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Preliminaries Abstract

Abstract

These slides are available from the web page

http://www.maths.nottingham.ac.uk/personal/jff/Beamer

This is joint work with Professor H. Garth Dales (Leeds).

We investigate the completeness and completions of the normed
algebras D(1)(X ) of continuously complex-differentiable functions on
perfect compact plane sets X (introduced by Dales and Davie in 1973).

We solve some problems raised in an earlier paper of Bland and
Feinstein (2005) by constructing a variety of compact plane sets X with
dense interior such that D(1)(X ) is not complete.

We also show that the only characters on D(1)(X ) are the evaluations
at points of X .
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The algebra D(1)(X) Definition of D(1)(X)

The algebra D(1)(X )

Throughout, by compact plane set we shall mean an infinite ,
compact subset of C.

Let X be a compact plane set. We denote the set of all continuous,
complex-valued functions on X by C(X ).

For f ∈ C(X ), we denote the uniform norm of f on a non-empty subset
E of X by |f |E .

Definition
Let X be a perfect, compact plane set X and let f ∈ C(X ).

We say that f is differentiable at a point a ∈ X if the limit

f ′(a) = lim
z→a, z∈X

f (z)− f (a)

z − a

exists. We then call f ′(a) the (complex ) derivative of f at a.
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The algebra D(1)(X) Definition of D(1)(X)

Using this concept of derivative, we define the terms differentiable on
X and continuously differentiable on X in the obvious way, and we
denote the set of continuously differentiable functions on X by D(1)(X ).

For f ∈ D(1)(X ), set
‖f‖ = |f |X + |f ′|X .

Then (D(1)(X ), ‖ · ‖) is easily seen to be a normed algebra.

The normed algebra D(1)(X ) is often incomplete, even for fairly nice X .

Bland and Feinstein gave an example of a rectifiable Jordan arc such
that D(1)(X ) is incomplete, and showed that D(1)(X ) is incomplete
whenever X has infinitely many components.

Joel Feinstein (University of Nottingham) Completions and completeness of normed algebras of differentiable functionsJuly 12 2007 4 / 24



The algebra D(1)(X) Character space

The character space of D(1)(X )

We now investigate the character space of D(1)(X ).

The proof of the next theorem is based on the method used by Jarosz
(1997) to determine the character space of LipHol(X , α).

Theorem
Let X be a perfect, compact plane set, and let A be the Banach
function algebra (D(1)(X ), ‖ · ‖).
Then the only characters on D(1)(X ) are the evaluations at points of X .
In particular, every character on (D(1)(X ), ‖ · ‖) is continuous.
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The algebra D(1)(X) Character space: Proof

Proof.
Let φ be a character on A, and set w = φ(Z ), where Z is the
coordinate functional (restricted to X in this setting).

Then φ(Z − w1) = 0, and so Z − w1 is not invertible in A.

Since every rational function with poles off X is in A, it follows that
w ∈ X .

We show that φ is the point evaluation character at w , εw .

To see this, it is sufficient to show that ker(εw ) ⊆ ker(φ).

Take f ∈ A with f (w) = 0.
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The algebra D(1)(X) Character space: Proof

Since

lim
z→w , z∈X

f (z)

z − w
= f ′(w) ,

it follows that there is a positive constant C such that, for all z ∈ X ,
|f (z)| ≤ C|z − w |.

It is now easy to see that f 3 = (Z − w1)g for a (unique) function
g ∈ D(1)(X ) (with g(w) = g′(w) = 0).

This gives
(φ(f ))3 = φ(f 3) = φ(Z − w1)φ(g) = 0 ,

and so φ(f ) = 0.

The result follows. 2
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Rectifiable paths Paths and subpaths

Rectifiable paths

We shall assume that the reader is familiar with the elementary results
and definitions concerning rectifiable paths including integration of
continuous, complex-valued functions along rectifiable paths.

Definition
A path in C is a continuous function γ : [a, b] → C, where a < b; γ is a
path from γ(a) to γ(b) with endpoints γ− = γ(a) and γ+ = γ(b).

A subpath of γ is then any path obtained by restricting γ to a
non-degenerate closed sub-interval of [a, b].

Given X ⊆ C, a path in X is a path in C whose image is a subset of X ,
and a Jordan arc in X is an injective path in X .

