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ABSTRACT

In this thesis we consider some topics connected with a
statistical shape analysis of point set data. We first give the exact
shape distribution for a finite number of points which are independent
isotropic bivariate normally distributed in a plane. Various
properties of the distribution are investigated, including an
asymptotic large variation distribution and a normal approximation for
small variations. Connections with previous work are made, and
moments, marginal distributions and invariances are also considered.
The shape density for triangles is examined in particular detail.

The exact shape distribution is then used in a likelihood based
inference procedure, which can be implemented on a computer. Various
estimates are compared in a simulation study and the approximate
inverse Fisher information matrix is also given. Likelihood ratio
testing for shape change is examined and in particular we describe
testing for a uniform shear - the simplest possible shape change.
Inference is illustrated with a mouse vertebrae study from anatomy.

As a natural extension, the most general multinormal model 1in a
plane is proposed. The exact shape probability density function under
this model is given in a closed form. Although the density is quite
complicated, it simplifies considerably in certain cases. Various
properties are considered, including a useful normal approximation.
Likelihood based inference with this general model is not
straightforward, although we shall consider a simple anisotropic model
for the mouse vertebrae data.

Some practical 1issues are discussed and an algorithm for
semi-automatic landmark location is proposed. Finally, as a suitable
sSummary for describing a shape change we consider an alternative to

the biorthogonal grids for visualizing size and shape change.
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