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Abstract

This is joint work with Professor H. Garth Dales (Leeds).

We investigate the completeness and completions of the normed
algebras D(1)(X ) of continuously complex-differentiable functions on
perfect compact plane sets X .

In particular, we solve a problem raised in an earlier paper of Bland
and Feinstein (2005) by constructing a radially self-absorbing compact
plane set X such that D(1)(X ) is not complete.

An example of Bishop shows that the completion of D(1)(X ) need not
be semisimple.

We show that the completion of D(1)(X ) is semisimple whenever the
union of the images of all rectifiable Jordan arcs in X is dense in X .
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Introduction

Throughout, by compact plane set we shall mean an infinite ,
compact subset of C.

Let X be a perfect, compact plane set, and let D(1)(X ) be the normed
algebra of all continuously differentiable, complex-valued functions on
X (introduced by Dales and Davie in 1973).

In 2005, Bland and Feinstein introduced the notion of F-derivative in
order to describe the completions of these spaces under suitable
conditions.

Here F is a suitable set of rectifiable paths lying in a compact plane set
X .

We investigate the completeness of the spaces D(1)(X ) for compact
plane sets X , and discuss their completions.

In particular we answer the problem of Bland and Feinstein concerning
radially self-absorbing sets.
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The algebra D(1)(X )

Let X be a compact plane set. We denote the set of all continuous,
complex-valued functions on X by C(X ).

For f ∈ C(X ), we denote the uniform norm of f on a non-empty subset
E of X by |f |E .

Definition
Let X be a perfect, compact plane set X and let f ∈ C(X ).

We say that f is differentiable at a point a ∈ X if the limit

f ′(a) = lim
z→a, z∈X

f (z)− f (a)

z − a

exists.

We then call f ′(a) the (complex ) derivative of f at a.
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D(1)(X ) continued

Using this concept of derivative, we define the terms differentiable on
X and continuously differentiable on X in the obvious way, and we
denote the set of continuously differentiable functions on X by D(1)(X ).

For f ∈ D(1)(X ), set
‖f‖ = |f |X + |f ′|X .

Then (D(1)(X ), ‖ · ‖) is easily seen to be a normed algebra.

The normed algebra D(1)(X ) is often incomplete, even for fairly nice X .

Bland and Feinstein gave an example of a rectifiable Jordan arc such
that D(1)(X ) is incomplete, and showed that D(1)(X ) is incomplete
whenever X has infinitely many components.
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Rectifiable paths

We will assume that the reader is familiar with the elementary results
and definitions concerning rectifiable paths including integration of
continuous, complex-valued functions along rectifiable paths: for more
details see, for example, Apostol’s book.

Definition
A path in C is a continuous function γ : [a, b] → C, where a and b are
real numbers with a < b; γ is a path from γ(a) to γ(b) with endpoints
γ− = γ(a) and γ+ = γ(b).

A subpath of γ is then any path obtained by restricting γ to a
non-degenerate closed sub-interval of [a, b].

Following common usage, we also use γ to denote the image of the
path γ.
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Paths continued

Definition
Given X ⊆ C, a path in X is a path in C whose image is a subset of X ,
and a Jordan arc in X is an injective path in X .

The length of a rectifiable path γ will be denoted by |γ|.
A path in C is admissible if it is rectifiable and has no constant
subpaths.

Recall that a path γ = α + iβ (where α and β are real-valued) is
rectifiable if and only if both α and β are of bounded variation.

In this case
∫
γ f (z) dz is defined as a Riemann-Stieltjes integral for all

f ∈ C(γ).
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Regularity and uniform regularity

Definition
Let X be a compact plane set.

We say that X is rectifiably connected if, for all z and w in X , there is
a rectifiable path γ from z to w in X .

Suppose now that X is rectifiably connected.

For z and w in X , we denote the geodesic distance between z and w
by δ(z, w).

We say that such a compact plane set X is geodesically bounded if
X is is bounded with respect to the metric δ.

We now recall the standard definitions of regularity and uniform
regularity for compact plane sets.
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Regularity continued

Definition
Let X be a compact plane set.

Let z ∈ X . The set X is regular at z if there is a constant kz > 0 such
that, for every w ∈ X , there is a rectifiable path γ from z to w in X with
|γ| ≤ kz |z − w |.
The set X is pointwise regular if X is regular at every point z ∈ X .

The set X is uniformly regular if there is one constant k > 0 such
that, for all z and w in X , there is a rectifiable path γ from z to w in X
with |γ| ≤ k |z − w |.

Dales and Davie showed that D(1)(X ) is complete whenever X is a
finite union of uniformly regular, compact plane sets.

