
Section 4: The Integral

The abstract theory of integration with respect to a measure goes through just as easily in general as it

does in special cases. You should think of the following examples:

(a ) Lebesgue measure on , or on an interval [a, b]

(b ) counting measure on .

The Riemann Integral Revisited

With Riemann integration we attempt to approximate our function from below and from above by step

functions.

A step function is a finite linear combination of characteristic functions of intervals
k =1
∑
n

αkχIk

where I1 , I2 , . . . , In are disjoint intervals, and α1 , α2 , . . . , αn are real numbers. These functions are

Riemann integrable, with integral

k =1
∑
n

αk × length of Ik =
k =1
∑
n

αkλ(Ik ).

The beginning of the theory of Lebesgue is to generalise by replacing Ik by Ak , where A1 , . . . , An are

disjoint Borel sets (or, more generally, Lebesgue measurable sets: see Section 5).

Then we will define

∫ (∑ α iχAi
) dλ = ∑ α iλ(Ai ).

Note that this will already be enough to integrate χ , since χ = 1×χ , so the above gives

∫ χ dλ = 1×λ( ) = 0.

Simple Functions

Definition 4.1. Let X be a non-empty set. Then a simple function from X is a function s : X → such

that s takes only finitely many different values.

Note that simple functions are real-valued. Writing α1 , α2 , . . . , αn for the distinct values taken by

s , we can set

Ak = {x ∈X : s(x) = αk}.

Then

X = .
k =1
∪n

Ak

and
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s(x) =
k =1
∑
n

αkχAk
(x) all x ∈X,

i.e. s =
k =1
∑
n

αkχAk
.

The following two results are obvious.

Proposition 4.2. If s, t are simple functions from a set X, and a, b are real numbers, then s + t , st and

as + bt are all simple functions from X.

Corollary 4.3. Let X be a set. For any real numbers α1 , α2 , . . . , αn and any subsets A1 , A2 , . . . , An of X,

k =1
∑
n

αkχAk
(x)

is a simple function on X.

Continuous Functions and Measurable Functions

Let X, Y be metric spaces, and let f : X → Y be a function. Then f is continuous if

∀ x ∈X ∀ ε > 0 ∃ δ > 0 s.t. for z ∈X

dX(z, x) < δ ⇒ dY( f (z), f (x)) < ε.

Equivalently: f : X → Y is continuous if, whenever xn → x is a convergent sequence in X then

f (xn ) → f (x) in Y.

Recall: for E ⊆ X,

f (E ) = { f (x): x ∈E}

= {y ∈Y : ∃ x ∈E with f (x) = y}.

For F ⊆ Y, f −1(F ) = {x ∈X : f (x) ∈F}.

Note: f (E1 ∪ E2) = f (E1) ∪ f (E2 ) but f (E1 ∩ E2 ) need not equal f (E1) ∩ f (E2). But f −1 behaves

better.

f −1(F1 ∪ F2 ) = f −1(F1) ∪ f −1(F2 )

f −1(F1 ∩ F2 ) = f −1(F1) ∩ f −1(F2 )

f −1(Y \ F ) = X \ f −1(F ).

Similar results hold for infinite intersections and unions

The following result is standard except for condition (iv), whose equivalence to the other conditions is

an optional exercise.
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Proposition 4.4 Let X, Y be metric spaces, and let f : X → Y. Then the following four conditions are

equivalent:

(i) f is continuous,

(ii) for every open set U ⊆ Y, f −1(U ) is open in X,

(iii) for every closed set F ⊆ Y, f −1(F ) is closed in X,

(iv) ∀ A ⊆ X, f (
� �

A) ⊆
�������

f (A).

We now begin to introduce the class of functions which we intend to integrate.

Definition 4.5 Let (X, 1), (Y, 2 ) be measurable spaces, and let f : X → Y be a function. Then f is

1 - 2 measurable (or simply measurable if the σ -fields involved are unambiguous) if, for all E ∈ 2 ,

f −1(E ) ∈ 1 .

Proposition 4.6 Let (X, ) be a measurable space, and let Y be a metric space. Let Y be the set of

Borel subsets of Y. Let f : X → Y be a function. Then f is - Y measurable if and only if

(*) f −1(U) ∈ for all open subsets U of Y.

Proof. The "only if" part is trivial, so we prove the "if" part. Suppose that condition (*) above holds.

From Exercise Sheet 3, {F ⊆ Y : f −1(F ) ∈ } is in fact a σ -field. By (*) this σ -field includes all the

open sets and hence all the Borel sets. The result follows.

For similar reasons,

f is measurable ⇔ ∀ closed sets F ⊆ Y, f −1(F ) ∈ .

Given a metric space Y we will usually use the Borel sets on Y to make Y into a measurable

space. However, on we will sometimes use the Lebesgue sets.

Corollary 4.7 Using the Borel sets on , every continuous function f : → is measurable.

Note that we should really consider separately the σ -field used on as domain and on as

range. The result remains true if we change to the Lebesgue sets on as domain, and keep the Borel

sets on as range.
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Proposition 4.8 Let (X, ) be a measurable space and let f be a function either from X to or from X

to
� �

. Then the following five conditions are equivalent:

(i) f is measurable;

(ii) ∀ a ∈ ,

{x ∈X : f (x) a} ∈ ;

(iii) ∀ a ∈ ,

{x ∈X : f (x) > a} ∈ ;

(iv) ∀ a ∈ ,

{x ∈X : f (x) a} ∈ ;

(v) ∀ a ∈ ,

{x ∈X : f (x) < a} ∈ .

Remark. Here we use the Borel sets on or on
� �

as appropriate.

Proof. We prove the equivalence of (i) and (ii). The rest is similar. Let us consider condition (ii).

For f : X →
� �

this means

f −1([ −∞, a]) ∈ ∀ a ∈ ;

For f : X → it means

f −1((−∞, a]) ∈ ∀ a ∈ .

But the Borel sets on
� �

are generated by

{[ −∞, a]: a ∈ }

and the Borel sets on are generated by

{(−∞, a]: a ∈ }.

Thus, by the same reasoning as in Proposition 4.6, (i) and (ii) are equivalent.

Example Suppose

f : → [0,∞].

Unless otherwise specified we will use counting measure on , using the σ -field ( ).

