
G13MIN: Measure and Integration
Blow-by-blow account of the module as taught in 2005-6

Lecturer: Dr J. Feinstein

Other staff involved: None

Lecture 1: Introductory session. Sizes of sets. Finite sets, countable sets, uncountable sets mentioned
briefly. Total length of finite disjoint unions of intervals and unions of sequences of pairwise
disjoint intervals. Examples of open subsets of R which contain Q: such open sets must have
strictly positive total length, but their total length can be arbitrarily small (using a union of a
suitable sequence of open intervals). In contrast to this, although this fact is not obvious (it will
follow from our later theory), any open subset of R which contains [0, 1] \Q (the set of
irrational numbers in [0, 1]) must have total length at least 1. Some pathological subsets of R
can not be assigned a length in a satisfactory way. (There are similar problems for area in R2

and volume in R3, etc.) Brief discussion of the Banach-Tarski paradox.

Lecture 2: Functions and sets. Domain and codomain. Injective (one-one) surjective (onto) and bijective
functions (injections, surjections, bijections). Examples and non-examples. Inverse functions.
Finite sets and infinite sets. A bijection between N and Z.

Lecture 3: Revision session on mathematical analysis. Questions and answers, including a discussion of
pointwise and uniform convergence for sequences of functions.

Lecture 4: Two sets have the same cardinality (or the same power) if there is a bijection between them.
Countability and uncountability. The connection between sequences in X and functions from N
to X. Countability in terms of sequences. Z is countable. Which real numbers have two
different decimal expansions? Uncountability of [0, 1) (Cantor diagonalization argument). The
uncountability of R is similar, or may be deduced from this. Many standard results on
countability may be found on the first question sheet.

Lecture 5: Further standard results about countability discussed: finite unions, countable unions and
products of countable sets are countable (details on question sheet). Failure of proof by
induction to help in certain situations. Brief discussion of harder results including the
Schroeder-Bernstein Theorem: see books if interested.
The extended real line. This is R = R ∪ {−∞,∞}, a totally ordered set. Intervals, upper
bounds, lower bounds. Most details left as exercises. EVERY subset E of R has an infimum and
a supremum in R, denoted by inf(E) and sup(E) respectively. The minus operator x 7→ −x.
Sequences in R: the limit infimum and limit supremum of a sequence (lim infn→∞ xn and
lim supn→∞ xn). Warning over notation: do not let the lim get separated from the inf/sup! For
example, limn→∞(supxn) does not make sense. Examples and standard properties.

Lecture 6: Convergent sequences in R defined in terms of lim inf and lim sup: this extends the usual
definition of convergence in R, but sequences which previously diverged to +∞ now converge
to +∞ in R. Equivalent definitions of convergence to ±∞ in R. A standard homeomorphism
between R and (−1, 1) extends to a homeomorphism between R and [−1, 1]. The monotone
sequence theorem in R. The algebra of limits in [0,∞] (with limitations: see Question Sheet 1).
Arithmetic in R: addition and subtraction (where possible) and multiplication in R. Series in R.
Series with terms in [0,∞]. Fact: series with non-negative terms can be rearranged arbitrarily
and still give the same sum (finite or infinite). (Some special cases are proved in the printed
notes. These results also follow from results on integration in Chapter 4.)
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Lecture 7: Open sets in R are countable unions of open intervals. Properties and examples of open sets.
Closed sets in R. Examples. Properties. Open subsets of R and closed subsets of R.
Classes of sets. Motivation recalled: we would like to measure the area of all subsets of R2,
but this can not be done in a satisfactory way. There are similar problems for ‘total length’ for
subsets of R, as we will see shortly. We will need to work, instead, with a large class of subsets
of R (or R2) which includes essentially all ‘sensible’ sets. In particular, we will have no problems
with open sets and with closed sets. Symmetric difference introduced, various equivalent
definitions including addition of characteristic functions modulo 2. The power set of X, P(X)
(or 2X). Levels of abstraction, notation e.g 1 ∈ N, {1, 2} ⊆ N, {1, 2} ∈ P(N),
{{1, 2}, {3, 4}} ⊆ P(N), {{1, 2}, {3, 4}} ∈ P(P(N)), etc. Beware of ambiguity in: ‘contains’
and ‘contained in’. Safer to use ‘element of’ and ‘subset of’, as appropriate.

Lecture 8: Semi-rings of sets: the set of all intervals in R; the semiring P = {(a, b] : a, b ∈ R, a ≤ b} of
half-open intervals (open at the left); similarly, half-open rectangles in R2, etc. Rings of sets.
Elementary figures in R: finite (disjoint) unions of half-open intervals from P . Elementary
figures in R2 and in Rn. The ring generated by a semi-ring. Fields (or algebras) of subsets of a
set X (also called ‘fields on X’). Alternative definitions, deductions from axioms. Definition and
examples of σ-fields of subsets of a set X.

