Completions and completeness of normed algebras of differentiable functions

Joel Feinstein

School of Mathematical Sciences University of Nottingham

July 12 2007

Abstract

These slides are available from the web page

http://www.maths.nottingham.ac.uk/personal/jff/Beamer

This is joint work with Professor H. Garth Dales (Leeds).

We investigate the completeness and completions of the normed algebras $D^{(1)}(X)$ of continuously complex-differentiable functions on perfect compact plane sets X (introduced by Dales and Davie in 1973).

We solve some problems raised in an earlier paper of Bland and Feinstein (2005) by constructing a variety of compact plane sets X with dense interior such that $D^{(1)}(X)$ is not complete.

We also show that the only characters on $D^{(1)}(X)$ are the evaluations at points of X.

Throughout, by **compact plane set** we shall mean an **infinite**, compact subset of \mathbb{C} .

Let X be a compact plane set. We denote the set of all continuous, complex-valued functions on X by C(X).

For $f \in C(X)$, we denote the uniform norm of f on a non-empty subset E of X by $|f|_E$.

Definition

Let *X* be a perfect, compact plane set *X* and let $f \in C(X)$.

We say that f is **differentiable** at a point $a \in X$ if the limit

$$f'(a) = \lim_{z \to a, \ z \in X} \frac{f(z) - f(a)}{z - a}$$

exists. We then call f'(a) the (**complex**) **derivative** of f at a.

Using this concept of derivative, we define the terms **differentiable on** X and **continuously differentiable on** X in the obvious way, and we denote the set of continuously differentiable functions on X by $D^{(1)}(X)$.

For $f \in D^{(1)}(X)$, set

$$||f|| = |f|_X + |f'|_X.$$

Then $(D^{(1)}(X), \|\cdot\|)$ is easily seen to be a normed algebra.

The normed algebra $D^{(1)}(X)$ is often incomplete, even for fairly nice X.

Bland and Feinstein gave an example of a rectifiable Jordan arc such that $D^{(1)}(X)$ is incomplete, and showed that $D^{(1)}(X)$ is incomplete whenever X has infinitely many components.

The character space of $D^{(1)}(X)$

We now investigate the character space of $D^{(1)}(X)$.

The proof of the next theorem is based on the method used by Jarosz (1997) to determine the character space of $\operatorname{Lip}_{Hol}(X,\alpha)$.

Theorem

Let *X* be a perfect, compact plane set, and let *A* be the Banach function algebra $(D^{(1)}(X), \|\cdot\|)$.

Then the only characters on $D^{(1)}(X)$ are the evaluations at points of X. In particular, every character on $(D^{(1)}(X), \|\cdot\|)$ is continuous.

Proof.

Let ϕ be a character on A, and set $w = \phi(Z)$, where Z is the coordinate functional (restricted to X in this setting).

Then $\phi(Z - w1) = 0$, and so Z - w1 is not invertible in A.

Since every rational function with poles off X is in A, it follows that $w \in X$.

We show that ϕ is the point evaluation character at w, ε_w .

To see this, it is sufficient to show that $\ker(\varepsilon_w) \subseteq \ker(\phi)$.

Take $f \in A$ with f(w) = 0.

Since

$$\lim_{z\to w,\ z\in X}\frac{f(z)}{z-w}=f'(w)\,,$$

it follows that there is a positive constant C such that, for all $z \in X$, $|f(z)| \le C|z-w|$.

It is now easy to see that $f^3 = (Z - w1)g$ for a (unique) function $g \in D^{(1)}(X)$ (with g(w) = g'(w) = 0).

This gives

$$(\phi(f))^3 = \phi(f^3) = \phi(Z - w1)\phi(g) = 0,$$

and so $\phi(f) = 0$.

The result follows.

Rectifiable paths

We shall assume that the reader is familiar with the elementary results and definitions concerning rectifiable paths including integration of continuous, complex-valued functions along rectifiable paths.

Definition

A **path** in $\mathbb C$ is a continuous function $\gamma:[a,b]\to\mathbb C$, where a< b; γ is a path from $\gamma(a)$ to $\gamma(b)$ with **endpoints** $\gamma^-=\gamma(a)$ and $\gamma^+=\gamma(b)$.

A **subpath** of γ is then any path obtained by restricting γ to a non-degenerate closed sub-interval of [a, b].

Given $X \subseteq \mathbb{C}$, a **path in** X is a path in \mathbb{C} whose image is a subset of X, and a **Jordan arc in** X is an injective path in X.

The length of a rectifiable path γ will be denoted by $|\gamma|$.

A path in $\mathbb C$ is **admissible** if it is rectifiable and has no constant subpaths.