In this case every such function is measurable. Writing an for f (n), we will see later that

∫ f dµ =
n =1
∑
∞

f (n) =
n =1
∑
∞

an ,
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where µ is a counting measure.

To make it very clear when we are using the Borel sets on the domain of our functions, we

sometimes use the following definition.

Definition 4.9. Let X, Y be metric spaces. Use the Borel sets on X and on Y to make them measurable

spaces. Then a measurable function from X to Y is said to be Borel measurable.

With this terminology, corollary 4.7 can be rephrased as the following proposition.

Proposition 4.10. Every continuous function from to is Borel measurable.

Let

f : X →
� �

then we can define (− f ) by

(− f )(x) = − f (x).

Proposition 4.11. If (X, ) is a measurable space and f : X →
� �

is measurable then so is − f .

Proof. For all a ∈

f −1([ −∞, a]) ∈

and so

f −1((a, ∞]) ∈

i.e.

{x ∈X : (− f )(x) < −a} is in .

But this last set is just (− f )−1([ −∞, −a)). The rest is easy.

In the next few propositions, (X, ) is a measurable space.

Proposition 4.12 Suppose f1 , f2 , f3 , . . . X →
� �

are all measurable. Define

f (x) = sup{ fn(x): n ∈ } ∈
� �

.

Then f is measurable.

Proof

Let a ∈ . We show that f −1([ −∞, a]) is in . For x ∈X,

x ∈ f −1([ −∞, a]) iff f (x) a,

iff fn(x) a ∀ n,

iff x ∈
n∈
∩ fn

−1([ −∞, a]).
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Thus

f −1([ −∞, a]) =
n∈
∩ fn

−1([ −∞, a]) ∈ .

Proposition 4.13. Suppose f1 , f2 , f3 , . . . X →
� �

are all measurable. Then so are the functions

inf fn , lim inf fn , lim sup fn .

Remark. Here the relevant functions are defined pointwise, looking at the sequence fn(x).

Proof Let

g(x) = inf{ fn(x): n ∈ }.

Then

g(x) = −sup{− fn(x): n ∈ }

and so g a measurable function by 4.11 and 4.12.

Set

h(x) =
n →∞

lim sup ( fn(x))

=
n∈
inf (

k n
sup fk(x)).

Then h is a measurable function, using the above and Proposition 4.12. Finally,

n →∞
lim inf ( fn(x)) = −

n →∞
lim sup (− fn(x))

which is measurable by the above and 4.11.

Corollary 4.14 If fn is a sequence of measurable functions from X to
� �

, and if fn(x) → f (x) ∀ x ∈X,

then f is also measurable.

Proof.
n →∞

lim sup fn(x) = f (x), and so f is measurable.

In other words, the collection of measurable functions is closed under the operation of taking

pointwise limits.

Theorem 4.15

Let (X, ) be a measurable space, and let f, g : X →
� �

be measurable functions. Suppose that

f (x) + g(x) is defined for all x ∈X. Then the function f + g is measurable.

Proof. It is enough to show that, ∀ a ∈ ,

{x ∈X : f (x) + g(x) < a} is in .

But
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{x ∈X : f (x) + g(x) < a} =

p +q<a

p, q ∈
∪ {x ∈X : f (x) p and g(x) q}

=

p +q<a

p, q ∈
∪ f −1([ −∞, p]) ∩ g −1([ −∞, q]),

a countable union of measurable sets.
�

Returning to simple functions, suppose (X, ) is measurable space, and s : X → is a simple

function. We have

s =
k =1
∑
n

αkχAk

for some sets Ak with X = .
k =1
∪n

Ak , where the αk are the distinct values taken by s .

When is s measurable? With this notation it is easily shown that s is measurable if and only if

each set Ak is measurable.

Note, however, that if A1 , A2 , . . . , An ∈ , not necessarily disjoint, and α1 , α2 , . . . , αn ∈ then

k =1
∑
n

αkχAk
is a sum of measurable functions, and so is measurable. It is also simple.

Integration theory begins with simple measurable functions (measurable simple functions).

Proposition 4.16 Let (X, ) be a measurable space, and let s , t be simple measurable functions on X.

Then s + t and st are also simple measurable functions.

Proof. This is immediate from Proposition 4.2 and Theorem 4.15, except for the measurability of st .

Write

s =
k =1
∑
n

αkχAk
Ak all measurable,

t =
j =1
∑
m

β jχBj
Bj all measurable.

Then

st =

1 j m

1 k n

k, j
∑ (αkβ j )χAj ∩ Bk

which is a measurable simple function, as required.

So the collection of simple measurable functions is closed under multiplication and addition.



- 8 -

Lemma 4.17

Let (X, ) be a measurable space, and let

f : X → [0, ∞]

be a function. Then there is a sequence of simple functions

sn : X → [0, ∞) with 0 s1(x) s2(x) . . . f (x)

and

n →∞
lim sn(x) = f (x) ∀ x ∈X.

If f is measurable, the sn may be chosen to be measurable simple functions. If f is bounded then we

can choose sn to converge to f uniformly.

Proof. Define sn : X → as follows.

sn(x) = { 2n

j���

n

if

if

f (x) < n and j ∈ + satisfies
2n

j��� f (x) <
2n

j + 1� ����� .

f (x) n

NB: f (x) < n ⇒ sn(x) =
2n

j��� for some integer 0 j n2n − 1, and in this case

sn(x) f (x) < sn(x) +
2n

1��� .

Certainly sn is simple, and 0 sn(x) f (x) all x .

If k ∈ , and f (x) k , then certainly

sk(x) k (because sk(x) = k).

In fact, ∀ n k , sn(x) k (you should check this).

For all x ∈X, we can see that sn(x) → f (x) as n → ∞ because, if f (x) < ∞, then ∀ n > f (x),

�
sn(x) − f (x)

�
<

2n

1��� ,

while if f (x) = ∞ then sn(x) = n ∀ n and so sn(x) → f (x).

To see that sn(x) sn +1(x) there are two cases:

(i) f (x) n

In this case sn(x) = n and sn +1(x) n .

