
9 Sequences of Functions

9.1 Pointwise convergence and uniform

convergence

Let D ⊆ Rd, and let fn : D → R be functions (n ∈ N).

We may think of the functions f1, f2, f3, . . . as forming a

sequence of functions.

This is very different from a sequence of numbers but it

is still possible to define the concept of a limit of such a

sequence.

Such a notion is quite important.

For instance when solving differential equations or other

problems one is often able to produce a sequence of

approximate solutions and then needs to know in which

sense the approximate solutions converges to the exact

one.

We shall discuss two of the main notions of convergence

of sequences of functions fn : D → R, pointwise

convergence and uniform convergence.

To help us, recall the following non-standard

terminology, introduced earlier.
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Definition 9.1.1 Let (xn) ⊆ Rd and let A ⊆ Rd.

We say that the set A absorbs the sequence (xn) if

there exists N ∈ N such that the following condition

holds:

for all n ≥ N , we have xn ∈ A, (∗)

i.e., all terms of the sequence from xN onwards lie

in the set A.

The following result appears on the question sheet More

practice with definitions, proofs and examples.

The proof is an NEB exercise.

Proposition 9.1.2 Let a ∈ R and let (xn) ⊆ R. Then

the following statements are equivalent:

(a) the sequence (xn) converges to a;

(b) for all ε > 0, the closed interval [a− ε, a+ ε] absorbs

the sequence (xn).
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The following example illustrates the notion of pointwise

convergence for a sequence of functions.

Example 9.1.3 Consider the functions fn : R→ R
defined by fn(x) = x/n (n ∈ N, x ∈ R). Sketch the

functions f1, f2 and f3 on the same set of axes, and, for

all x ∈ R, determine limn→∞ fn(x).

Gap to fill in
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Gap to fill in
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Definition 9.1.4 Let D ⊆ Rd, let fn : D → R be

functions (n ∈ N), and let f : D → R. The

sequence of functions (fn) converges pointwise

(on D) to the function f if, for every x ∈ D, the

sequence (fn(x))∞n=1 converges to f(x), i.e.,

for all x ∈ D, we have fn(x)→ f(x) as n→∞.

Gap to fill in

The notion of uniform convergence is more subtle.

To explain this, we first extend our notions of closed ball

and of sets absorbing sequences.

We need to consider sets and sequences of functions.
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Definition 9.1.5 Let D be a non-empty subset of Rd,

let f : D 7→ R, and let (fn) be a sequence of functions

from D to R.

For ε > 0, we define the closed function ball (or just

closed ball) centred on f and with radius ε, B̄ε(f), by

B̄ε(f) = {g : D → R | |g(x)− f(x)| ≤ ε for all x ∈ D }

= {g : D → R | g(x) ∈ [f(x)−ε, f(x)+ε] for all x ∈ D } .

Note that this closed ball is a set of functions from D to

R. This is why we use the slightly non-standard term

closed function ball.

Gap to fill in
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As in (∗) above, we say that the closed function ball

B̄ε(f) absorbs the sequence of functions (fn) if there

exists N ∈ N such that the following condition holds:

for all n ≥ N , we have fn ∈ B̄ε(f), (∗∗)

i.e., all terms of the sequence of functions from fN

onwards lie in B̄ε(f).

The sequence (fn) converges uniformly (on D) to

the function f if, for every ε > 0, the closed function

ball B̄ε(f) absorbs the sequence (fn).

In full, this means the following:

For all ε > 0, there exists an N ∈ N such that, for

all n ≥ N and all x ∈ D, we have

|fn(x)− f(x)| ≤ ε .

The N in the full definition of uniform convergence

depends only on ε; the same N works for all x ∈ D.

Roughly this means that the sequences of numbers

(fn(x)) converge to f(x) at the same rate.
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Pointwise convergence on the other hand means simply

that the sequence of numbers (fn(x)) converges to f(x)

for each x ∈ D.

At different points the speed of convergence could be

very different.

The next result follows directly from the definitions.

(Exercise. Convince yourself that this is correct.)

Lemma 9.1.6 If (fn) converges uniformly to f (on

D) then it converges pointwise to f on D.

The converse of this lemma is NOT true, as you can see

from the functions x/n that we looked at earlier.

Gap to fill in
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We now look at several more examples illustrating these

concepts.

Examples 1) Let D = [0, 1] and fn(x) = xn. Then (fn)

converges pointwise, but NOT uniformly, to the function

f(x) =

 0 if 0 ≤ x < 1

1 if x = 1.

Gap to fill in
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Gap to fill in
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Gap to fill in
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2) Suppose D = [0, 1/2] and again fn(x) = xn. Now

(fn) converges uniformly to the function which is

identically 0 i.e. the function given by f(x) = 0 for all

x ∈ [0, 1/2] (we say it converges uniformly to 0).

Gap to fill in
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Gap to fill in
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3) Suppose D = R+ and fn : R+ → R is defined by

fn(x) =

 x/n if 0 ≤ x ≤ n

1 if x > n.

Then the sequence of functions (fn) converges to 0

pointwise, but not uniformly, on R+.

Gap to fill in
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Gap to fill in
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We will discuss a variety of methods to investigate the

convergence of sequences of functions.

For an alternative approach, involving the uniform

norm, see question sheets.

The above examples indicate that uniform convergence is

much stronger than pointwise convergence and more

difficult to establish.

One of the reasons that uniform convergence is

important is that it has much better properties.

In the above examples, all of the functions fn are

continuous.

Unfortunately, as Example 1), shows the limit of a

pointwise convergent sequence of continuous functions

need not be continuous.

For uniformly convergent sequences the situation is much

better.
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The proof of the next theorem is NEB (not examinable

as bookwork): see Wade’s book, Theorem 7.9, if you are

interested.

The statement and applications of this theorem are

examinable.

Theorem 9.1.7 Let D be a non-empty subset of

Rd, let f : D → R, and let (fn) be a sequence of

continuous functions from D to R.

Suppose that the functions fn converge uniformly on

D to f .

Then f must also be continuous.

From now on you may quote this theorem as

standard.

It may be summarized as follows:

Uniform limits of sequences of continuous

functions are always continuous.
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This theorem is one of the main reasons why uniform

convergence is so important.

It sometimes gives you a quick way to see that certain

pointwise convergent sequences do not converge

uniformly.

If all the fn are continuous but f isn’t then your

sequence cannot converge uniformly! (e.g. Example 1)

However, this trick does not always work.

Example 3) shows that a pointwise but non-uniform limit

can sometimes be continuous.

We conclude this section with some additional standard

facts which can sometimes help to establish that uniform

convergence fails.

The proofs of these are an exercise.
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Proposition 9.1.8 Let D be a non-empty subset of Rd

and suppose that f is a bounded function from D to R,

i.e., f(D) is a bounded subset of R.

(i) Let ε > 0 and suppose that g ∈ B̄ε(f). Then g is

also bounded on D.

(ii) Let (fn) be a sequence of functions from D to R.

Suppose that all of the functions fn are unbounded

on D. Then (fn) can not converge uniformly on D

to f .

Another way to state this last result is:

It is impossible for a sequence of

UNBOUNDED, real-valued functions from D to

R to converge uniformly on D to a BOUNDED

real-valued function.

19



Since g ∈ B̄ε(f)⇔ f ∈ B̄ε(g), a similar proof shows

the following:

It is impossible for a sequence of BOUNDED

functions from D to R to converge uniformly on

D to an UNBOUNDED real-valued function.
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