Lecture 9: Revision of semi-rings, rings, fields and σ-fields of subsets of a set X. Indexing sets and
intersections of indexed families of collections of subsets of X. Whenever you have some σ-fields
of subsets of X, say Fγ (γ ∈ Γ), then

⋂
γ∈ΓFγ is also a σ-field of subsets of X. The σ-field on

X generated by a collection C of subsets of X, denoted in this module by F(C) or, to avoid
ambiguity, FX(C). This is the smallest possible σ-field on X which includes all of the sets in C.
More formally, FX(C) is a σ-field on X, C ⊆ FX(C) and, whenever G is a σ-field on X such
that C ⊆ G then we have also FX(C) ⊆ G. Proof of the existence and properties of FX(C).
Comparison of FX(C) and FY (C) for a collection C of subsets of X when X ⊆ Y (exercise: see
also Question Sheet 2). What can you say about a σ-field on R if it includes all of the open
subsets of R? The σ-field, B, of all Borel sets in R (also called Borel subsets of R or Borel
measurable subsets of R): B is the σ-field generated by the collection of all open subsets of R.
Borel subsets of R (and other metric spaces). Examples of Borel subsets of R, including open
sets, closed sets, Q, Brief comments on transfinite induction (beyond the scope of this module,
but see books if interested). Introduction to the Cantor set.

Lecture 10: More details on the Cantor set. The Cantor function. Countable intersections of open sets (Gδ

sets) and countable unions of closed sets (Fσ sets) are Borel sets. There are many other Borel
sets. Proof that FR(P ) = B (with P and B as above). Related facts are on Question Sheet 2.
All these proofs are based on the fact that whenever C ⊆ P(R) and a σ-field G on R is such that
C ⊆ G then the σ-field on R generated by C, FR(C), must also be ⊆ G. Short cuts for proving
F(C1) = F(C2): F(C1) ⊆ F(C2) if and only if C1 ⊆ F(C2) . Definition of Lebesgue outer
measure λ∗ (defined for all subsets of R) and Lebesgue measure λ on the Borel sets (obtained
by restricting λ∗ to the Borel sets). Properties stated (see Section 5 for details). Brief revision
of equivalence relations. A non-Borel set described briefly. Details next time.

Lecture 11: Revision of λ∗ and its properties. Translation of sets: every translate of a Borel set is a Borel
set. Brief discussion of continuous pre-images and images. Brief mention of the Lebesgue
measurable sets (see Section 5). A ‘non-measurable’ subset of R: its properties, and associated
problems for the measurement of ‘total length’. Similar problems with area and volume.
Motivation for measures on σ-fields: the best we can hope for is a measure of size that behaves
well on a large class of sets.
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Lecture 12: Definition of (positive) measure on a collection C of subsets of X (with ∅ ∈ C). Examples:
counting measure (on any set), Lebesgue measure λ on the Borel sets B (the restriction of
Lebesgue outer measure λ∗ to B). Properties of Lebesgue outer measure and Lebesgue measure
will be assumed in Sections 1-4, but will be justified in Section 5. Measurable spaces and
measure spaces. Properties of measures on rings: countable additivity (part of definition), finite
additivity, Monotonicity and countable subadditivity. Finite measures, probability measures,
σ-finite measures.

Lecture 13: More examples of measures: point-mass measures and the biggest possible measure on P(X).
Length on the semi-ring P discussed earlier: µ((a, b]) = b− a (see Section 5 for the proof that
this is a measure). This does NOT work if you work with ‘intervals in Q’, (a, b] ∩Q. Taking the
length of (a, b] ∩Q to be b− a leads to a measure which is finitely additive but not countably
additive (see question sheets). One main difference here is that [0, 1] is (sequentially) compact,
but [0, 1] ∩Q is not. Sums and multiples of measures. Various types of measures: positive
measures (the measures used in this module), complex measures, real measures, signed
measures. Hahn decomposition for complex/signed measures stated in the form
µ = µ1 − µ2 + iµ3 − iµ4 (where µi are positive measures, 1 ≤ i ≤ 4). Continuity properties of
measures on rings discussed, with emphasis on the case of nested increasing unions of sets.

Lecture 14: Continuity properties of measures on rings: measures (when defined) of countable unions and
countable intersections of sets in rings. Properties that hold almost everywhere e.g. almost
every real number is irrational (because λ(Q) = 0, where λ is Lebesgue measure on R).
Exceptional sets/bad sets of measure 0 will not matter in our theory: the integral of a function
is unaffected by the values it takes on such a set (see later). We can combine countably many
exceptional sets of measure 0 to form one ‘big’ exceptional set which still has measure 0.
Equivalence (almost everywhere equality) of functions on measure spaces. What this means for
some specific measures. Revision of Riemann integration: approximation of functions from
below and above using step functions.