(ii) f (x) < n

Then there is j < n2n with
2n

j��� f (x) <
2n

j + 1� ����� .
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Then sn(x) =
2n

j��� . But also

2n +1
2j������� f (x) <

2n +1
2j + 2� �������

and so sn +1(x) =
2n +1

2j������� or
2n +1
2j + 1� ������� .

In either case, sn +1(x) sn(x).

In all cases sn(x) sn +1(x).

If f is bounded then there is N ∈ with

0 f (x) N ∀ x ∈X.

But then, ∀ n N,

�
sn(x) − f (x)

�
<

2n

1��� all x.

So in this case sn → f uniformly.

Note:

sn = nχ{x ∈X : f (x) n} +
j =0
∑

n2n−1

2n

j��� χ({x ∈X :
2n

j��� f (x) <
2n

j + 1� ����� }) .

If f is measurable, each of these subsets is measurable, and so sn is a measurable function. �

Corollary 4.18

Let f, g : X → [0, ∞] be measurable functions, where (X, ) is a measurable space. Then fg is

also measurable.

Proof

We can choose simple functions sn , tn such that sn , tn are measurable,

0 sn(x) sn +1(x)

0 tn(x) tn +1(x) all n

and all x ∈X,

sn(x) → f (x),

tn(x) → g(x).

Then ∀ n , sn tn is a simple measurable function

∀ x ∈X, (sn tn )(x) = sn(x) tn(x) → f (x)g(x) as n → ∞,

because the sequences sn(x) and tn(x) are nondecreasing. Thus fg is a pointwise limit of measurable
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functions and so fg is measurable. �

Recall:

If ( fn ) is a sequence of measurable functions, then the function

x →
n

sup fn(x)

is also measurable. It follows that if f, g are measurable then

x → max{ f (x), g(x)}

is also measurable.

Definition 4.19. Let X be a set and let f : X →
� �

. We define

f +(x) = max{ f (x), 0},

f −(x) = max{− f (x), 0}.

f + is the positive part of f , f − is the negative part.

Note that if X is a measurable space and f is measurable, then f +, f −: X → [0, ∞] are measur-

able. We always have f (x) = f +(x) − f −(x) all x ∈X.

The Integral

We begin by defining the integral of a non-negative, simple measurable function.

Definition 4.20

Let (X, , µ) be a measure space, let s : X → [0, ∞) be a simple measurable function. Then, for

every E ∈ we define the integral of s over E with respect to µ , IE(s,µ),

as follows.

Let α1 , . . . , αn be the distinct values taken by s . Let Ak = {x ∈X : s(x) = αk}. Then

IE(s,µ) =
k =1
∑
n

αk µ(E ∩ Ak ).

NB: αk are all real numbers, but µ(E ∩ Ak ) may be ∞. IE(s,µ) is a well defined element of [0, ∞].

Proposition 4.21. (a) If s(x) = α ∀ x ∈X, then

IE(s,µ) = α . µ(E ) ∀ E ∈ .

(b)

I∅(s,µ) = 0

for any simple measurable s .
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(c) If E ∈ and s, t are simple measurable functions with

s(x) t(x) all x ∈E

then

IE(s,µ) IE(t,µ).

Proof. Parts (a) and (b) are trivial. To prove (c),

let α1 , α2 , . . . , αm be the values taken by s .

Let β1 , β2 , . . . , βn be the values taken by t

and set

Aj = {x ∈X : s(x) = α i}

Bk = {x ∈X : t(x) = βk}.

Since s(x) t(x) ∀ x ∈E, it follows that if Aj ∩ Bk ∩ E ≠ ∅, then α j βk . Also

X = .
j =1
∪m Aj = .

k =1
∪n

Bk .

IE(s,µ) =
j =1
∑
m

α j µ(Aj ∩ E )

=
j =1
∑
m

α j
k =1
∑
n

µ(Aj ∩ Bk ∩ E )

=
j =1
∑
m

k =1
∑
n

α j µ(Aj ∩ Bk ∩ E )

j =1
∑
m

k =1
∑
n

βk µ(Aj ∩ Bk ∩ E )

=
k =1
∑
n

βk µ(βk ∩ E ) (reversing order)

= IE(t,µ). �

Further Properties of the Integral

Proposition 4.22 (X, , µ) is a measure space. s : X → [0, ∞) is simple measurable.

(a ) For any E ∈ such that µ(E ) = 0,

IE(s,µ) = 0.

(b ) If E ∈ and c is such that s(x) = c ∀ x in E, then

IE(s,µ) = cµ(E ).
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(c ) Let E ∈ . Then recall E is the σ -field {A ∩ E : A ∈ } on E. Let ν be µ �
E
, (the restriction of

µ to E ), so that (E, E , ν) is a measure space. Then s � E is a simple measurable function

E → [0, ∞), and

IE(s,µ) = IE(s � E ,ν).

Proof. Easy exercise! (See question sheet 4).

Lemma 4.23.

Let (X, , µ) be a measure space.

(i) Let s : X → [0, ∞) be a simple measurable function. Define

φ(E ) = IE(s,µ) (E ∈ ).

Then φ is a measure on .

(ii) Let s, t : X → [0, ∞) be simple measurable functions and let E ∈ . Then

IE((s + t),µ) = IE(s,µ) + IE(t,µ).

Proof

(i) To show φ is a measure, note that φ(E ) ∈ [0, ∞] ∀ E ∈ and that φ(∅) = 0 because I∅(s,µ) = 0.

It remains to show that φ is countably additive.

Let E ∈ , and suppose that

E = .
n =1
∪∞ En

where En is in ∀ n . We show that φ(E ) =
n =1
∑
∞

φ(En ).

Let α1 , α2 , . . . , αm be the distinct values taken by s , and set

Ak = {x ∈X : s(x) = αk}.

As usual X = .
k =1
∪m Ak .

By definition

φ(E ) = IE(s,µ) =
k =1
∑
m

αk µ(E ∩ Ak )

φ(En ) = IEn
(s,µ)=

k =1
∑
m

αk µ(En ∩ Ak )

since
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E ∩ Ak = .
n =1
∪∞ (En ∩ Ak ).

We have

µ(E ∩ Ak ) =
n =1
∑
∞

µ(En ∩ Ak )

and so

φ(E ) =
k =1
∑
m

αk
n =1
∑
∞

µ(En ∩ Ak )

=
n =1
∑
∞

k =1
∑
m

αk µ(En ∩ Ak )

=
n =1
∑
∞

φ(En ).