Definition

Let X be a compact plane set.

We say that X is **rectifiably connected** if, for all z and w in X, there is a rectifiable path γ from z to w in X.

Suppose now that *X* is rectifiably connected.

For z and w in X, we denote the geodesic distance between z and w by $\delta(z, w)$.

We say that such a compact plane set X is **geodesically bounded** if X is is bounded with respect to the metric δ .

We now recall the standard definitions of regularity and uniform regularity for compact plane sets.

Definition

Let *X* be a compact plane set.

Let $z \in X$. The set X is **regular at** z if there is a constant $k_z > 0$ such that, for every $w \in X$, there is a rectifiable path γ from z to w in X with $|\gamma| \le k_z |z-w|$.

The set *X* is **pointwise regular** if *X* is regular at every point $z \in X$.

The set X is **uniformly regular** if there is one constant k > 0 such that, for all z and w in X, there is a rectifiable path γ from z to w in X with $|\gamma| < k|z - w|$.

Dales and Davie showed that $D^{(1)}(X)$ is complete whenever X is a finite union of uniformly regular, compact plane sets.

Their proof is equally valid for pointwise regular, compact plane sets, so in fact $D^{(1)}(X)$ is complete whenever X is a finite union of pointwise regular, compact plane sets.

Related spaces

We now recall some related spaces which were discussed in the paper of Bland and Feinstein.

For an open subset U of \mathbb{C} , O(U) is the algebra of analytic functions on U.

Now let X be a compact plane set and, throughout, set U = int X. Then

$$A(X) = \{ f \in C(X) : f|_{U} \in O(U) \}.$$

Now suppose that U is dense in X (and hence, in particular, X is perfect).

Then $A^{(1)}(X)$ is the set of functions f in A(X) such that $(f|_U)'$ extends continuously to the whole of X.

In this setting, we set

$$||f|| = |f|_X + |f'|_U \quad (f \in A^{(1)}(X)).$$

Then $(A^{(1)}(X), \|\cdot\|)$ is a Banach function algebra on X, and there is an obvious isometric inclusion of $D^{(1)}(X)$ in $A^{(1)}(X)$.

The completion of $D^{(1)}(X)$ is then its closure in $(A^{(1)}(X), \|\cdot\|)$.

The above is only helpful for compact plane sets X such that U is dense in X.

This is too restrictive for our purposes, and instead we shall mostly work with the larger class of compact plane sets X for which the union of the images of all admissible rectifiable paths in X is dense in X.

We begin by defining a new term, 'effective', which is a modification of the term 'useful' introduced by Bland and Feinstein.

Definition

Let X be a compact plane set, and let \mathcal{F} be a family of paths in X.

Then \mathcal{F} is **effective** if each subpath of a path in \mathcal{F} belongs to \mathcal{F} , if each path in \mathcal{F} is rectifiable and non-constant, and the union of the images of the paths in \mathcal{F} is dense in X.

Note that, if $\mathcal F$ is effective, then every path in $\mathcal F$ is admissible.

We shall often take \mathcal{F} to be the set of all admissible paths in X.

In this case, \mathcal{F} is effective if and only if the union of the images of all admissible paths in X is dense in X.

The next few definitions and results are essentially as in the paper of Bland and Feinstein, although some proofs require a little more work in the setting of effective families.

Recall that the endpoints of a path γ are denoted by γ^- and γ^+ .

Definition

Let \mathcal{F} be a family of rectifiable paths in a compact plane set X.

For $f \in C(X)$, we say that $g \in C(X)$ is an \mathcal{F} -derivative of f if, for all $\gamma \in \mathcal{F}$, we have

$$\int_{\gamma} g(z) dz = f(\gamma^{+}) - f(\gamma^{-}).$$

We define

$$\mathcal{D}^1_{\mathcal{F}}(X) = \{ f \in C(X) : f \text{ has an } \mathcal{F}\text{-derivative in } C(X) \}.$$

If \mathcal{F} is an effective family of paths in a compact plane set X, then \mathcal{F} -derivatives are unique, and so we may denote the \mathcal{F} -derivative of a function $f \in \mathcal{D}^1_{\mathcal{F}}(X)$ by f'. Moreover, this agrees with the usual derivative for functions in $D^{(1)}(X)$.

Let X be a compact plane set, and let \mathcal{F} be an effective family of paths in X.

For $f \in \mathcal{D}^1_{\mathcal{F}}(X)$, set $||f|| = |f|_X + |f'|_X$.

Theorem

Let X be a compact plane set, and let \mathcal{F} be an effective family of paths in X.

Then $(\mathcal{D}^1_{\mathcal{F}}(X), \|.\|)$ is a Banach function algebra containing $D^{(1)}(X)$ isometrically as a subalgebra.

