can attend four international workshops on anabelian geometry and IUT are organised during a special RIMS Project Research year on Expanding Horizons of Inter-universal Teichmüller Theory in 202128, supported by the new Center for Research in Next-Generation Geometry.

A book29 by F. Kato, published in April 2019, presents various features of IUT to the wider audience. This book was in the list of top twenty bestselling books in all subject areas on amazon in Japan, and it was awarded the Yaesu prize30.

On April 3 2020 at the press-conference of Kyoto University, ran by M. Kashiwara and A. Tamagawa, it was announced that the IUT papers are accepted for publications and will soon be published.31

18 For a popular presentation to high school students of the importance to use infinitely many theatres in IUT, one can watch F. Kato’s talk https://www.youtube.com/watch?v=fNf97No4DLtQ&vl=en
20 referred to in footnote 19
21 see references in footnote 19
22 http://www.kurims.kyoto-u.ac.jp/~motizuki/Cmt2018-05.pdf
23 see also Remarks 3.11.1 and 3.12.2 of IUT-III
24 as compared to over a thousand of questions answered by the author of IUT
25 Putting their report on the page of the author of IUT does not imply in any way its validity, of course.
26 see also sect. 3.1
27 Compare with the content of published in 1931 book ‘Hundert Autoren gegen Einstein’ characterised as ‘a reaction of an inadequately educated academic citizenship, which didn’t know what to do with relativity’ and as an ‘accumulation of naive errors’, at least its authors cared to publish their opinions.
29 https://twitter.com/FumiharuKato
30 https://twitter.com/yaesu_paseo/status/119008438152988721?ref_src=twsrc%5Etfw