Thus φ is a measure.

(ii) Let s, t : X → [0, ∞) be simple measurable functions and let E ∈ . Then s + t is also simple

measurable.

To show that

IE((s + t),µ)= IE(s,µ) + IE(t,µ)

define

φ1(A) = IA(s,µ) (A ∈ )

φ2(A) = IA(t,µ) (A ∈ )

φ3(A) = IA((s + t),µ) (A ∈ ).

We must show

φ1(E ) + φ2(E ) = φ3(E ).

We know φ1 , φ2 , φ3 are measures.

Let α1 , α2 , . . . , αm be the distinct values taken by s , β1 , β2 , . . . , βn be the values taken by t .

Set

Aj = {x ∈X : s(x) = α j},

Bk = {x ∈X : t(x) = βk}.

Set Ejk = E ∩ Aj ∩ Bk . Then

E = .
j =1
∪m .

k =1
∪n

Ejk .



- 14 -

On Ejk s is constantly α j , t is constantly equal to βk and (s + t) is constantly equal to α j + βk . By

4.22(b),

IEjk
((s + t),µ) = (α j + βk ) µ(Ejk ),

IEjk
(s,µ) = α j µ(Ejk ),

IEjk
(t,µ) = βk µ(Ejk ).

Hence φ3(Ejk ) = φ1(Ejk ) + φ2(Ejk ). But φ1 , φ2 , φ3 are measures, and

E = .
j, k
∪ Ejk ,

so

φ3(E ) =
j, k
∑ φ3(Ej, k ),

=
j, k
∑ (φ1(Ejk ) + φ2(Ejk )),

=
j, k
∑ φ1(Ejk ) +

j, k
∑ φ2(Ejk ),

= φ1(E ) + φ2(E ). �

Note in particular that if α1 , α2 , . . . , αn ∈ + and A1 , A2 , . . . , An ∈ , then

IX(
k =1
∑
n

αkχAk
,µ) =

k =1
∑
n

αk µ(Ak )

even if the αk are not distinct and the Ak are not be disjoint.

Recall:

s t ⇒ IE(s,µ) IE(t,µ).

The following result follows immediately.

Proposition 4.24 For s : X → [0, ∞), measurable simple.

IE(s,µ) = sup { IE(t,µ)
and 0 t(x) s(x) all x ∈X

t : X → [0, ∞) simple, measurable } .

Definition 4.25 We now define, for any f : X → [0, ∞] measurable, and E ∈

∫E
f dµ = sup { IE(s,µ)

0 s(x) f (x) ∀ x ∈X

s : X → [0, ∞) simple measurable and } .

In view of proposition 4.24, we can safely call ∫E
f dµ the (Lebesgue) integral of f over E with

respect to µ .
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All our results about the integrals of simple measurable functions remain true (for simple

measurable functions) if we change to our new version of the integral (which has the same value for

such functions). From now on, this is the version of the integral which we shall use.

Properties

Proposition 4.26.

(a ) If f (x) g(x) ∀ x ∈X then

∫E
f dµ ∫E

g dµ

( f, g non-negative measurable functions).

(b ) If E ∈ and µ(E ) = 0 then

∫E
f dµ = 0

(even if f (x) = ∞ all x ∈X) for any measurable function f : X → [0, ∞].

(c ) Let f : X → [0, ∞) be measurable, E ∈ and suppose that f (x) = 0 ∀ x in E. Then

∫E
f dµ = 0.

(d)

∫E
f dµ = ∫E

( fχE ) dµ = ∫X
( fχE ) dµ

for f : X → [0, ∞] measurable and E ∈ .

(e ) Let f, g : X → [0, ∞] be measurable, let E ∈ , and suppose f (x) g(x) ∀ x ∈E. Then

∫E
f dµ ∫E

g dµ.

Proof

(a) This is because we take the sup of a larger set (for g ).

(b) This is because ∫E
s dµ = 0 for all simple functions which are measurable and satisfy 0 s f .

(c)

∫E
f dµ = sup { ∫E

s dµ : s measurable simple, 0 s f }
since f (x) = 0 ∀ x in E, then whenever 0 s f we have s(x) = 0 all x in E, and so
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∫E
s dµ = 0

for all such measurable simple s . Hence

∫E
f dµ = 0.

(d) Certainly fχE is measurable. Since fχE f , we have

∫E
( fχE ) dµ ∫E

f dµ.

Now suppose s is a simple function with s measurable and 0 s f . We shall show

∫E
s dµ ∫E

fχE dµ.

(Taking sup over s will then give equality.)

s = sχE + sχX \ E (the sum of two simple measurable functions).

∫E
s dµ = ∫E

(sχE ) dµ + ∫E
(sχX \ E ) dµ,

= ∫E
sχE dµ,

∫E
fχE dµ.

Taking sup over s ,

∫E
f dµ ∫E

fχE dµ,

hence equality.

For the rest: if 0 s fχE then s ≡ 0 on X \ E, so

∫E
s dµ = ∫E

s dµ + ∫X \ E
s dµ

= ∫X
s dµ

so taking sup over s ,

∫E
fχE dµ = ∫X

fχE dµ.

(e)

∫E
fχE dµ = ∫E

f dµ,
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∫E
gχE dµ = ∫E

g dµ.

But f (x)χE(x) g(x)χE(x) ∀ x in X, therefore, by property (a ),

∫E
gχE dµ ∫E

fχE dµ.

Corollary 4.27. Let (X, ,µ) be a measure space, let f : X → [0,∞] be measurable, and let A, B ∈ with

A contained in B. Then

∫A
f dµ ∫B

f dµ.

Proof This is because fχA fχB .

Proposition 4.28

Let f, g : X → [0, ∞] be measurable. Then {x ∈X : f (x) g(x)} is measurable.

Proof

Easy exercise (using as usual).

The following trivial result is used in the proof of the Monotone Convergence Theorem.

Lemma 4.29. If (X, , µ) is a measure space, s : X → [0, ∞) is simple measurable and α ∈ +, then αs

is also a simple measurable function, and ∀ E ∈ ,

∫E
(αs) dµ = α(∫E

s dµ) .

