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Preliminaries Abstract

Abstract

These slides are available from the web page

http://www.maths.nottingham.ac.uk/personal/jff/Beamer

This is joint work with Professor H. Garth Dales (Leeds).

We investigate the completeness and completions of the normed
algebras D(1)(X ) of continuously complex-differentiable functions on
perfect compact plane sets X (discussed by Dales and Davie in 1973).

We solve some problems raised in an earlier paper of Bland and
Feinstein (2005) by constructing a variety of compact plane sets X with
dense interior such that D(1)(X ) is not complete.

We also show that the only characters on D(1)(X ) are the evaluations
at points of X .
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The algebra D(1)(X) Definition of D(1)(X)

The algebra D(1)(X )

Throughout, by compact plane set we shall mean an infinite,
compact subset of C.

Let X be a compact plane set. We denote the set of all continuous,
complex-valued functions on X by C(X ).

For f ∈ C(X ), we denote the uniform norm of f on a non-empty subset
E of X by |f |E .

Definition
Let X be a perfect, compact plane set X and let f ∈ C(X ).

We say that f is differentiable at a point a ∈ X if the limit

f ′(a) = lim
z→a, z∈X

f (z)− f (a)

z − a

exists. We then call f ′(a) the (complex) derivative of f at a.
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The algebra D(1)(X) Definition of D(1)(X)

Using this concept of derivative, we define the terms differentiable on
X and continuously differentiable on X in the obvious way, and we
denote the set of continuously differentiable functions on X by D(1)(X ).

For f ∈ D(1)(X ), set
‖f‖ = |f |X + |f ′|X .

Then (D(1)(X ), ‖ · ‖) is easily seen to be a normed algebra.

The normed algebra D(1)(X ) is often incomplete, even for fairly nice X .

Bland and Feinstein gave an example of a rectifiable Jordan arc such
that D(1)(X ) is incomplete, and showed that D(1)(X ) is incomplete
whenever X has infinitely many components.
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The algebra D(1)(X) Character space

The character space of D(1)(X )

We now investigate the character space of D(1)(X ).

The proof of the next theorem is based on the method used by Jarosz
(1997) to determine the character space of LipHol(X , α).

Theorem
Let X be a perfect, compact plane set, and let A be the Banach
function algebra (D(1)(X ), ‖ · ‖).
Then the only characters on D(1)(X ) are the evaluations at points of X .

In particular, every character on (D(1)(X ), ‖ · ‖) is continuous.
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The algebra D(1)(X) Character space: Proof

Proof.
Let φ be a character on A, and set w = φ(Z ), where Z is the
coordinate functional (restricted to X in this setting).

Then φ(Z − w1) = 0, and so Z − w1 is not invertible in A.

Since every rational function with poles off X is in A, it follows that
w ∈ X .

We show that φ is the point evaluation character at w , εw .

To see this, it is sufficient to show that ker(εw ) ⊆ ker(φ).

Take f ∈ A with f (w) = 0.
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The algebra D(1)(X) Character space: Proof

Since
lim

z→w , z∈X

f (z)

z − w
= f ′(w) ,

it follows that there is a positive constant C such that, for all z ∈ X ,
|f (z)| ≤ C|z − w |.

It is now easy to see that f 3 = (Z − w1)g for a (unique) function
g ∈ D(1)(X ) (with g(w) = g′(w) = 0).

This gives
(φ(f ))3 = φ(f 3) = φ(Z − w1)φ(g) = 0 ,

and so φ(f ) = 0.

The result follows. 2
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Rectifiable paths Paths and subpaths

Rectifiable paths

We shall assume that the reader is familiar with the elementary results
and definitions concerning rectifiable paths including integration of
continuous, complex-valued functions along rectifiable paths.

Definition
A path in C is a continuous function γ : [a,b]→ C, where a < b; γ is a
path from γ(a) to γ(b) with endpoints γ− = γ(a) and γ+ = γ(b).

A subpath of γ is then any path obtained by restricting γ to a
non-degenerate closed sub-interval of [a,b].
Given X ⊆ C, a path in X is a path in C whose image is a subset of X ,
and a Jordan arc in X is the image of an injective path in X .
The length of a rectifiable path γ will be denoted by |γ|.
A path in C is admissible if it is rectifiable and has no constant
subpaths.
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Rectifiable paths Regularity and uniform regularity

Definition
Let X be a compact plane set.