The length of a rectifiable path γ will be denoted by |γ|.
A path in C is admissible if it is rectifiable and has no constant
subpaths.
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Rectifiable paths Regularity and uniform regularity

Definition
Let X be a compact plane set.

We say that X is rectifiably connected if, for all z and w in X , there is
a rectifiable path γ from z to w in X .

Suppose now that X is rectifiably connected.

For z and w in X , we denote the geodesic distance between z and w
by δ(z, w).

We say that such a compact plane set X is geodesically bounded if
X is is bounded with respect to the metric δ.

We now recall the standard definitions of regularity and uniform
regularity for compact plane sets.
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Rectifiable paths Regularity and uniform regularity

Definition
Let X be a compact plane set.

Let z ∈ X . The set X is regular at z if there is a constant kz > 0 such
that, for every w ∈ X , there is a rectifiable path γ from z to w in X with
|γ| ≤ kz |z − w |.
The set X is pointwise regular if X is regular at every point z ∈ X .

The set X is uniformly regular if there is one constant k > 0 such
that, for all z and w in X , there is a rectifiable path γ from z to w in X
with |γ| ≤ k |z − w |.

Dales and Davie showed that D(1)(X ) is complete whenever X is a
finite union of uniformly regular, compact plane sets.

Their proof is equally valid for pointwise regular, compact plane sets,
so in fact D(1)(X ) is complete whenever X is a finite union of pointwise
regular, compact plane sets.
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Related spaces A(1)(X)

Related spaces

We now recall some related spaces which were discussed in the paper
of Bland and Feinstein.

For an open subset U of C, O(U) is the algebra of analytic functions
on U.

Now let X be a compact plane set and, throughout, set U = int X .

Then
A(X ) = {f ∈ C(X ) : f |U ∈ O(U) } .

Now suppose that U is dense in X (and hence, in particular, X is
perfect).

Then A(1)(X ) is the set of functions f in A(X ) such that (f |U)′ extends
continuously to the whole of X .
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Related spaces A(1)(X)

In this setting, we set

‖f‖ = |f |X + |f ′|U (f ∈ A(1)(X )) .

Then (A(1)(X ), ‖ · ‖) is a Banach function algebra on X , and there is an
obvious isometric inclusion of D(1)(X ) in A(1)(X ).

The completion of D(1)(X ) is then its closure in (A(1)(X ), ‖ · ‖).

The above is only helpful for compact plane sets X such that U is
dense in X .

This is too restrictive for our purposes, and instead we shall mostly
work with the larger class of compact plane sets X for which the union
of the images of all admissible rectifiable paths in X is dense in X .
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Related spaces D1
F (X)

We begin by defining a new term, ‘effective’, which is a modification of
the term ‘useful’ introduced by Bland and Feinstein.

Definition
Let X be a compact plane set, and let F be a family of paths in X .

Then F is effective if each subpath of a path in F belongs to F , if
each path in F is rectifiable and non-constant, and the union of the
images of the paths in F is dense in X .

Note that, if F is effective, then every path in F is admissible.

We shall often take F to be the set of all admissible paths in X .

In this case, F is effective if and only if the union of the images of all
admissible paths in X is dense in X .
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Related spaces D1
F (X)

The next few definitions and results are essentially as in the paper of
Bland and Feinstein, although some proofs require a little more work in
the setting of effective families.

Recall that the endpoints of a path γ are denoted by γ− and γ+.

Definition
Let F be a family of rectifiable paths in a compact plane set X .

For f ∈ C(X ), we say that g ∈ C(X ) is an F-derivative of f if, for all
γ ∈ F , we have ∫

γ
g(z) dz = f (γ+)− f (γ−).

We define

D1
F (X ) = {f ∈ C(X ) : f has an F-derivative in C(X )}.
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Related spaces D1
F (X)

If F is an effective family of paths in a compact plane set X , then
F-derivatives are unique, and so we may denote the F-derivative of a
function f ∈ D1

F (X ) by f ′. Moreover, this agrees with the usual
derivative for functions in D(1)(X ).

Let X be a compact plane set, and let F be an effective family of paths
in X .

For f ∈ D1
F (X ), set ‖f‖ = |f |X + |f ′|X .

Theorem
Let X be a compact plane set, and let F be an effective family of paths
in X.