This is because s =
k =1
∑
n

βkχAk
for some β1 , β2 , . . . , βk ∈ [0, ∞) and measurable sets A1 , . . . , An . But then

αs =
k =1
∑
n

(αβk )χAk ,

which is simple, measurable, and

∫E
(αs) dµ =

k =1
∑
n

(αβk ) µ(E ∩ Ak )

= α
k =1
∑
n

βk µ(E ∩ Ak )

= α ∫E
s dµ.
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Theorem 4.30 (Monotone Convergence Theorem)

Let (X, f, µ) be a measure space, let

fn : X → [0, ∞]

be a sequence of measurable functions with

0 f1(x) f2(x) . . . ∀ x ∈X.

Suppose

f (x) =
n →∞
lim fn(x) ∀ x ∈X.

Then f is measurable and

∫X
f dµ =

n →∞
lim ∫X

fn dµ.

Remark

Without the assumption that 0 f1 f2 . . . the result is false: there are many examples of

functions which converge pointwise, but whose integrals do not converge.

Proof Since f (x) =
n →∞
lim fn(x), f is a pointwise limit of measurable functions, and hence f is measur-

able, and f : X → [0, ∞].

We have

0 f1 f2 . . . f

so, ∀n ,

0 ∫X
fn dµ ∫X

fn +1 dµ ∫X
f dµ.

Certainly there is an α in [0, ∞] such that

α =
n →∞
lim ∫X

fn dµ

and note

α ∫X
f dµ.

It remains to prove ∫X
f dµ α .

From the definition of the integral, it is enough to show that, if s is simple measurable and

0 s f , then

∫X
s dµ α.
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Let s be such a function. Note that s does not take the value ∞. Then it is enough to show that ∀c

with 0 < c < 1,

c ∫X
s dµ α,

since then

∫X
s dµ =

n →∞
lim ((1 −

2n

1
��� ) ∫X

s dµ) α.

But, for such c ,

c ∫X
s dµ = ∫X

(cs) dµ.

We show this is α . Set An = {x ∈X : (cs)(x) fn(x)}. Then each An is measurable, and the sets An

are nested. Also

X =
n =1
∪∞ An

because (two cases):

(i) if s(x) = 0, then x ∈An ∀n ;

(ii) if s(x) > 0, then, since s(x) ≠ ∞, cs(x) < s(x) f (x).

Since f (x) =
n →∞
lim fn(x) there is an n with

fn(x) cs(x), i.e. x ∈An .

But now, for all n ,

∫An

(cs) dµ ∫An

fn dµ ∫X
fn dµ.

But, recall,

E → ∫E
(cs) dµ

is a measure on , so

∫X
(cs) dµ =

n →∞
lim ∫An

(cs) dµ by standard properties of measures

n →∞
lim ∫X

fn dµ by above.
�

We now give some corollaries to the monotone convergence theorem.
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Corollary 4.31

Let f, g : X → [0, ∞] be measurable functions and let α ∈ [0,∞). Then

(i) ∫X
( f + g) dµ = ∫X

f dµ + ∫X
g dµ,

(ii) α f is measurable and

∫X
(α f ) dµ = α ∫X

f dµ.

Proof

Let sn , tn be simple measurable functions with

0 sn sn +1 , 0 tn tn +1

and sn → f pointwise, tn → g pointwise. Then sn + tn is simple measurable and sn + tn converges

pointwise to f + g . Also 0 sn + tn sn +1 + tn +1 , so this convergence is monotone.

By MCT we have

∫X
sn dµ → ∫X

f dµ

∫X
tn dµ → ∫X

g dµ

and ∫X
(sn + tn ) dµ → ∫X

( f + g) dµ.

But sn , tn are simple, so

∫X
(sn + tn ) dµ = ∫X

sn dµ + ∫X
tn dµ.

Taking the limit as n → ∞, using the above,

∫X
( f + g) dµ = ∫X

f dµ + ∫X
g dµ.

This proves (i).

Also, (αsn ) is a simple measurable function with

∫X
αsn dµ = α ∫X

sn dµ.

Also, αsn tends monotonically pointwise up to α f , and so by MCT, (α f is measurable) and

∫X
α f dµ =

n →∞
lim ∫X

(αsn ) dµ =
n →∞
lim α ∫X

sn dµ

= α
n →∞
lim ∫X

sn dµ
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= α ∫X
f dµ. �

Corollary 4.32

Let fn be a sequence of measurable functions ( fn : X → [0, ∞]). Set g(x) =
n =1
∑
∞

fn(x). Then g is

measurable, and

∫X
g dµ =

n =1
∑
∞

∫X
fn dµ.

Proof

Set gn(x) =
k =1
∑
n

fk(x) (x ∈X ).

i.e. gn = f1 + f2 + . . . + fn .

Then gn is measurable,

0 gn gn +1 ∀n and

gn(x) → g(x) as n → ∞.

By MCT, g is measurable, and

∫X
g dµ =

n →∞
lim ∫X

gn dµ.

But gn = f1 + f2 + . . . + fn and so by corollary 4.31,

∫X
gn dµ =

k =1
∑
n (∫X

fk dµ)
and so

n →∞
lim ∫X

gn dµ is just

k =1
∑
∞ (∫X

fk dµ) . �

Corollary 4.33

Let f : X → [0, ∞] be measurable. Define

Φ(E ) = ∫E
f dµ.

Then Φ is a measure on .

Proof

Certainly Φ(∅) = 0.
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Now suppose that E ∈ and let E = .
n =1
∪∞ En for some set En ∈ . We show that

Φ(E ) =
n =1
∑
∞

Φ(En ).

To see this, note

Φ(E ) = ∫E
f dµ = ∫X

( fχE ) dµ

and Φ(En ) = ∫X
( fχEn

) dµ.

But

E = .
n =1
∪∞ En

and so

fχE(x) =
n =1
∑
∞

( fχEn
)(x) all x ∈X.

By Corollary 4.32,

∫X
( fχE ) dµ =

n =1
∑
∞

∫X
( fχEn

) dµ,

i.e. Φ(E ) =
n =1
∑
∞

∫ Φ(En ). �

Example

Set X = , = ( ), µ = counting measure on . All functions f : → [0, ∞] are now

measurable. For such an f , what is ∫ f dµ ? It is
n =1
∑
∞

f (n).

