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1 Revision

As last time, X will be an infinite-dimensional, complex

Banach space.

We denote by B (or B(X)) the Banach algebra of all
bounded (continuous) linear operators from X to X, with

operator norm || - ||op-

We denote the set of compact linear operators on X by I
(or K(X)).

We denote by F (or F(X)) the set of all finite-rank linear
operators on X.

Theorem 1.1 With X and K as above, K is a closed,
two-sided ideal in the Banach algebra B.



We form the quotient Banach algebra
B(X)/K(X) = B/, with the quotient norm given by

T+ KX)|=dist(TL(X)) = int ||T— Kop-
T+ K| = dist(TK(X) = inf 1T = Koy

This unital Banach algebra is called the Calkin algebra.

Let 7' € B. Then T is a Fredholm operator if both the
kernel of T' is finite-dimensional and the image of T', im T,

has finite codimension in X: dim(kerT") < oo and
dim(X/imT) < oo.

Proposition 1.2 Let T' € B be a Fredholm operator.
Then T'(X) is a closed subspace of X.

It then follows easily that, for a Fredholm operator T', both
kerT" and T'(X) are complemented in X (in the sense of
Banach spaces).



2 Fredholmness conditions revisited

Last time we stated, without proof, the following result.

Theorem 2.1 Let T' € B. Then the following statements

are equivalent:
(a) T is a Fredholm operator;

(b) There is an S € B such that both ST — I and T'S — I

are finite-rank;

(c) Thereis an S € B such that both ST — I and T'S — I

are compact;
(d) T + K is invertible in the Calkin algebra;
(e) T + F is invertible in the algebra B/F;
(f) T + F is invertible in B/F.
Here (b) is clearly equivalent to (e), and (c) is equivalent
to (d). It is also easy to see that (e)=-(f)=(d).

The implication (a) =-(b) is a relatively easy exercise
involving the projections onto the complemented subspaces
discussed above (see Heuser).



This then leaves the non-trivial fact that (c¢) =-(a). This
follows easily once you can prove that I — K is a Fredholm
operator whenever K € K.

In the next two sections we look at some of the results on
operators which can be used to prove this implication.
(There may be a quicker way?)

3 Chains of subspaces associated

with linear operators

Let E' be any vector space, and let I' be a linear operator
from F to F (a linear endomorphism of F).

As n increases, the kernels of the linear operators 1T are
nested increasing, while the images im(7") = T"(F) are
nested decreasing.

These ‘chains’ of subspaces may or may not ‘stabilize’.

Moreover, one may stabilize without the other doing so.

Gap to fill in



A remarkable fact is that, if both chains stabilize, they
must first do so at the same value at n, and for that n (or
larger) we have

E =ker(T") & im(T™).

In this case we say that the operator 1" is chain-finite with
chain length equal to this minimal value of n

The following result may be used to prove the above fact.

Lemma 3.1 Let S be a linear endomorphism of the vector
space I/. Then the following hold:

(a) ker(S?) =ker S < ker SN S(E) = {0};
(b) S*(E) = S(E) & kerS+ S(E) = E;

(c) E =kerS @ S(E) < both ker(S?%) = ker S and
S2(E) = S(E).

Gap to fill in



4 The Riesz—Schauder theory of

compact operators

Let K is a compact operator on X, andset T'=1 — K.
We wish to show that 1" is a Fredholm operator.

As a good start, note that ker 1T is the eigenspace of K
corresponding to eigenvalue 1, and so must be
finite-dimensional. Using the binomial expansion, we see
that 7™ is an operator of the same type, and so ker(7T™") is

also finite-dimensional.

Gap to fill in



Lemma 4.1 With T as above, T"(X) is closed for all
n € N.

Gap to fill in



The proof of the next theorem is based on the Riesz
Geometric Lemma. (Apparently, this is the application for
which the lemma was invented!)

Gap to fill in



Theorem 4.2 With T as above, both of the chains of
subspaces ker(7"™) and T (X) stabilize.

Once we have proved this, we know that there is an n € N
such that X = ker(T") & T"™(X).

Then T"(X) has finite-codimension in X, and the same

holds for T'. Thus 1" is a chain-finite Fredholm operator.

Gap to fill in



b The index of a Fredholm operator

For proofs of the results in this section, we refer the reader
to Heuser's book.

Definition 5.1 Let 1" be a Fredholm operator on X. Then
the index ind 1" of T’ is defined by

ind T = dim(ker T") — dim(X/imT).

Examples.

Gap to fill in
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The following result shows that index is additive, in an
appropriate sense.

Proposition 5.2 Let S and 1" be Fredholm operators on
X. Then so is ST, and

ind(ST) =ind S +ind T .

We discussed chain-finite Fredholm operators above. Here
we have the following result.

Theorem 5.3 Let T be a chain-finite Fredholm operator
on X. Then indT' = 0. Moreover, T" can be written in the
form R+ S, where R € B is invertible, S € F and

RS = SR. Conversely, any operator of the latter form is a
chain-finite Fredholm operator.

Index is unaffected by the addition of a compact operator.

Proposition 5.4 Let 1" be a Fredholm operator. Then, for
every K € IC, T'+ K is also a Fredholm operator, and

ind(T"+ K) = ind(T) .

Finally, we return to discussion of the Fredholm region.
Recall the following definition from last time.
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Definition 5.5 Let T' € B. Then the essential spectrum
of T, 0.(T) is defined by

g.(T) ={N € C: X[ —T is not a Fredholm operator } .

The complement of this set,
C\o.(T)={A € C: A —T is a Fredholm operator },

is the Fredholm region for T.

The Fredholm region is open, and has exactly one
unbounded component.

Gap to fill in
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Theorem 5.6 Let V be a component of the Fredholm
region for T. Then ind(A] — T') is the same for all A € V.
Moreover, exactly one of the following holds for V.

(a) For all A € V, the null chain for A\I — T stabilizes. In
this case, the set of eigenvalues of T in V' (if any) has no
cluster point in V.

OR

(b) For all A € V, the null chain for A\I — T does NOT
stabilize. In this case, every point of V' is an eigenvalue for
T.

Gap to fill in
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