The completion of $D^{(1)}(X)$

In this section we discuss the completion of $D^{(1)}(X)$, which we denote by $\widetilde{D}^{(1)}(X)$.

An example of Dales shows that $\widetilde{D}^{(1)}(X)$ need not be semisimple.

However, from above, we now know many settings where $\widetilde{D}^{(1)}(X)$ is a Banach function algebra.

If X is a compact plane set with dense interior, then we know that $\widetilde{D}^{(1)}(X)$ is simply the closure of $D^{(1)}(X)$ in the Banach function algebra $A^{(1)}(X)$

Our next theorem deals with the situation when the union of the images of all admissible rectifiable paths in X is dense in X.

Theorem

Let X be a compact plane set such that the union of the images of all admissible rectifiable paths in X is dense in X.

Then $\widetilde{D}^{(1)}(X)$ is semisimple.

Proof Let \mathcal{F} be the set of all admissible paths in X. Then \mathcal{F} is effective.

We know that $\mathcal{D}^1_{\mathcal{F}}(X)$ is a Banach function algebra, and that we can regard $\widetilde{D}^{(1)}(X)$ as the closure of $D^{(1)}(X)$ in $\mathcal{D}^1_{\mathcal{F}}(X)$.

Thus $\widetilde{D}^{(1)}(X)$ is semisimple. \Box

For X and \mathcal{F} as in this theorem and proof, we do not know whether or not $\widetilde{D}^{(1)}(X)$ is always equal to $\mathcal{D}^1_{\mathcal{F}}(X)$.

In general there are easy examples where \mathcal{F} is effective but $\widetilde{D}^{(1)}(X) \neq \mathcal{D}^1_{\mathcal{F}}(X)$.

Polynomial approximation

The next result is essentially as in Bland and Feinstein (2005).

Theorem

Let X be a polynomially convex, perfect, compact plane set which is geodesically bounded, and let $\mathcal F$ be the set of all admissible rectifiable paths in X. Then the (analytic) polynomials are dense in $\mathcal D^1_{\mathcal F}(X)$, and so $\widetilde D^{(1)}(X)=\mathcal D^1_{\mathcal F}(X)$.

However, when X has dense interior, the corresponding statement for $A^{(1)}(X)$ is false.

Theorem

There exists a uniformly regular, polynomially convex, compact plane set such that X is geodesically bounded and int X is dense in X and yet $D^{(1)}(X) = \widetilde{D}^{(1)}(X) = \mathcal{D}^1_{\mathcal{F}}(X) \neq A^{(1)}(X)$.

In particular, the polynomials are not dense in $A^{(1)}(X)$.

An example, based on the Cantor middle thirds set, is illustrated in the following diagram.

The Cantor function of x, regarded as a function of z = x + iy, is then in $A^{(1)}(X) \setminus \mathcal{D}^1_{\mathcal{F}}(X)$.

We now give diagrams illustrating two examples to show that $D^{(1)}(X)$ need not be complete when X is polynomially convex, geodesically bounded and has dense interior.

These examples fully solve Problem 6.2 raised in the paper of Bland and Feinstein

Example

There exists a polynomially convex, geodesically bounded compact plane set X such that X has dense interior, but $D^{(1)}(X)$ is incomplete.

Here is a diagram of such an example.

Recall that a compact plane set is **radially self-absorbing** if, for all r > 1, $X \subseteq \text{int}(rX)$.

Radially self-absorbing, compact plane sets are always polynomially convex and geodesically bounded, and have dense interior.

Example

There exists a radially self-absorbing, compact plane set X such that $D^{(1)}(X)$ is incomplete.

Here is a diagram of such an example.

Here,
$$w_n = e^{i\alpha_n}$$
 and $a_n = (1 - 4r_n)e^{i\beta_n}$, where $\alpha_n = \frac{\pi}{4n^2}$, $r_n = \frac{1}{8\sqrt{n}}$ and $\beta_n = (\alpha_n + \alpha_{n+1})/2$.

We do not know of an example of a connected, compact plane set X such that X is not pointwise regular, and yet $D^{(1)}(X)$ is complete.

In a result which covers both of the two preceding examples, we have recently managed to eliminate all connected, compact plane sets which fail pointwise regularity at some point z_0 in a similar way due to a sequence of 'dents' approaching z_0 .

We conclude with a result which eliminates another class of potential examples, including all rectifiable Jordan arcs.

Theorem

Let *X* be a polynomially convex, geodesically bounded, compact plane set with empty interior.

If X is not pointwise regular, then $D^{(1)}(X)$ is incomplete.