Proof

= ( .
n =1
∪∞ {n}):

∫{n}
f dµ = ∫ ( fχ{n}) dµ = ∫ f (n)χ{n} dµ = f (n) µ({n})

= f (n)

setting Φ(E ) = ∫E
f dµ , Φ is a measure so

∫ f dµ = Φ( ) =
n =1
∑
∞

Φ({n})
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=
n =1
∑
∞

f (n).

Now let am, n ∈ [0, ∞], m ∈ , n ∈ .

Set fn(m) = am, n .

This defines a sequence of (measurable) functions

fn : → [0, ∞].

Then

∫ fn dµ =
m =1
∑
∞

fn(m) =
m =1
∑
∞

am, n .

By Corollary 4.32,

n =1
∑
∞

∫ fn dµ = ∫ (
n =1
∑
∞

fn) dµ

i.e.
n =1
∑
∞ (

m =1
∑
∞

am, n) =
m =1
∑
∞ (

n =1
∑
∞

am, n)
and we have recovered proposition 1.9 by other means! In fact, if you look carefully at our develop-

ment of integration theory, you will find that there is no circularity in taking this as our proof of 1.9.

Recall: if (X, ) is a measurable space,

( fn )n =1
∞ fn : X → [0, ∞]

fn measurable. Then

x →
n →∞

lim sup fn(x)

x →
n →∞

lim inf fn(x)

are both measurable functions. The first is usually denoted by

n →∞
lim sup fn

and the second by

n →∞
lim inf fn .

Theorem 4.34 (Fatou’s Lemma).

Let (X, , µ) be a measure space, and let fn : X → [0, ∞] be measurable. Then

∫X
(

n →∞
lim inf fn ) dµ

n →∞
lim inf ∫X

fn dµ.
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Proof

Recall:

n →∞
lim inf fn(x) =

n∈
sup

k n
inf fk(x)

=
n →∞
lim (

k n
inf fk(x)).

Set gn(x) =
k n
inf fk(x). Then 0 g1(x) g2(x) . . . and gn(x) →

m →∞
lim inf fm(x) as n → ∞. So, by the

MCT,

∫X
(

m →∞
lim inf fm ) dµ =

n →∞
lim ∫X

gn dµ

=
n →∞

lim inf ∫X
gn dµ.

But

gn(x) fn(x) (∀n ∈ , x ∈X )

so

n →∞
lim inf ∫X

gn dµ
n →∞

lim inf ∫X
fn dµ. �

Officially we will not construct Lebesgue measure λ until Chapter 5, but we will assume for now the

following properties of λ : λ is a complete measure (see question sheet 3) on a σ -field which includes

all the Borel sets, and for all intervals I, λ(I ) is the length of I. The σ -field on which the complete

measure λ is defined is the collection of Lebesgue measurable subsets of .

Example.

Working with the Lebesgue integral on , taking

fn(x) = { 0

1

otherwise

x ∈ [n, n + 1]

i.e. fn = χ [n, n + 1] . Then

∫ fn dλ = λ([n, n + 1]) = 1.

But fn(x) → 0 pointwise. So

n →∞
lim ∫ fn dλ = 1, ∫ n →∞

lim ( fn ) dλ = 0.

But Fatou’s Lemma DOES hold,

n →∞
lim inf ∫ fn dλ = 1,

n →∞
lim inf fn = zero function.
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Definition 4.35. Let (X, ) be a measurable space and let f : X →
� �

be measurable, then

f +(x) = max{0, f (x)}

f −(x) = max{0, − f (x)}

f (x) = f +(x) − f −(x) all x ∈X,

f +, f − are measurable.

We can define
�
f (x)

�
= f +(x) + f −(x) to coincide with the usual definition.

If (X, , µ) is a measure space, f, f +, f − as above.

We already know how to define

∫X
f + dµ, ∫X

f − dµ.

Let E ∈ . If

∫E
f + dµ < ∞ or ∫E

f − dµ < ∞

then we can define

∫E
f dµ = ∫E

f + dµ − ∫E
f − dµ

so ∫E
f dµ is in

� �
.

If further both ∫E
f + dµ , ∫E

f − dµ are finite we say that f is integrable or summable on E. We

say f is integrable if it is integrable on X. We denote the set of all functions

f : X →

which are integrable with respect to µ by L1(µ). [We include measurable in the definition of integr-

able.]

For all f ∈L1(µ) and all E ∈ ,

∫E
f dµ = ∫E

f + dµ − ∫E
f − dµ ∈ .

For example, when X = , = ( ), µ = counting measure, then

f : → ∈L1(µ) iff
n =1
∑
∞

f (n)

is absolutely convergent.
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Since � f (x) � = f +(x) + f −(x) we have, for all E ∈ ,

∫E
f + dµ ∫E

� f � dµ

∫E
f − dµ ∫E

� f � dµ

∫E
� f � dµ = ∫E

f + dµ + ∫E
f − dµ.

So clearly f is integrable on E iff � f � is integrable on E. In particular, f is integrable iff � f � is. (This

statement is false if f is not assumed measurable: it is possible for � f � to be measurable and f to be

non-measurable). Also

− ∫E
� f � dµ − ∫E

f − dµ ∫E
f dµ

∫E
f + dµ

∫E
� f � dµ.

Thus we have, for integrable functions f :

Proposition 4.36

∫E
f dµ ∫E

� f � dµ ∀ E ∈ .

Note: (− f )+ = f − and (− f )− = f +.

So for f ∈L1(µ), we have ∀ E ∈ ,

∫E
(− f ) dµ = ∫E

(− f )+ dµ − ∫E
(− f )− dµ

= ∫E
f − dµ − ∫E

f + dµ

= − ∫E
f dµ.

Now if α 0 then (α f )+ = α f + and (α f )− = α f − so

∫E
(α f ) dµ = α ∫E

f dµ

from the definition because

∫E
(α f +) dµ = α ∫E

f + dµ

etc. Now let α < 0. Then α f = (−α)(− f ) and (−α) 0, so
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∫E
(α f ) dµ = ∫E

(−α)(− f ) dµ

= (−α) ∫E
(− f ) dµ

= (−α)( − ∫E
f dµ)

= α ∫E
f dµ.