We say that X is rectifiably connected if, for all z and w in X , there is
a rectifiable path γ from z to w in X .
Suppose now that X is rectifiably connected.
For z and w in X , we denote the geodesic distance between z and w
by δ(z,w).
We say that such a compact plane set X is geodesically bounded if
X is is bounded with respect to the metric δ.

We now recall the standard definitions of regularity and uniform
regularity for compact plane sets.
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Let z ∈ X . The set X is regular at z if there is a constant kz > 0 such
that, for every w ∈ X , there is a rectifiable path γ from z to w in X with
|γ| ≤ kz |z − w |.
The set X is pointwise regular if X is regular at every point z ∈ X .
The set X is uniformly regular if there is one constant k > 0 such
that, for all z and w in X , there is a rectifiable path γ from z to w in X
with |γ| ≤ k |z − w |.
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Related spaces A(1)(X)

Related spaces

We now recall some related spaces which were discussed in the paper
of Bland and Feinstein.

For an open subset U of C, O(U) is the algebra of analytic functions
on U.

Now let X be a compact plane set and, throughout, set U = int X .
Then

A(X ) = {f ∈ C(X ) : f |U ∈ O(U) } .

Now suppose that U is dense in X (and hence, in particular, X is
perfect).

Then A(1)(X ) is the set of functions f in A(X ) such that (f |U)′ extends
continuously to the whole of X .
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Related spaces A(1)(X)

In this setting, we set

‖f‖ = |f |X + |f ′|U (f ∈ A(1)(X )) .

Then (A(1)(X ), ‖ · ‖) is a Banach function algebra on X , and there is
an obvious isometric inclusion of D(1)(X ) in A(1)(X ).

The completion of D(1)(X ) is then its closure in (A(1)(X ), ‖ · ‖).

The above is only helpful for compact plane sets X such that U is
dense in X .

However, Bland and Feinstein introduced some related Banach
function algebras D(1)

F (X ) defined whenever F is a suitable family of
paths in X .
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The completion of D(1)(X) Bland–Feinstein completion

The completion of D(1)(X )

In this section we discuss the completion of D(1)(X ), which we denote
by D̃(1)(X ).

As noted by Dales, it follows from an example of Bishop that D̃(1)(X )
need not be semisimple.

However, from above, we now know some settings where D̃(1)(X ) is a
Banach function algebra.

If X is a compact plane set with dense interior, then we know that
D̃(1)(X ) is simply the closure of D(1)(X ) in the Banach function algebra
A(1)(X )

Our next theorem deals with the situation when the union of the
images of all admissible paths in X is dense in X .
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The completion of D(1)(X) Bland–Feinstein completion

Theorem
Let X be a compact plane set such that the union of the images of all
admissible paths in X is dense in X.

Then D̃(1)(X ) is semisimple.

Proof Let F be the set of all admissible paths in X .
We can show that D̃(1)(X ) may be identified with the closure of D(1)(X )

in the Banach function algebra D(1)
F (X ) (mentioned above) .

Thus D̃(1)(X ) is semisimple. 2
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The completion of D(1)(X) Polynomial approximation

Polynomial approximation
The next result is essentially as in Bland and Feinstein (2005).

Theorem
Let X be a polynomially convex, perfect, compact plane set which is
geodesically bounded, and let F be the set of all admissible paths in
X. Then the (analytic) polynomials are dense in D(1)

F (X ), and so
D̃(1)(X ) = D(1)

F (X ).

However, when X has dense interior, the corresponding statement for
A(1)(X ) is false.

Theorem
There exists a uniformly regular, polynomially convex, compact plane
set such that X is geodesically bounded and int X is dense in X and
yet D(1)(X ) = D̃(1)(X ) = D(1)

F (X ) 6= A(1)(X ).

In particular, the polynomials are not dense in A(1)(X ).
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The completion of D(1)(X) Polynomial approximation

An example, based on the Cantor middle thirds set, is illustrated in the
following diagram.