Lecture 15: The idea behind the Lebesgue integral: start with finite linear combinations of characteristic
functions of sets more general than intervals (can use any measurable sets). These will be easy
to integrate (in particular we will have no problem integrating χQ, which gave problems with the
Riemann integral). Simple functions on X: definition (n.b. simple functions are real-valued),
examples, standard form (using the distinct values, partition the set X and so form a finite linear
combination of characteristic functions). Sums, products and linear combinations of simple
functions are still simple functions. Every finite linear combination of characteristic functions is a
simple function (even if the sets do not form a partition of X or the coefficients are not
distinct). Measurable spaces, measurable sets and measurable functions. Continuous functions,
images and pre-images revised. Topological definition of continuous functions from R to R (in
terms of pre-images of open sets). Measurable functions from one measurable space to another.
Using the Borel sets on the codomain it is enough to check the pre-images of open sets. Every
continuous function from R to R is (Borel) measurable. (By default we use the Borel sets as our
σ-field on R.) Characteristic functions of measurable sets are measurable functions, while those
of non-measurable sets are non-measurable functions. Most sensible functions are measurable,
but the characteristic function of the non-Borel set we constructed earlier is a non-measurable
function on R.
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Lecture 16: Measurability of functions taking values in R. Four conditions equivalent to measurability (from
X to R or R), including that, for all a ∈ R, the set {x ∈ X : f(x) ≤ a} be a measurable set
(i.e. a set that is in the σ-field we are using on X). The function −f is measurable if and only if
f is measurable. The pointwise sup, inf, lim sup and lim inf of any sequence of measurable
functions is measurable. Hence every pointwise limit of a sequence of measurable functions is a
measurable function.

Lecture 17: When defined, a sum of two measurable functions is measurable. Simple measurable functions
(measurable simple functions): finite linear combinations of characteristic functions of
measurable sets. A sum or product of two simple measurable functions is again a simple
measurable function. Sketch shown of approximation of the function f(x) = x by simple
functions on [0,∞). Monotone approximation from below of non-negative measurable functions
using non-negative simple measurable functions. Deduction (from the corresponding result for
simple measurable functions) of the fact that the product of two non-negative measurable
functions is measurable. Many results for general measurable functions can be deduced in the
same way using the results for simple measurable functions and this method of approximation.

Lecture 18: The pointwise maximum of two R-valued measurable functions is a measurable function.
Decomposition of R-valued functions into positive and negative parts: f = f+ − f−. The
function f is measurable if and only if both f+ and f− are. Definition of the (Lebesgue)
integral of non-negative, simple measurable functions (notation: IE(s, µ) [non-standard]).
Connection with Riemann integrals of step functions. Brief discussion of some standard facts
(mostly intuitively obvious, proofs in printed notes or on Question Sheet 4, some proofs
discussed in lectures).

Lecture 19: When s is a non-negative, simple measurable, then the function φ(E) = IE(s, µ) is a measure

on F . Definition of the Lebesgue integral of a non-negative measurable function,

∫
E
f dµ. In

particular this gives the same value as before for simple measurable functions:

IE(s, µ) =
∫

E
s dµ. Thus we may safely switch to the new notation, but maintain our old

results. For example, when s is non-negative, simple measurable, then the function

ψ(E) =
∫

E
s dµ is a measure on F . Brief discussion of standard facts about integrals of

non-negative, measurable functions (proofs in printed notes, most follow directly from the
definitions and the results for non-negative, simple measurable functions).

Lecture 20: Further elementary properties of the integral. Revision of continuity properties of measures.
Statement and proof of the Monotone Convergence Theorem.

Lecture 21: Typical application of MCT: deduction of less elementary facts about integrals of non-negative,
measurable functions using facts about simple measurable functions and monotone
approximation. Integral of a sum of two non-negative, measurable functions:∫

X
(f + g)dµ =

∫
X
f dµ+

∫
X
g dµ.

For a non-negative measurable function f and α ∈ [0,∞) we have∫
X
αfdµ = α

∫
X
f dµ
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(this may also be proved by elementary means). For non-negative measurable functions fn,∫
X

( ∞∑
n=1

fn

)
dµ =

∞∑
n=1

(∫
X
fn dµ

)
.

For any non-negative measurable function f , the function Φ(E) =
∫

E
f dµ is a measure on F .

Counting measure on N: connection between integrals and series. In particular, another proof of
the fact that for non-negative extended real numbers an,k,

∞∑
k=1

( ∞∑
n=1

an,k

)
=

∞∑
n=1

( ∞∑
k=1

an,k

)
.

