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1 Preliminary definitions and results

concerning metric spaces

Definition 1.1 Let (X, d) be a metric space, let x ∈ X

and let r > 0. Then the open ball in X centred on x

and with radius r, denoted by BX(x, r), is defined by

BX(x, r) = {y ∈ X : d(y, x) < r}.

The corresponding closed ball, denoted by B̄X(x, r), is

defined by

B̄X(x, r) = {y ∈ X : d(y, x) ≤ r}.

If there is no ambiguity over the metric space involved, we

may write B(x, r) and B̄(x, r) instead.
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Definition 1.2 A metric space (X, d) is complete if

every Cauchy sequence in X converges in X. Otherwise

X is incomplete: this means that there is at least one

Cauchy sequence in X which does not converge in X. We

also describe the metric d as either a complete metric or

an incomplete metric, accordingly.

Recall that every subset Y of a metric space X is also a

metric space, using the restriction of the original metric on

X.

It is standard that this restricted metric also induces the

subspace topology on Y , so we may call this restriction the

subspace metric.

Unless otherwise specified, we will always use the subspace

metric/topology when discussing metric/topological

properties of subsets of metric/topological spaces.
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Definition 1.3 A metric space X is sequentially

compact if every sequence in X has at least one

convergent subsequence.

Definition 1.4 A metric space X is totally bounded if,

for all ε > 0, X has a finite cover consisting of ε-balls.

Gap to fill in

Exercise. Let A be a subset of a metric space X. Show

that (as metric spaces) A is totally bounded if and only if

clos A (the closure of A) is totally bounded.
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We will use without proof the following standard

characterizations of compact metric spaces.

Proposition 1.5 Let X be a metric space. Then the

following conditions on X are equivalent:

(a) X is compact;

(b) X is sequentially compact;

(c) X is complete and totally bounded.

We shall reformulate this result slightly, using the notion of

a relatively compact subset of a topological space.

Definition 1.6 Let X be a topological space and let A be

a subset of X. Then A is relatively compact if clos A is a

compact subset of X.

Gap to fill in
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It is now an exercise to check the following reformulation

of the result above.

Proposition 1.7 Let X be a complete metric space and

let A be a subset of X. Then the following conditions on

A are equivalent.

(a) A is relatively compact;

(b) every sequence in A has a subsequence which converges

in X;

(c) A is totally bounded.
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2 Bounded operators and compact

operators

Let X be a Banach space. We denote by B(X) the

Banach space of all bounded (continuous) linear operators

from X to X, with operator norm ‖ · ‖op.

Definition 2.1 With X as above, let T ∈ B(X). Then T

is a compact operator (or T is compact) if T (B̄X(0, 1))
is a relatively compact subset of X.

Examples and non-examples. Compact operators are

everywhere! We mention a few easy examples and

non-examples.

(a) Finite-rank operators are compact.

Gap to fill in
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(b) In particular, every linear operator on a

finite-dimensional Banach space is compact.

Gap to fill in

(c) Norm limits of finite-rank operators are compact.

Gap to fill in
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(d) Suppose that X is an infinite-dimensional Banach

space. Then the identity operator I on X is not

compact and, more generally, no invertible bounded

linear operator on X can be compact.

Gap to fill in
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In view of our earlier characterization of relatively compact

subsets of complete metric spaces, we have the following

result for operators.

Proposition 2.2 Let X be a Banach space, and let

T ∈ B(X). Then the following conditions on T are

equivalent:

(a) T is compact;

(b) T (B̄(0, 1)) is totally bounded;

(c) for every bounded sequence (xn) ⊆ X, the sequence

(T (xn)) has a convergent subsequence.

We shall denote the set of compact operators on X by K
(or K(X)).
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Theorem 2.3 With X and K as above, K is a closed,

two-sided ideal in the Banach algebra B(X).

Gap to fill in
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2.1 Invertibility and spectra

From now on, X will always be a complex Banach space.

Recall the Banach Isomorphism Theorem.

Theorem 2.4 Let T ∈ B(X). Suppose that T is bijective

(so that T is a linear isomorphism from X to X). Then

T−1 ∈ B(X), and T is a linear homeomorphism.

Thus there is no ambiguity in discussing the issue of

invertibility for bounded linear operators on Banach spaces,

and we see that this coincides with the notion of

invertibility in the Banach algebra B(X).

Definition 2.5 Let T ∈ B(X). Then the spectrum of T ,

σ(T ), is defined to be the set

{λ ∈ C : T − λI is not invertible } .

It is standard that σ(T ) is always a non-empty, compact

subset of C.

In the case of operators on finite-dimensional spaces, the

spectrum is simply the set of eigenvalues of the operator.
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Definition 2.6 Let T ∈ B(X). Then the spectral radius

of T , ρ(T ), is defined by

ρ(T ) = sup{|λ| : λ ∈ σ(T )} .

The following result is the famous spectral radius

formula.

Theorem 2.7 Let T ∈ B(X). Then

ρ(T ) = inf
n∈N

‖Tn‖1/n = lim
n→∞

‖Tn‖1/n.

Gap to fill in
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Example 2.8 Consider the special case where X = `2.

Let (an) be any bounded sequence of complex numbers.

Then we may define T ∈ B(X) by

T ((xn)) = (a1x1, a2x2, a3x3, . . . ) .

The eigenvalues of T are then precisely the complex

numbers an, and σ(T ) is the closure in C of this set of

eigenvalues.

In this setting, T is compact if and only if the sequence

(an) converges to 0.

Gap to fill in
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3 Spectra and eigenspaces of

compact operators

Throughout this section, T is a compact operator on an

infinite-dimensional complex Banach space, X.

In this setting, it is easy to check that if Y is a closed

subspace of X such that T (Y ) ⊆ Y (i.e. Y is an invariant

subspace for T ) then T |Y is a compact operator on Y .

Gap to fill in
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Since T can not be invertible, we know that 0 ∈ σ(T ).

The above example suggests that there may be some other

restrictions on the spectrum that T can have.

Theorem 3.1 Suppose that λ is a non-zero element of

σ(T ). Then λ is an eigenvalue of T , and the eigenspace

ker(T − λI) is finite-dimensional.

Gap to fill in
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Finally, we state the main result concerning spectra of

compact operators.

Theorem 3.2 If σ(T ) \ {0} is an infinite set, then it may

be written as a sequence (λn) which converges to 0. We

may arrange for this sequence to be non-increasing in

modulus, and to include each non-zero eigenvalue with the

appropriate multiplicity.

Gap to fill in
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