Their proof is equally valid for pointwise regular, compact plane sets,
so in fact D(1)(X ) is complete whenever X is a finite union of pointwise
regular, compact plane sets.
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Related spaces

We now recall some related spaces which were discussed in the paper
of Bland and Feinstein.

For an open subset U of C, O(U) is the algebra of analytic functions
on U.

Now let X be a compact plane set and, throughout, set U = int X .

Then
A(X ) = {f ∈ C(X ) : f |U ∈ O(U) } .

Now suppose that U is dense in X (and hence, in particular, X is
perfect).

Then A(1)(X ) is the set of functions f in A(X ) such that (f |U)′ extends
continuously to the whole of X .
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Related spaces continued

In this setting, we set

‖f‖ = |f |X + |f ′|U (f ∈ A(1)(X )) .

Then (A(1)(X ), ‖ · ‖) is a Banach function algebra on X , and there is an
obvious isometric inclusion of D(1)(X ) in A(1)(X ).

The completion of D(1)(X ) is then its closure in (A(1)(X ), ‖ · ‖).

The above is only helpful for compact plane sets X such that U is
dense in X .

This is too restrictive for our purposes, and instead we shall mostly
work with the larger class of compact plane sets X for which the union
of the images of all admissible rectifiable paths in X is dense in X .
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Related spaces continued

We begin by defining a new term, ‘effective’, which is a modification of
the term ‘useful’ introduced by Bland and Feinstein.

Definition
Let X be a compact plane set, and let F be a family of paths in X .

Then F is effective if each subpath of a path in F belongs to F , if
each path in F is rectifiable and non-constant, and the union of the
images of the paths in F is dense in X .

Note that, if F is effective, then every path in F is admissible.

We will often take F to be the set of all admissible paths in X .

In this case, F is effective if and only if the union of the images of all
admissible paths in X is dense in X .
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Related spaces continued
The next few definitions and results are essentially as in the paper of
Bland and Feinstein, although some proofs require a little more work in
the setting of effective families.

Recall that the endpoints of a path γ are denoted by γ− and γ+.

Definition
Let F be a family of rectifiable paths in a compact plane set X .

For f ∈ C(X ), we say that g ∈ C(X ) is an F-derivative of f if, for all
γ ∈ F , we have ∫

γ
g(z) dz = f (γ+)− f (γ−).

We define

D1
F (X ) = {f ∈ C(X ) : f has an F-derivative in C(X )}.
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Related spaces continued

Lemma
Let X be a perfect, compact plane set and let F be a set of rectifiable
paths in X.

(a) Let f ∈ D(1)(X ). Then the usual derivative f ′ is also an
F-derivative of f .

(b) Let f1, f2 ∈ D(1)(X ). Then f1f ′2 + f ′1f2 is an F-derivative of f1f2.

We are mostly interested in the case where F is effective.

In this case F-derivatives are unique.

Theorem
Let X be a compact plane set, let F be an effective family of paths in
X, and let f1, f2 ∈ D1

F (X ) have F-derivatives g1, g2, respectively.

Then f1g2 + g1f2 is an F-derivative of f1f2.
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Related spaces continued

As observed above, if F is an effective family of paths in a compact
plane set X , then F-derivatives are unique, and so we may denote the
F-derivative of a function f ∈ D1

F (X ) by f ′.

Let X be a compact plane set, and let F be an effective family of paths
in X .

For f ∈ D1
F (X ), set ‖f‖ = |f |X + |f ′|X .

Theorem
Let X be a compact plane set, and let F be an effective family of paths
in X.

Then (D1
F (X ) , ‖.‖) is a Banach function algebra containing D(1)(X ) as

a subalgebra.

Note that the inclusion map from D(1)(X ) to D1
F (X ) is obviously

isometric here.
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The completion of D(1)(X )

In this section we discuss the completion of D(1)(X ), which we denote
by D̃(1)(X ).

Recall that, for a Banach algebra A, the semi-direct product A n A (as
opposed to A o A) is the Banach algebra whose underlying Banach
space is the `1 direct sum A⊕1 A, and whose product is defined by

(a, b)(a′, b′) = (aa′, ab′ + ba′) (a, b, a′, b′ ∈ A) .

Proposition

(Dales) Let X be a perfect, compact plane set.

Then the map ι defined by f 7→ (f , f ′) is an isometric algebra
embedding of D(1)(X ) in the semi-direct product C(X ) n C(X ), and
D̃(1)(X ) may be identified with the closure in C(X ) n C(X ) of
ι(D(1)(X )).
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Completion of D(1)(X ) continued

We now give an example to show that D̃(1)(X ) need not be semisimple.

