
G13MIN: MEASURE AND INTEGRATION

LECTURE NOTES

Section 1: The Extended Real Line

Notation:

The extended real line
� �

≡ [ −∞, ∞] is defined as follows. We start with and adjoin two new points,

denoted by ∞ and −∞. Then
� �

= ∪ {−∞, ∞}. We define a relation on
� �

by

x ∞
−∞ x

all x

all x

and for x, y ∈ , x y has the usual meaning.

This gives us a total order on
� �

extending the usual order on . We can now immediately extend our

usual notation of intervals: e.g. = (−∞,∞) and
� �

= [ −∞,∞], etc.

Definition 1.1. Let E ⊆
� �

. Then E always has a least upper bound in
� �

, the supremum of E denoted

by sup (E ). Also E has a greatest lower bound, the infimum inf (E ). We have sup(E ) inf(E ), except

when E = ∅ (note that sup(∅) = −∞, inf(∅) = ∞).

For x ∈
� �

we define −x to have its usual meaning if x ∈ . We define

−x = { ∞
−∞

if x = −∞
if x = ∞

x → −x is a bijection from
� �

to itself. Now let (xn ) be a sequence of elements of
� �

. For each n ∈
we set

Sn = sup{xn , xn +1 , xn +2 , . . .}

sn = inf{xn , xn +1 , xn +2 , . . .}.

We have sn Sn for all n and

S1 S2 S3 . . . and s1 s2 s3 . . . .

We define

n →∞
lim sup(xn ) = inf{Sn : n ∈ }

n →∞
lim inf(xn ) = sup{sn : n ∈ }.

We then have

n →∞
lim inf(xn )

n →∞
lim sup(xn ).

Example 1.2. Let a ∈ . Consider the sequence xn = an. For −1 < a < 1, xn will converge to 0 as
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n → ∞: this gives
n →∞

lim inf(xn ) =
n →∞

lim sup(xn ) = 0.

If a = −1, the sequence xn is

−1, 1, −1, 1, . . .

thus
n →∞

lim inf(xn ) = −1,
n →∞

lim sup(xn ) = 1.

Suppose a < −1. Then

n →∞
lim inf(a n) = −∞,

n →∞
lim sup(a n) = ∞.

The remaining two cases are left as an exercise for the reader.

Proposition 1.3. Let (xn ) be a sequence of elements of
� �

. Then

n →∞
lim inf(xn ) = −

n →∞
lim sup(−xn ).

For the proof of this, see the Question Sheet 1.

Definition 1.4. We say that a sequence (xn ) converges to x in
� �

if

n →∞
lim inf(xn ) =

n →∞
lim sup(xn ) = x.

It is standard that (−1, 1) is homeomorphic to : there exists a bijective map f from (−1,1) to so

that both f and f −1 are continuous (such a map f is called a homeomorphism). For example, we can

use the map

f (x) =
1 −

�
x
�

x����������� .

The inverse map (from to (−1, 1) is the map

y →
1 +

�
y
�

y����������� .

If we set f (−1) = −∞, f (1) = ∞ then we have extended f to a bijection from [ −1, 1] onto [ −∞, ∞].

Also f is strictly increasing:

x < y ⇒ f (x) < f (y).

Using the function f , we can define, for x, y ∈ [ −∞, ∞]

d(x, y) =
�
f −1(x) − f −1(y)

�

For those who attended G13MTS Metric and Topological Spaces: (
� �

, d) is then a metric space

isometric to [ −1, 1]. Convergence with respect to this metric agrees with the above definition of con-

vergence in
� �

. We will not use this metric often, but we will occasionally talk about open subsets of
� �

(see below).
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Proposition 1.5. Let (xn ) ⊆ � � , and suppose that xn xn +1 for all n . Then xn converges in � � .

Proof. This is essentially a restatement of the standard result for non-decreasing sequences of real

numbers.

Arithmetic in � �� � ��

For x, y ∈ we already have defined x .y and x + y . For x ∈ [0, ∞] we define

x + ∞ = ∞ + x = ∞

x .∞ = ∞.x = { 0

∞
(x = 0).