Then (D1
F (X ) , ‖.‖) is a Banach function algebra containing D(1)(X )

isometrically as a subalgebra.
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The completion of D(1)(X) Bland–Feinstein completion

The completion of D(1)(X )

In this section we discuss the completion of D(1)(X ), which we denote
by D̃(1)(X ).

An example of Dales shows that D̃(1)(X ) need not be semisimple.

However, from above, we now know many settings where D̃(1)(X ) is a
Banach function algebra.

If X is a compact plane set with dense interior, then we know that
D̃(1)(X ) is simply the closure of D(1)(X ) in the Banach function algebra
A(1)(X )

Our next theorem deals with the situation when the union of the
images of all admissible rectifiable paths in X is dense in X .
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The completion of D(1)(X) Bland–Feinstein completion

Theorem
Let X be a compact plane set such that the union of the images of all
admissible rectifiable paths in X is dense in X.

Then D̃(1)(X ) is semisimple.

Proof Let F be the set of all admissible paths in X . Then F is effective.

We know that D1
F (X ) is a Banach function algebra, and that we can

regard D̃(1)(X ) as the closure of D(1)(X ) in D1
F (X ).

Thus D̃(1)(X ) is semisimple. 2

For X and F as in this theorem and proof, we do not know whether or
not D̃(1)(X ) is always equal to D1

F (X ).

In general there are easy examples where F is effective but
D̃(1)(X ) 6= D1

F (X ) .
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The completion of D(1)(X) Polynomial approximation

Polynomial approximation
The next result is essentially as in Bland and Feinstein (2005).

Theorem
Let X be a polynomially convex, perfect, compact plane set which is
geodesically bounded, and let F be the set of all admissible rectifiable
paths in X. Then the (analytic) polynomials are dense in D1

F (X ), and
so D̃(1)(X ) = D1

F (X ).

However, when X has dense interior, the corresponding statement for
A(1)(X ) is false.

Theorem
There exists a uniformly regular, polynomially convex, compact plane
set such that X is geodesically bounded and int X is dense in X and
yet D(1)(X ) = D̃(1)(X ) = D1

F (X ) 6= A(1)(X ).

In particular, the polynomials are not dense in A(1)(X ).
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The completion of D(1)(X) Polynomial approximation

An example, based on the Cantor middle thirds set, is illustrated in the
following diagram.

The Cantor function of x , regarded as a function of z = x + iy , is then
in A(1)(X ) \ D1

F (X ).
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Completeness of D(1)(X) Examples

We now give diagrams illustrating two examples to show that D(1)(X )
need not be complete when X is polynomially convex, geodesically
bounded and has dense interior.

These examples fully solve Problem 6.2 raised in the paper of Bland
and Feinstein

Example

There exists a polynomially convex, geodesically bounded compact
plane set X such that X has dense interior, but D(1)(X ) is incomplete.
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Completeness of D(1)(X) Examples

Here is a diagram of such an example.

Not to scale

2+2i2i

i
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1 + i/3
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1 + i/2
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Completeness of D(1)(X) Examples

Recall that a compact plane set is radially self-absorbing if, for all
r > 1, X ⊆ int (rX ).

Radially self-absorbing, compact plane sets are always polynomially
convex and geodesically bounded, and have dense interior.

Example

There exists a radially self-absorbing, compact plane set X such that
D(1)(X ) is incomplete.
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Completeness of D(1)(X) Examples

Here is a diagram of such an example.

w

w
w

w

a
a2

3 4

1

2

3

0 1

a1

Here, wn = eiαn and an = (1− 4rn)eiβn , where αn =
π

4n2 , rn =
1

8
√

n
and

βn = (αn + αn+1)/2.
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Completeness of D(1)(X) Conclusion

We do not know of an example of a connected, compact plane set X
such that X is not pointwise regular, and yet D(1)(X ) is complete.

In a result which covers both of the two preceding examples, we have
recently managed to eliminate all connected, compact plane sets
which fail pointwise regularity at some point z0 in a similar way due to a
sequence of ‘dents’ approaching z0.

We conclude with a result which eliminates another class of potential
examples, including all rectifiable Jordan arcs.

Theorem
Let X be a polynomially convex, geodesically bounded, compact plane
set with empty interior.

If X is not pointwise regular, then D(1)(X ) is incomplete.
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