Example

(Dales) Bishop (1958) gave an example of a Jordan arc J in the plane
with the property that the image under the above embedding ι of the
set of polynomial functions is dense in C(J) n C(J).

It follows immediately from this that D̃(1)(J) is equal to C(J) n C(J).

In particular, this completion is not semisimple.

Bishop’s arc J has no rectifiable subarcs.

This is not too surprising in view of our next result.
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Completion of D(1)(X ) continued

Theorem
Let X be a compact plane set such that the union of the images of all
admissible rectifiable paths in X is dense in X.

Then D̃(1)(X ) is semisimple.

Proof Let F be the set of all admissible paths in X . Then F is effective.

We know that D1
F (X ) is a Banach function algebra, and that we can

regard D̃(1)(X ) as the closure of D(1)(X ) in D1
F (X ).

Thus D̃(1)(X ) is semisimple. 2

For X and F as in this theorem and proof, we do not know whether or
not D̃(1)(X ) is always equal to D1

F (X ).

In general there are easy examples where F is effective but
D̃(1)(X ) 6= D1

F (X ) .
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Completeness of D(1)(X )

We now return to the question of the completeness of D(1)(X ).

The following result, due to Dales, was rediscovered by Honary and
Mahyar (1999).

Theorem

Let X be a perfect, compact plane set. Then D(1)(X ) is complete if and
only if, for each z ∈ X, there exists Az > 0 such that, for all f ∈ D(1)(X )
and all w ∈ X \ {z},

|f (w)− f (z)|
|w − z|

≤ Az(|f |X + |f ′|X ) .

Note that X need not be connected here.

For pointwise regular X this condition is certainly satisfied, and indeed
the |f |X term may be omitted from the right hand side of the inequality
above. This is part of the motivation for the next theorem.
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Completeness continued

Theorem
Let X be a polynomially convex, perfect, compact plane set which is
geodesically bounded, and let F be the set of all admissible rectifiable
paths in X. Then the following statements are equivalent:

(a) D(1)(X ) is complete;

(b) D(1)(X ) = D1
F (X );

(c) for each z ∈ X, there exists Cz > 0 such that, for all f ∈ D(1)(X )
and all w ∈ X \ {z}, we have

|f (w)− f (z)|
|w − z|

≤ Cz |f ′|X ; (1)

In fact (as shown by Bland and Feinstein) the (analytic) polynomials
are dense in D1

F (X ) in this setting, and so it is enough to check
condition (1) for polynomials.
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Completeness continued

In the case where, additionally, X has dense interior, one might
suspect that a similar argument would prove that the polynomials are
dense in A(1)(X ).

This is, however, false.

Theorem
There exists a uniformly regular, polynomially convex, compact plane
set such that X is geodesically bounded and int X is dense in X and
yet D(1)(X ) = D1

F (X ) 6= A(1)(X ).

In particular, the polynomials are not dense in A(1)(X ).
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Completeness continued

An example, based on the Cantor middle thirds set, is illustrated in the
following diagram.

The Cantor function of x , regarded as a function of z = x + iy , is then
in A(1)(X ) \ D1

F (X ).
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Completeness continued

We now give diagrams illustrating two examples to show that D(1)(X )
need not be complete when X is polynomially convex, geodesically
bounded and has dense interior.

These examples fully solve Problem 6.2 raised in the paper of Bland
and Feinstein

Example

There exists a polynomially convex, geodesically bounded compact
plane set X such that X has dense interior, but D(1)(X ) is incomplete.
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Completeness continued
Here is a diagram of such an example.

Not to scale
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Completeness continued

Recall that a compact plane set is radially self-absorbing if, for all
r > 1, X ⊆ int (rX ).

Radially self-absorbing sets are always polynomially convex and
geodesically bounded, and have dense interior.

Example

There exists a radially self-absorbing compact plane set X such that
D(1)(X ) is incomplete.
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Completeness continued
Here is a diagram of such an example.
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Here, wn = eiαn and an = (1− 4rn)eiβn , where αn =
π

4n2 , rn =
1

8
√

n
and

βn = (αn + αn+1)/2.
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Completeness continued

We do not know of an example of a connected, compact plane set X
such that X is not pointwise regular, and yet D(1)(X ) is complete.

We conclude with a partial result which eliminates a large class of
compact plane sets, including all rectifiable Jordan arcs.

Theorem
Let X be a simply connected, geodesically bounded, compact plane
set with empty interior.

If X is not pointwise-regular, then D(1)(X ) is incomplete.
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