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1 Revision

As last time, X will be an infinite-dimensional, complex

Banach space.

We denote by B (or B(X)) the Banach algebra of all

bounded (continuous) linear operators from X to X, with

operator norm ‖ · ‖op.

We denote the set of compact linear operators on X by K
(or K(X)).

We denote by F (or F(X)) the set of all finite-rank linear

operators on X.

Theorem 1.1 With X and K as above, K is a closed,

two-sided ideal in the Banach algebra B.
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We form the quotient Banach algebra

B(X)/K(X) = B/K, with the quotient norm given by

‖T +K(X)‖ = dist(T,K(X)) = inf
K∈K(X)

‖T −K‖op .

This unital Banach algebra is called the Calkin algebra.

Let T ∈ B. Then T is a Fredholm operator if both the

kernel of T is finite-dimensional and the image of T , im T ,

has finite codimension in X: dim(kerT ) < ∞ and

dim(X/ im T ) < ∞.

Proposition 1.2 Let T ∈ B be a Fredholm operator.

Then T (X) is a closed subspace of X.

It then follows easily that, for a Fredholm operator T , both

ker T and T (X) are complemented in X (in the sense of

Banach spaces).
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2 Fredholmness conditions revisited

Last time we stated, without proof, the following result.

Theorem 2.1 Let T ∈ B. Then the following statements

are equivalent:

(a) T is a Fredholm operator;

(b) There is an S ∈ B such that both ST − I and TS − I

are finite-rank;

(c) There is an S ∈ B such that both ST − I and TS − I

are compact;

(d) T +K is invertible in the Calkin algebra;

(e) T + F is invertible in the algebra B/F ;

(f) T + F̄ is invertible in B/F̄ .

Here (b) is clearly equivalent to (e), and (c) is equivalent

to (d). It is also easy to see that (e)⇒(f)⇒(d).

The implication (a) ⇒(b) is a relatively easy exercise

involving the projections onto the complemented subspaces

discussed above (see Heuser).
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This then leaves the non-trivial fact that (c) ⇒(a). This

follows easily once you can prove that I −K is a Fredholm

operator whenever K ∈ K.

In the next two sections we look at some of the results on

operators which can be used to prove this implication.

(There may be a quicker way?)

3 Chains of subspaces associated

with linear operators

Let E be any vector space, and let T be a linear operator

from E to E (a linear endomorphism of E).

As n increases, the kernels of the linear operators Tn are

nested increasing, while the images im(Tn) = Tn(E) are

nested decreasing.

These ‘chains’ of subspaces may or may not ‘stabilize’.

Moreover, one may stabilize without the other doing so.

Gap to fill in
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A remarkable fact is that, if both chains stabilize, they

must first do so at the same value at n, and for that n (or

larger) we have

E = ker(Tn)⊕ im(Tn) .

In this case we say that the operator T is chain-finite with

chain length equal to this minimal value of n

The following result may be used to prove the above fact.

Lemma 3.1 Let S be a linear endomorphism of the vector

space E. Then the following hold:

(a) ker(S2) = kerS ⇔ ker S ∩ S(E) = {0} ;

(b) S2(E) = S(E) ⇔ ker S + S(E) = E ;

(c) E = kerS ⊕ S(E) ⇔ both ker(S2) = kerS and

S2(E) = S(E) .

Gap to fill in
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4 The Riesz–Schauder theory of

compact operators

Let K is a compact operator on X, and set T = I −K.

We wish to show that T is a Fredholm operator.

As a good start, note that ker T is the eigenspace of K

corresponding to eigenvalue 1, and so must be

finite-dimensional. Using the binomial expansion, we see

that Tn is an operator of the same type, and so ker(Tn) is

also finite-dimensional.

Gap to fill in
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Lemma 4.1 With T as above, Tn(X) is closed for all

n ∈ N.

Gap to fill in
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The proof of the next theorem is based on the Riesz

Geometric Lemma. (Apparently, this is the application for

which the lemma was invented!)

Gap to fill in
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Theorem 4.2 With T as above, both of the chains of

subspaces ker(Tn) and Tn(X) stabilize.

Once we have proved this, we know that there is an n ∈ N
such that X = ker(Tn)⊕ Tn(X).

Then Tn(X) has finite-codimension in X, and the same

holds for T . Thus T is a chain-finite Fredholm operator.

Gap to fill in
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5 The index of a Fredholm operator

For proofs of the results in this section, we refer the reader

to Heuser’s book.

Definition 5.1 Let T be a Fredholm operator on X. Then

the index indT of T is defined by

indT = dim(ker T )− dim(X/ im T ) .

Examples.

Gap to fill in
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The following result shows that index is additive, in an

appropriate sense.

Proposition 5.2 Let S and T be Fredholm operators on

X. Then so is ST , and

ind(ST ) = indS + indT .

We discussed chain-finite Fredholm operators above. Here

we have the following result.

Theorem 5.3 Let T be a chain-finite Fredholm operator

on X. Then indT = 0. Moreover, T can be written in the

form R + S, where R ∈ B is invertible, S ∈ F and

RS = SR. Conversely, any operator of the latter form is a

chain-finite Fredholm operator.

Index is unaffected by the addition of a compact operator.

Proposition 5.4 Let T be a Fredholm operator. Then, for

every K ∈ K, T + K is also a Fredholm operator, and

ind(T + K) = ind(T ) .

Finally, we return to discussion of the Fredholm region.

Recall the following definition from last time.

11



Definition 5.5 Let T ∈ B. Then the essential spectrum

of T , σe(T ) is defined by

σe(T ) = {λ ∈ C : λI − T is not a Fredholm operator } .

The complement of this set,

C \ σe(T ) = {λ ∈ C : λI − T is a Fredholm operator } ,

is the Fredholm region for T .

The Fredholm region is open, and has exactly one

unbounded component.

Gap to fill in
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Theorem 5.6 Let V be a component of the Fredholm

region for T . Then ind(λI − T ) is the same for all λ ∈ V .

Moreover, exactly one of the following holds for V .

(a) For all λ ∈ V , the null chain for λI − T stabilizes. In

this case, the set of eigenvalues of T in V (if any) has no

cluster point in V .

OR

(b) For all λ ∈ V , the null chain for λI − T does NOT

stabilize. In this case, every point of V is an eigenvalue for

T .

Gap to fill in

13