Lecture 22: Statement and proof of Fatou’s Lemma. Defined (where possible) the integral over E of a

measurable R-valued function f to be

∫
E
fdµ =

∫
E
f+dµ−

∫
E
f−dµ. The (measurable)

function f is integrable on E if both f+ and f− have finite integral on E. In particular, a
function f : X → R is said to be integrable if it is measurable and integrable on X. For a
measurable function f , f is integrable if and only if |f | is integrable. Connection with absolutely
convergent series of real numbers. The set of integrable functions f such that f take values in
R (non-standard) is denoted by L1(µ) (or L1(X,µ) or L1(X, dµ)). Most authors allow f to be
R-valued, but this makes no real difference to the theory. For integrable functions∣∣∣∣∫

X
f dµ

∣∣∣∣ ≤ ∫
X
|f | dµ.

For f in L1(µ) and α ∈ R, we have∫
X

(αf) dµ = α

∫
X
f dµ.

Warning that, in general, (f + g)+ 6= f+ + g+.

Lecture 23: L1(µ) is a vector space of functions on X, and, for f , g in L1(µ),∫
X

(f + g) dµ =
∫

X
f dµ+

∫
X
g dµ.

Statement and proof of the Dominated Convergence Theorem (DCT). From question sheets:
sets of measure zero have no effect on integration. Countable unions of sets of measure 0 still
have measure 0. As a result, conditions in convergence theorems are only required to hold
almost everywhere.

Lecture 24: Problem class/Tutorial session on the main three theorems of Chapter 4: the Monotone
Convergence Theorem, Fatou’s Lemma and the Dominated Convergence Theorem (discussed in
the context of Riemann integrals of functions and sums of series). Students worked in groups to
find counterexamples when conditions of the theorems are weakened, and an example where the
inequality in Fatou’s Lemma is strict. Answers were discussed.
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Lecture 25: The connection between the Riemann integral and the Lebesgue integral w.r.t. Lebesgue
measure λ (see below). The two agree for all Riemann integrable functions (proof based on
approximation of a Riemann integrable function from above and below by step functions: see

printed notes for more details). This allows us to use the notation

∫ b

a
f(x) dx for the Lebesgue

integral

∫
[a,b]

f dλ of a Lebesgue integrable function (even if it is not Riemann integrable).

Outer measures and the construction of Lebesgue measure Definition and examples of
outer measures. Definition of µ∗-measurable sets for an outer measure µ∗. Statements of some
standard results (see printed notes for full details): the set of µ∗-measurable sets is a σ-field and
the restriction of µ∗ to this σ-field is a complete measure. Lebesgue outer measure λ∗ is an
outer measure on R and the half-open intervals (a, b] are λ∗-measurable with λ∗((a, b]) = b− a.
The Lebesgue measurable sets (λ∗-measurable sets) are thus a σ-field F which includes all the
Borel sets. Lebesgue measure λ on R is the restriction of λ∗ to F . The non-Borel set we
constructed earlier is, in fact, not Lebesgue measurable either.

Lecture 26: Elementary results concerning finite unions of intervals and their lengths. Proof, using
Bolzano-Weierstrass, of a compactness result for closed intervals [a, b]: every cover using a
sequence of open intervals has a finite sub-cover. Countable unions of intervals: length gives a
measure on our favourite semi-ring P of half-open intervals. For the equivalent result concerning
area in R2, see Question Sheet 5. (The same can be done in Rn.). Discussion of extensions of
measures from semi-rings to rings (full details in printed notes). In particular, we may extend our
measure on µ to obtain a measure on the ring E generated by P . Recalled outer measures (as
introduced in previous lecture). Outer measures will enable us to extend measures from
semi-rings to the σ-field they generate (and beyond), and this will give us Lebesgue measure
when we start with length on P .

Lecture 27: Revision of concept of measurability with respect to an outer measure µ∗. Lemma: The
collection of µ∗-measurable sets is a field on which µ∗ is finitely additive. Theorem stated (see
printed notes for details): The collection of µ∗-measurable sets is a σ-field on which µ∗ is
countably additive. The restriction of µ∗ to this σ-field is thus a measure. Moreover, this
measure is complete. How to use a measure µ on a semi-ring or a ring to define an outer
measure µ∗. (We will use length on intervals/elementary sets to obtain Lebesgue outer measure
on R.) Statement of the Extension Theorem: every measure on a ring can be extended to a
measure on a σ-field containing the ring.

Lecture 28: Proof of Extension Theorem using outer measures. The measure obtained is complete.
Combining our results gives another version of the Extension Theorem: every measure on a
semi-ring may be extended to a complete measure on a σ-field containing the semi-ring, using
the standard outer measure construction. The particular case of Lebesgue outer measure and
Lebesgue measure. A reminder of some of the useful properties of Lebesgue measure. Student
Evaluation of Teaching forms.

Lecture 29: Problem Class on measures and outer measures + Question and Answer session.
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