The Cantor function of x , regarded as a function of z = x + iy , is then
in A(1)(X ) \ D(1)

F (X ).
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Completeness of D(1)(X) Necessary and sufficient conditions

We now return to the question of the completeness of (D(1)(X ), ‖ · ‖).

The following result is due to Dales; it was later rediscovered by
Honary and Mahyar.

Theorem

Let X be a perfect, compact plane set. Then (D(1)(X ), ‖ · ‖) is
complete if and only if, for each z ∈ X, there exists Az > 0 such that,
for all f ∈ D(1)(X ) and all w ∈ X, we have

|f (z)− f (w)| ≤ Az(|f |X + |f ′|X )|z − w | . (1)

Note that X need not be connected here. However, the condition
implies that X has only finitely many components.
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Completeness of D(1)(X) Necessary and sufficient conditions

For pointwise regular X , (1) is certainly satisfied, and indeed the |f |X
term may be omitted from the right-hand side of (1).

We now show that this |f |X term may also be omitted under the weaker
assumption that X be connected.

First we require a lemma concerning functions whose derivatives are
constantly 0.

Lemma

Let X be a connected, compact plane set for which (D(1)(X ), ‖ · ‖) is
complete.

Let f ∈ D(1)(X ) be such that f ′ = 0. Then f is a constant.
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Completeness of D(1)(X) Necessary and sufficient conditions

Proof. Assume towards a contradiction that there exists f ∈ D(1)(X )
such that f ′ = 0 and such that f is not a constant.

We can suppose that |f |X = 1 and that 1 ∈ f (X ).

Replacing f by (1 + f )/2 if necessary, we may also suppose that 1 is
the only value of modulus 1 taken by f on X .

Consideration of the functions gn = 1− f n then quickly leads to a
contradiction based on the preceding theorem. 2
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Completeness of D(1)(X) Necessary and sufficient conditions

We are now ready to eliminate the |f |X term from the right-hand side of
equation (1) under the assumption that X is connected.

For convenience, we introduce the following notation.

Let X be a compact plane set, and let z0 ∈ X . Then we define

M(1)
z0 (X ) = {f ∈ D(1)(X ) : f (z0) = 0}

so that M(1)
z0 (X ) is a maximal ideal in D(1)(X ).
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Completeness of D(1)(X) Necessary and sufficient conditions

Theorem

Let X be a connected, compact plane set for which (D(1)(X ), ‖ · ‖) is
complete. Let z0 ∈ X. Then there exists a constant C1 > 0 such that,
for all f ∈ M(1)

z0 (X ), we have

|f |X ≤ C1
∣∣f ′∣∣X .

Furthermore, there exists another constant C2 > 0 such that, for all
f ∈ D(1)(X ) and all w ∈ X, we have

|f (z0)− f (w)| ≤ C2
∣∣f ′∣∣X |z0 − w | . (2)
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Completeness of D(1)(X) Necessary and sufficient conditions

Proof. We shall first prove the existence of the constant C1.

Assume towards a contradiction that there is a sequence
(fn) ∈ M(1)

z0 (X ) such that |fn|X = 1 for each n ∈ N, but such that
|f ′n|X → 0 as n→∞.

We can suppose that |f ′n|X ≤ 1 (n ∈ N). Set F = {fn : n ∈ N}.

Let z ∈ X . Since (D(1)(X ), ‖ · ‖) is complete, there is a constant
Cz > 0 such that

|f (z)− f (w)| ≤ Cz(|f |X +
∣∣f ′∣∣X ) |z − w | ≤ 2Cz |w − z|

for all f ∈ F and w ∈ X .
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Completeness of D(1)(X) Necessary and sufficient conditions

It now follows easily that F is an equicontinuous family of functions on
X .

Certainly F is bounded in (C(X ), | · |X ).

By Ascoli’s theorem, F is relatively compact in (C(X ), | · |X ).

By passing to a subsequence, we may suppose that there exists
f ∈ C(X ) such that |fn − f |X → 0 as n→∞.