We have now proved the following.

Proposition 4.37.

For all f ∈L1(µ) and all α ∈ and all E ∈ ,

∫E
(α f ) dµ = α ∫E

f dµ.

Proposition 4.38.

Let (X, , µ) be a measure space, let f, g ∈L1(µ). Then ( f + g) ∈L1(µ) and

∫E
( f + g) dµ = ∫E

f dµ + ∫E
g dµ ∀ E ∈ .

Proof

Set h = f + g . Then

h +(x) f +(x) + g +(x)

h −(x) f −(x) + g −(x)

∀ x ∈X. (Easy exercise.)

So

∫X
h +(x) dµ ∫X

f + dµ + ∫X
g + dµ < ∞,

and similarly for h − , so certainly h ∈L1(µ).

We have

h(x) = h +(x) − h −(x)

f (x) = f +(x) − f −(x)

g(x) = g +(x) − g −(x)

h(x) = f (x) + g(x)
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h +(x) + h − (x) = f +(x) − f −(x) + g +(x) − g −(x).

These are all real numbers, so

h +(x) + f −(x) + g −(x) = h −(x) + f +(x) + g +(x).

Thus, for E ∈ ,

∫E
(h + + f − + g −) dµ = ∫E

(h − + f + + g +) dµ

∫E
h + dµ + ∫E

f − dµ + ∫E
g − dµ = ∫E

h − dµ + ∫E
f + dµ + ∫E

g + dµ.

Rearranging gives

∫E
h dµ = ∫E

f dµ + ∫E
g dµ

as required. �

With a little care, we can now prove the following fact: Let h : X → [0, ∞] measurable with

∫X
h dµ < ∞, let f : X → , f ∈L1, f (x) 0 all x. Then

∫X
(h − f ) dµ = ∫X

h dµ − ∫X
f dµ.

Proof

Set N = {x ∈X : h(x) = ∞}. Then we can see N has measure 0:

∞ > ∫X
h dµ ∫N

h dµ

For all n ∈ , h(x) n on N, and so

∫N
h dµ nµ(N ).

True ∀ n ∈ . Thus µ(N ) must be 0.

∫X
(h − f ) dµ = ∫N

(h − f ) dµ + ∫X \ N
(h − f ) dµ [check!]

= ∫X \ N
(h − f ) dµ

(satisfies conditions for result proved previously)

= ∫X \ N
h dµ − ∫X \ N

f dµ

= ∫X
h dµ − ∫X

f dµ.
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Theorem 4.39 (Dominated Convergence Theorem)

Let (X, , µ) be a measure space, let g : X → [0, ∞] be a measurable function with ∫X
g dµ < ∞.

Let fn , f be measurable functions from X to such that

�
fn(x)

�
g(x) ∀ x ∈X all n ∈ .

Suppose

fn(x) → f (x) ∀ x ∈X.

Then

(i)
n →∞
lim ∫X

�
fn − f

�
dµ = 0

(ii)
n →∞
lim ∫X

fn dµ = ∫X
f dµ.

Proof

Note first that
�
f (x)

�
g(x) all x ∈X, and so fn , f are all in L1(µ), with

∫X

�
fn

�
dµ ∫X

g dµ < ∞

∫X

�
f

�
dµ ∫X

g dµ < ∞.

Also set

gn(x) =
�
f − fn(x)

�
.

Then

gn(x) 2g(x).

Thus

2g(x) − gn(x) 0 ∀x.

Set

hn(x) = 2g(x) −
�
f − fn(x)

�
.

Then hn : X → [0, ∞] and hn is measurable.

We now apply Fatou’s lemma:

∫X
(

n →∞
lim inf hn ) dµ

n →∞
lim inf ∫X

hn dµ.

We have hn(x) → 2g(x) as n → ∞. So lim inf (hn ) = 2g ,

∫X
(2g) dµ

n →∞
lim inf (∫X

(2g −
�
f − fn

�
) dµ)
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=
n →∞

lim inf (∫X
(2g) dµ − ∫X

�
f − fn

�
dµ)

= ∫X
2g dµ +

n →∞
lim inf ( − ∫X

�
f − fn

�
dµ).

But ∫X
(2g) dµ is finite, so

0
n →∞

lim inf ( − ∫X

�
f − fn

�
dµ)

= −
n →∞

lim sup ∫X

�
f − fn

�
dµ

0.

Thus equality holds,

0 =
n →∞

lim sup ∫X

�
f − fn

�
dµ.

It follows that

n →∞
lim ∫X

�
f − fn

�
dµ = 0

(proving (i)).

But now

∫X
f dµ − ∫X

fn dµ = ∫X
( f − fn ) dµ

∫X

�
f − fn

�
dµ

→ 0 as n → ∞.

Thus

n →∞
lim ∫X

fn dµ = ∫X
f dµ.

The result is proved.

In general whenever N is a set of measure zero and f : X → is integrable then

∫X
f dµ = ∫X \ N

f dµ.

[Write f = f + − f − ,

∫X
f dµ = ∫X

f + dµ − ∫X
f − dµ
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= ∫X \ N
f + dµ − ∫X \ N

f − dµ

= ∫X \
f dµ.]

Question Sheet 5: f = g almost everywhere, f, g integrable

⇒ ∫E
f dµ = ∫E

g dµ ∀ measurable E.

All the theorems we have given have versions with the words “almost everywhere” inserted. For

example, if fn → f almost everywhere on X, fn all measurable, f measurable, and if � fn(x) � h(x)

almost everywhere and h is integrable, then

n →∞
lim ∫X

� f (x) − fn(x) � dµ = 0.

Proof of this version

Choose set N of measure zero such that fn(x) → f (x) ∀ x in X \ N.

Choose for each k ∈ , a set Nk of measure 0 such that

� fn(x) � h(x) ∀ x ∈X \ Nk .

Set

A = N ∪
k =1
∪∞ Nk .

For x ∈X \ A we have � fn(x) � h(x) ∀n and fn(x) → f (x) as n → ∞.

On X \ A the conditions of the dominated convergence theorem are satisfied, so

n →∞
lim ∫X \ A

� fn − f � dµ = 0.

But A is a countable union of sets of measure zero, so µ(A) = 0 also, thus

∫X
� fn − f � dµ = ∫X \ A

� fn − f � dµ → 0 as n → ∞.

