
Section 3: Measures and Measure Spaces

Intuitively, in 2, we expect the area of a disjoint union of sets A .∪ B to be the sum of area of A and

area of B (i.e. total area = sum of smaller areas).

What if (An )n =1
∞ is a sequence of disjoint subsets of 2? We would hope that the area of

n =1
∪∞ An

would equal
n =1
∑
∞

(area of An ).

In the equivalent notion is that of length. We want to define a function λ : ( ) → [0, ∞] to meas-

ure the length of as many sets as possible, such that

λ((a, b]) = b − a and λ(A .∪ B ) = λ(A) + λ(B ), λ( .
n =1
∪∞ An) =

n =1
∑
∞

λ(An ) etc.

Unfortunately this cannot be done for all subsets of .

Area in 2 and volume in 3 have the same problems. But we will succeed in defining our

measurements of size on at least all the Borel sets.

Definition 3.1

Let X be a set, let ⊆ (X ) s.t. ∅ ∈ , and let µ : → [0, ∞].

Then µ is a measure on if

(i) µ(∅) = 0,

(ii) whenever A1 , A2 , . . . , is a sequence of pairwise disjoint sets in s.t. .
n =1
∪∞ An is in , then

µ( .
n =1
∪∞ An) =

n =1
∑
∞

µ(An ).

Examples

(i) X = , = ( ),

define

µ(E ) = { n

∞
if E has exactly n elements

if E has infinitely many elements

Easy exercise: check µ is a measure. This measure µ is called counting measure on .

[Counting measure is usually used on rather than on an uncountable set.]

(ii) ‘point mass’ measures. Let X be a set, = (X ). Let x be any fixed point in X. Define
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µ(E ) = { 0

1

if x∉E.

if x ∈E,

Certainly µ(∅) = 0.

If A1 , A2 , . . . , are disjoint subsets of X, then either x ∈ .
n =1
∪∞ An , in which case x is in exactly one

set An or x∉
n =1
∪∞ An , in which case x is in none of the An . In both cases µ( .

n =1
∪∞ An) =

n =1
∑
∞

µ(An ). This

measure µ is called the point mass at x, and is often denoted by δ x .

If a and b 0, µ, ν are measures on , then so is aµ + bν defined by

(aµ + bν)(E ) = aµ(E ) + bν(E ).

In the examples above (i) and (ii) was a σ -field.

Definition 3.2

A measurable space is a pair (X, ) where X is a set and is a σ -field of subsets of X.

A measure space is a triple (X, , µ) where is a σ -field on X, and

µ : → [0, ∞] is a measure.

By abuse of terminology, X is a measurable space and µ is a ‘measure on X’, provided we know which

σ -field we are working with.

Our aim: with = Borel subsets of , we wish to find a measure λ : → [0, ∞] s.t.

λ((a, b]) = b − a ∀ a b in .

Is this possible?

The first problem. Suppose (a, b] = .
n =1
∪∞ (an , bn ]. We would need λ((a, b]) =

n =1
∑
∞

λ((an , bn ]), i.e. we

need b − a =
n =1
∑
∞

(bn − an ).

Is this last equality true? Yes! (See later.)

General Results about Measures on Rings

Proposition 3.3

Let X be a set, R be a ring of subsets of X, and let µ : R → [0, ∞] be a measure.

(i) If A1 , A2 , . . . , An are pairwise disjoint sets in R then

µ(
k =1
∪n

Ak) =
k =1
∑
n

µ(Ak ).
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(ii) If A, B ∈R then

µ(A) = µ(A ∩ B ) + µ(A \ B ).

Proof

(i) To see this, set An +1 = An +2 = . . . = ∅. Then

.
k =1
∪∞ Ak = .

k =1
∪n

Ak ∈R.

Thus

µ( .
k =1
∪n

Ak) = µ( .
k =1
∪∞ Ak) =

k =1
∑
∞

µ(Ak )

=
k =1
∑
n

µ(Ak ),

since µ(∅) = 0.

(ii) µ(A) = µ(A ∩ B ) + µ(A \ B )

because A = (A ∩ B ) .∪ (A \ B ).

Is it true that µ(A ∩ B ) = µ(A) − µ(A \ B )? Not necessarily! (May have ∞ − ∞.)

[Remember ∞ − ∞ is not defined.]

e.g. work with counting measure on .

Set

A = {2, 4, 6, . . .}

B = {primes}

A ∩ B = {2}, µ(A ∩ B ) = 1, µ(A) = µ(B ) = µ(A \ B ) = ∞ so µ(A) − µ(A \ B ) is not defined.

Proposition 3.4

Let µ be a measure on a ring R of subsets of a set X.

(i) If A, B ∈R with A ⊆ B, then

µ(A) µ(B ). (Monotonicity)

(ii) If A ∈R, B1 , B2 , . . . ∈R and A ⊆
n =1
∪∞ Bn , then

µ(A)
n =1
∑
∞

µ(Bn ). (Countable subadditivity)
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Proof

(i) µ(B ) = µ(A) + µ(B \ A) µ(A).

(ii) (N.B. The Bn are NOT assumed disjoint, and we do not assume
n =1
∪∞ Bn ∈R.)

Set Cn = Bn ∩ A. Then

A = A ∩ (
n =1
∪∞ Bn) =

n =1
∪∞ Cn .