(x > 0),

With these operations on [0, ∞] the associative and distributive laws are satisfied.

x . (y + z) =
(x + y) + z =

(x .y) .z =

x .y + x .z
x + (y + z)

x . (y .z) } x, y, z ∈ [0, ∞].

(The reader should check this.)

On the whole of � � addition is a problem. We cannot define −∞ + ∞ satisfactorily.

We can define

x + −∞ = −∞ + x = −∞
x + ∞ = ∞ + x = ∞

(x ≠ ∞)

(x ≠ −∞)

0 .x = x .0 = 0 for all x

(−∞) .x = { ∞
0

−∞

x < 0

x = 0

x > 0

∞ .x = { −∞
0

∞

x < 0

x = 0

x > 0

We denote x + (−y) by x − y for short, when it is defined.

Proposition 1.6. Let (xn ), (yn ) be sequences in [0, ∞]. Then

(i) if xn → x and yn → y , then xn + yn → x + y ,

(ii) if xn ↑x and yn ↑y then xn
.yn → xy .

Proof. (i) is easy. For (ii) see the first question sheet.
�

We can now consider series

n =1
∑
∞

xn ,
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where xn ∈
� �

.

Assuming that −∞, ∞ do not both occur, then, for each k , we have a partial sum

n =1
∑
k

xn .

Definition 1.7. If the sequence of partial sums converges in
� �

as k → ∞, then we say the series

converges in
� �

.

Proposition 1.8. If xn ∈ [0, ∞] all n , then by Proposition 1.5 the series
n =1
∑
∞

xn must converge to an

element of [0, ∞]. Thus, the series
n =1
∑
∞

n

1
� , which diverges in , is convergent in

� �

. Of course,

n =1
∑
∞

n

1
� = ∞.

Proposition 1.9. Let ank ∈ [0, ∞] (n, k ∈ ). Then

n =1
∑
∞

k =1
∑
∞

ank =
k =1
∑
∞

n =1
∑
∞

ank .

Proof. By symmetry it is enough to show the left hand side is right hand side. Using Proposition

1.6(i) and induction on m we see easily that

n =1
∑
m

k =1
∑
∞

ank =
k =1
∑
∞

n =1
∑
m

ank for all m ∈

k =1
∑
∞

n =1
∑
∞

ank .

Letting m → ∞ we obtain

n =1
∑
∞

k =1
∑
∞

ank
k =1
∑
∞

n =1
∑
∞

ank as required.
�

Proposition 1.10. (Used later to extend measures.) Given aik , i = 1, 2, . . . , 1 k ni , enumerate the

pairs {(i, k): 1 k ni , i ∈ } as (it , kt ) t = 1, 2, . . . . Then

i =1
∑
∞

k =1
∑
ni

aik =
t =1
∑
∞

ait kt
.

Proof. Each side is a limit of finite sums, each of which is less than or equal to the infinite sum on

the other side.
�

Definition 1.11 A subset U of is said to be open in if it can be written as a countable union of

(possibly empty) open intervals (an ,bn ) where an and bn are real numbers with an bn . (Note that the

empty set is open, as is itself, and so are unbounded open intervals such as (0,∞) etc.) A subset E

of is said to be closed in if \ E is open in .
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The following properties of open sets/closed sets are standard: if you are not familiar with them you

can look in books or prove these facts as exercises. Every countable union of open sets is open (in

fact so are uncountable unions). Every countable intersection of closed sets is closed. Finite intersec-

tions of open sets are open, and finite unions of closed sets are closed. Countable intersections of open

sets need not be open.

Occasionally we may want to discuss open sets or closed sets in the extended real line instead. This

can be defined using the metric above, or as follows.

Definition 1.12 A subset U of
� �

is said to be open in
� �

if it is a finite union of sets taken from any of

the following three collections of subsets of
� �

: {V⊆ :V is open in }, {[ −∞,a):a∈ }, {(b,∞]:b∈ }.

Note that in fact you never need more than three of these sets: a typical open subset of
� �

including the

points − ∞ and ∞ has the form [ − ∞,a) ∪ U ∪ (b,∞] where a and b are real numbers, and U is an open

subset of .

A subset E of
� �

is closed in
� �

if
� �

\ E is open in
� �

.