Clearly we have f (z0) = 0 and |f |X = 1. We know that |f ′n|X → 0 as
n→∞, and so (fn) is a Cauchy sequence in (D(1)(X ), ‖ · ‖).
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Completeness of D(1)(X) Necessary and sufficient conditions

Since (D(1)(X ), ‖ · ‖) is complete, (fn) is convergent in this space.
Clearly limn→∞ fn = f in D(1)(X ), and so f ′ = 0.

By the preceding lemma, f is a constant. But f (z0) = 0, and so f = 0, a
contradiction of the fact that |f |X = 1.

This proves the existence of the desired constant C1.

We now set C2 = Az0(1 + C1), where Az0 is the constant from (1).

Equation (2) now follows. 2

The above theorem does not hold in the absence of either of the
hypotheses that X be connected or that (D(1)(X ), ‖ · ‖) be complete.
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Completeness of D(1)(X) Necessary and sufficient conditions

The following corollary is now immediate.

Corollary

Let X be a connected, compact plane set. Then (D(1)(X ), ‖ · ‖) is
complete if and only if, for each z ∈ X, there exists Bz > 0 such that,
for all f ∈ D(1)(X ) and all w ∈ X, we have

|f (z)− f (w)| ≤ Bz
∣∣f ′∣∣X |z − w | . (3)
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Completeness of D(1)(X) Necessary and sufficient conditions

Let X be a polynomially convex, geodesically bounded compact plane
set. Then X is connected, and we know that P0(X ) is dense in
(D(1)(X ), ‖ · ‖).

From this we immediately obtain the following further corollary.

Corollary

Let X be a polynomially convex, geodesically bounded, compact plane
set. Then (D(1)(X ), ‖ · ‖) is complete if and only if, for each z ∈ X,
there exists Bz > 0 such that, for all p ∈ P0(X ) and all w ∈ X, we have

|p(z)− p(w)| ≤ Bz
∣∣p′∣∣X |z − w | . (4)
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Completeness of D(1)(X) Necessary and sufficient conditions

We have no counterexample to the following conjecture.

Conjecture 1

Let X be a connected, compact plane set. Then (D(1)(X ), ‖ · ‖) is
complete if and only if X is pointwise regular.

By a variety of methods, we have proved this conjecture for several
classes of compact plane sets.

In particular, the conjecture holds for all rectifiably connected,
polynomially convex compact plane sets with empty interior, for all
star-shaped, compact plane sets, and for all Jordan arcs in C
(rectifiable or not).
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Completeness of D(1)(X) Examples

We now give diagrams illustrating some relevant examples.

These examples fully solve a problem raised in the paper of Bland and
Feinstein

Example
There exists a polynomially convex, geodesically bounded compact
plane set X such that X has dense interior, but D(1)(X ) is incomplete.

Indeed, Conjecture 1 holds for all sets of the type shown in the
following diagram.
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Completeness of D(1)(X) Examples

0

r1

s1 i

r2

s2 i

s3 i

s4 i
s5 i

s6 i
r3r4
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Completeness of D(1)(X) Examples

Recall that a compact plane set is radially self-absorbing if, for all
r > 1, X ⊆ int (rX ).

Radially self-absorbing, compact plane sets are always star-shaped,
polynomially convex, geodesically bounded, and have dense interior.

Example
There exists a radially self-absorbing, compact plane set X such that
D(1)(X ) is incomplete.

This is not hard, given that Conjecture 1 holds for all star-shaped sets.
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There exists a radially self-absorbing, compact plane set X such that
D(1)(X ) is incomplete.

This is not hard, given that Conjecture 1 holds for all star-shaped sets.
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Completeness of D(1)(X) Examples
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Completeness of D(1)(X) Examples

We do not know whether or not Conjecture 1 holds for sets of the
following type.

0
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Conclusion Open questions

Open Questions

We conclude with some open questions concerning perfect, compact
plane sets X .

1 Are the rational functions always dense in (D(1)(X ), ‖ · ‖)? Are
the polynomials dense in (D(1)(X ), ‖ · ‖) whenever X is
polynomially convex?

2 Suppose that int X is dense in X . Is A(1)(X ) always natural?

3 Is there a uniformly regular, polynomially convex, compact plane
set such that int X is connected and dense in X , and yet

D̃(1)(X ) = D(1)(X ) 6= A(1)(X ) ?
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