Set D1 = C1 and Dn = Cn \
k =1
∪n −1

Ck (n > 1). We then have

Dn are in R,

Dn ⊆ Cn ⊆ Bn ∀n ,

Dn are pairwise disjoint.

Also, for each n ,

k =1
∪n

Dk =
k =1
∪n

Ck .

We then have

A = .
n =1
∪∞ Dn ,

and so

µ(A) =
n =1
∑
∞

µ(Dn )
n =1
∑
∞

µ(Bn ).
�

The property that

µ( .
n =1
∪∞ An) =

n =1
∑
∞

µ(An )

is ‘µ is countably additive’.

(‘µ is finitely additive’ means µ( .
n =1
∪N

An) =
n =1
∑
N

µ(An ).)

The property that A ⊆ B ⇒ µ(A) µ(B ) is called monotonicity (µ is monotone).

µ(
n =1
∪∞ An)

n =1
∑
∞

µ(An ) means ‘µ is countably subadditive’.
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If is σ -field on X, then (X, ) is a measurable space. If µ : → [0, ∞] is a measure, then

(X, , µ) is a measure space.

Definition 3.5.

If µ(X ) < ∞ then µ is a finite measure.

If µ(X ) = 1 then µ is a probability measure (informally, for A ∈ , µ(A) represents the probabil-

ity that a random point chosen from X will be in A).

We say that a measure is σσσ -finite if there are countably many sets En ∈ with µ(En ) < ∞ all n ,

and s.t.

X =
n =1
∪∞ En .

Examples.

The point mass measures are all probability measures (and hence finite measures).

Counting measure µ on a set X

µ(E ) = { ∞
n

if E is infinite

if E has n elements

is a finite measure if and only if X is finite.

If µ is a counting measure on , then µ( ) = ∞, but

=
n =1
∪∞ {1, 2, 3, . . . , n}

so that µ is σ -finite.

But counting measure on (or on any uncountable set) is not σ -finite.

More Standard Properties of Measures

Proposition 3.6

Let R be a ring of subsets of a set X. Suppose µ : R → [0, ∞] is a measure and let

A1 , A2 , A3 , . . . ∈R.

(i) If
n =1
∪∞ An ∈R, then

µ(
n =1
∪∞ An) =

n →∞
lim µ (

k =1
∪n

Ak).
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(ii) If µ(A1) < ∞ and
n =1
∩∞ An ∈R, then

µ(
n =1
∩∞ An) =

n →∞
lim µ(

k =1
∩n

Ak).

Proof

(i) If
n =1
∪∞ An ∈R, set A =

n =1
∪∞ An , set B1 = A1 , Bn = An \

k =1
∪n −1

Ak for n > 1. Then each Bn ∈R, the

sets Bn are pairwise disjoint,

k =1
∪n

Ak = .
k =1
∪n

Bk ∀n,

and A = .
k =1
∪∞ Bk . Thus

µ(A) =
k =1
∑
∞

µ(Bk )

=
n →∞
lim (

k =1
∑
n

µ(Bk ))
=

n →∞
lim (µ( .

k =1
∪n

Bk))
=

n →∞
lim (µ(

k =1
∪n

Ak)).

(ii) Now suppose that µ(A1 ) < ∞.

If
n =1
∩∞ An is in R, then set

Cn = A1 \ An ∀n.

Then Cn ∈R and

n =1
∩∞ An = A1 \

n =1
∪∞ (A1 \ An )

= A1 \
n =1
∪∞ Cn .

n =1
∪∞ Cn ⊆ A1 by definition of Cn and so

n =1
∪∞ Cn = A1 \

n =1
∩∞ An ∈R. Thus

µ(
n =1
∪∞ Cn) =

n →∞
lim µ(

k =1
∪n

Ck)
(by the first part).
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Now note

µ(
n =1
∩∞ An) = µ(A1 ) − µ(

n =1
∪∞ Cn) [this holds because µ(A1) < ∞ and

n =1
∪∞ Cn ⊆ A1 .]

= µ(A1) −
n →∞
lim µ(

k =1
∪n

Ck)
=

n →∞
lim (µ(A1 ) − µ(

k =1
∪n

Ck))
=

n →∞
lim (µ(A1 \

k =1
∪n

Ck))
=

n →∞
lim (µ(

k =1
∩n

Ak)) as required. �

Properties which hold almost everywhere

Definition 3.7

Let (X, , µ) be a measure space. To say that a property holds almost everywhere (with

respect to µ ) (a.e. (µ)) means that there is a set E ∈ with µ(E ) = 0 such that the property holds

∀ x ∈X \ E.

For example:

Using Lebesgue measure (see Chapter 5 for the construction) on we can say

χ (x) = 0 almost everywhere (λ ).

OR alternatively

χ (x) = 0 for almost all x (λ ).

[“(λ )” means “with respect to λ ”.]

This is because λ( ) = 0 (see question sheet 5).

Definition 3.8

Given two functions f, g : X → Y where Y is some set, we say f and g are equivalent if

f (x) = g(x) a.e. (µ)

(this depends on the measure µ ).

Check: this really is an equivalence relation (make sure your sets are really in ).
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Note that if you use counting measure, a.e. means everywhere! (Because µ(E ) = 0 ⇒ E = ∅
when µ is counting measure.)

[Warning! When working with counting measure, some authors say instead that something holds

almost everywhere if it is true for all but finitely many points. This does NOT agree with our

usage.]