Note

Working with X = , using Lebesgue measure λ , taking fn = χ [n, n + 1] . Then, with f (x) = 0 all

x , we have

fn(x) → f (x) ∀ x in ,

and

0 fn(x) 1 ∀ n,
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all x , but ∫ fn dµ does not converge to ∫ f dµ.

(We cannot apply the Dominated Convergence Theorem because

∫[1, ∞)
1dλ = ∞.)

Returning to the Riemann integral:

How does it compare with Lebesgue integral?

Let us work in the interval [0, 1] (any bounded interval is similar). For any interval I ⊆ [0, 1],

χI is both Riemann integrable and Lebesgue integrable, with the same integral.

∫[0, 1]
χI dλ = ∫0

1

χI(x) dx

= length of I = λ(I ).

This is also true for finite linear combinations of characteristic functions of intervals

j =1
∑
n

α jχIj
,

i.e. the Riemann integral and the Lebesgue integral agree for all step functions on [0, 1]. However we

have χ ∩ [0, 1] is not Riemann integrable on [0, 1] but is Lebesgue integrable with integral 0.

Moreover, any (proper) Riemann integrable function f on [0, 1] must be bounded on [0, 1].

However if we define

f (x) = { √�x
1���

0

x ∈ (0, 1]

x = 0

it is not too hard (using the next theorem, and results about measures) to prove that f is Lebesgue

integrable on [0, 1].

Facts

1. Let f : →
� �

be Lebesgue measurable (i.e. f −1([ −∞, a]) is a Lebesgue measurable set ∀ a ∈ )

and let g : →
� �

be any function. If g is equivalent to f (i.e. f (x) = g(x) a.e. (λ)) then g is also

measurable. This is because Lebesgue measure is complete (see question sheet 3). This result is

no longer necessarily true if we used Borel measurable functions instead.

2. Let (X, , µ) be a measure space, and let f : X → [0, ∞] be measurable. Then

∫X
f dµ = 0

if and only if f (x) = 0 a.e..
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Proof

If f (x) = 0 a.e., then

∫X
f dµ = 0

is trivial. Conversely, suppose that

∫X
f dµ = 0.

Set

An = {x ∈X : f (x)
n

1
� }.

Then

n =1
∪∞ An = {x ∈X : f (x) > 0}.

Since f is non-negative,

0 = ∫An

f dµ
n

1
� µ(An )

and so µ(An ) = 0 ∀n (as
n

1
� > 0, µ(An ) 0). Thus

µ(
n =1
∪∞ An) = 0.

Since

n =1
∪∞ An = {x ∈X : f (x) ≠ 0}

this proves f (x) = 0 a.e. (µ ).

If f is Riemann integrable on [0, 1] then we can find ‘step functions’ sn , tn (finite linear combi-

nations of characteristic functions of intervals), such that sn(x) f (x) tn(x) and

∫0

1

f (x) dx =
n →∞
lim ∫0

1

sn(x) dx =
n →∞
lim ∫0

1

tn(x) dx.

(Riemann integral)

We can arrange for s1 s2 s3 . . . and t1 t2 t3 . . . . (One way to do this is to divide [0, 1]

up into 2n intervals and define sn , tn using this division of the interval.)
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Theorem 4.40

Let f : [0, 1] → be a Riemann-integrable function. Then f is Lebesgue integrable and

∫0

1

f (x) dx = ∫[0, 1]
f dλ.

Proof

Choose functions sn , tn : [0, 1] → such that

s1(x) s2(x) . . . f (x) . . . tn(x) tn −1(x)

and such that

∫0

1

f (x) dx =
n →∞
lim ∫0

1

sn(x) dx

=
n →∞
lim ∫0

1

tn(x) dx

and such that all sn , tn are finite linear combinations of characteristic functions of intervals. Then

sn , tn are all simple and Lebesgue measurable. Then sn(x), tn(x) are monotone sequences.

Set

f1(x) =
n →∞
lim sn(x), f2(x) =

n →∞
lim tn(x).

We have

f1(x) f (x) f2(x) ∀ x ∈ [0, 1].

Then f1 , f2 are pointwise limits of Lebesgue measurable functions and hence are Lebesgue measurable.

For the functions sn , tn we have

∫[0, 1]
sn dµ = ∫0

1

sn(x) dx and ∫[0, 1]
tn dλ = ∫0

1

tn(x) dx.

Thus

∫0

1

sn(x) dx ∫[0, 1]
f1 dλ ∫[0, 1]

f2 dλ ∫0

1

tn(x) dx.

So taking the limit as n → ∞ we obtain

∫0

1

f (x) dx ∫[0, 1]
f1 dλ ∫[0, 1]

f2 dλ ∫0

1

f (x) dx.

Thus

∫0

1

f (x) dx = ∫[0, 1]
f1 dλ = ∫[0, 1]

f2 dλ.

But f2 − f1 is Lebesgue measurable on [0, 1] and non-negative and
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∫[0, 1]
( f2 − f1) dλ = 0.

Thus f2 − f1 = 0 a.e. on [0, 1]. Since f1(x) f (x) f2(x) on [0, 1], we have f (x) = f1(x) a.e. on

[0, 1]. Thus f : [0, 1] → is also Lebesgue measurable. But then

∫[0, 1]
f dλ = ∫[0, 1]

f1 dλ = ∫[0, 1]
f2 dλ = ∫0

1

f (x) dx.
�

The proof on a general interval [a, b] is the same. So Riemann integrable ⇒ Lebesgue integrable

with the same value of the integral.

In view of this result, we often use Riemann-style notation for Lebesgue integrals over intervals.

For example, for a Lebesgue integrable function f on [a,b] we may define

∫a

b

f (x) dx = ∫[a, b]
f dλ .

We conclude by using our powerful convergence theory to prove a result concerning Riemann

integrable functions which is extremely hard to prove by elementary means.

Let

fn : [0, 1] →

continuous or, more generally, Riemann integrable,

�
fn(x)

�
1 ∀n,

and suppose that fn(x) → 0 as n → ∞ for each x in [0, 1]. Then

n →∞
lim ∫0

1

fn(x) dx = 0.

Proof

Use dominated convergence.
�


