Section 4: The Integral

The abstract theory of integration with respect to a measure goes through just as easily in general as it
does in special cases. You should think of the following examples:

(a) Lebesgue measure on R, or on an interval [a, b]

(b) counting measure on N.

The Riemann Integral Revisited

With Riemann integration we attempt to approximate our function from below and from above by step
functions.

n
A step function is a finite linear combination of characteristic functions of intervals % ayx,,
K=1

where 14,1,,...,1, are disjoint intervals, and a;,a5, ..., a, are real numbers. These functions are
Riemann integrable, with integral

n n
Z akx|el’lgth of Ik = Z akA(Ik)
k=1 k=1

The beginning of the theory of Lebesgue is to generalise by replacing I, by A, where A,..., A, are
disjoint Borel sets (or, more generally, L ebesgue measur able sets; see Section 5).

Then we will define
f(z aixa) dA =5 aiA(A).
Note that this will already be enough to integrate x,, since xo, = 1Xxg, so the above gives

f)(® di = 1xA(Q) = 0.

Simple Functions

Definition 4.1. Let X be a non-empty set. Then a simple function from X is a function s: X - R such
that s takes only finitely many different values.

Note that simple functions are real-valued. Writing a,,a,,...,a, for the distinct values taken by
S, we can set

A = {xOX:s(x) = a,}.

Then

and



n

s(X) = Y axa () al x0X,
k=1

n
e.s= 3% aXa,-
k=1
The following two results are obvious.

Proposition 4.2. If s, t are simple functions from a set X, and a, b are real numbers, then s+t, st and
as+bt are all simple functions from X.

Corollary 4.3. Let X be a set. For any real numbers a4, a,,...,a, and any subsets A, A,,..., A, of X,

Y akXa(X)
k=1

is a simple function on X.
Continuous Functions and M easur able Functions

Let X,Y be metric spaces, and let f: X - Y be afunction. Then f is continuous if
OxOX Oe>0 0O 6>0 st forzOX
dy(z,X) < 8 O dy(f(2,f(X) < e.
Equivalently: f: X - Y iscontinuous if, whenever x,, — X is a convergent sequence in X then
f(x,) - f(x) in Y.
Recall: for E O X,
f(E) ={f(x): xOE}
={yQdY: OxOE with f(x) = y}.

For F O Y, f}F) = {xOX: f(x) OF}.

Note: f(E;0E,) = f(E;) O f(E,) but f(E;n E,) need not equal f(E;)n f(E,). But f ! behaves
better.

f_l(Fl OF) = f_l(Fl) N f_l(Fz)
f A FLnFy) = f7H(F) n F7H(F)
fYY\F) = X\ fY(F).

Similar results hold for infinite intersections and unions

The following result is standard except for condition (iv), whose equivalence to the other conditions is
an optional exercise.
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Proposition 4.4 Let X, Y be metric spaces, and let f: X - Y. Then the following four conditions are
equivalent:
(i) fiscontinuous,
(i) for every openset U O Y, f Y(U) isopenin X,
(iii) for every closed set F O Y, f “1(F) is closed in X,
(iv) OA DX, f(A) O f(A).

We now begin to introduce the class of functions which we intend to integrate.

Definition 4.5 Let (X,71), (Y,%5) be measurable spaces, and let f: X — Y be a function. Then f is
F,-9, measurable (or simply measurable if the o-fields involved are unambiguous) if, for all E 0%,
f~YE) 07,.

Proposition 4.6 Let (X, %) be a measurable space, and let Y be a metric space. Let By be the set of
Borel subsets of Y. Let f: X — Y beafunction. Then f is 7-%y measurable if and only if

(*) f7Y(U) OF for all open subsets U of Y.

Proof. The "only if" part is trivial, so we prove the "if" part. Suppose that condition (*) above holds.
From Exercise Sheet 3, {F 0 Y: f "Y(F) 0%} is in fact a o-field. By (*) this o-field includes all the
open sets and hence all the Borel sets. The result follows.

For similar reasons,
f ismeasurable = O closed sets F O Y, f"Y(F) O7.

Given a metric space Y we will usually use the Borel sets on Y to make Y into a measurable
space. However, on R we will sometimes use the Lebesgue sets.

Corollary 4.7 Using the Borel sets on R, every continuous function f: R — R is measurable.

Note that we should really consider separately the o-field used on R as domain and on R as
range. The result remains true if we change to the Lebesgue sets on R as domain, and keep the Borel
sets on R as range.
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Proposition 4.8 Let (X,%) be a measurable space and let f be a function either from X to R or from X
to R. Then the following five conditions are equivalent:

(i) fismeasurable;

(i) DaOR,

{(xOX: f(x) < a} OF;
(i) DaORr,

{(xOX: f(x) > a} 0F;
(iv) DaOR,

{xOX: f(x) = a} 0F;
(v) DaOR,

{xOX: f(x) < a} 0Z.

Remark. Here we use the Borel sets on R or on R as appropriate.

Proof. We prove the equivalence of (i) and (ii). The rest is similar. Let us consider condition (ii).
For f: X — R this means

f Y [-w,a]) 07 OalR;
For f: X - R it means
fY(-w,a]) 07 OalR.
But the Borel sets on R are generated by
{[-,a]: a0R}
and the Borel sets on R are generated by
{(-m,a]: adR}.
Thus, by the same reasoning as in Proposition 4.6, (i) and (ii) are equivalent.
Example Suppose
f: N - [0,00].

Unless otherwise specified we will use counting measure on N, using the o-field 2(N).

In this case every such function is measurable. Writing a,, for f(n), we will see later that

[ fau=3 im= 5 a.
N n=1 n=1



where u is a counting measure.

To make it very clear when we are using the Borel sets on the domain of our functions, we
sometimes use the following definition.

Definition 4.9. Let X, Y be metric spaces. Use the Borel sets on X and on Y to make them measurable
spaces. Then a measurable function from X to Y is said to be Borel measurable.

With this terminology, corollary 4.7 can be rephrased as the following proposition.
Proposition 4.10. Every continuous function from R to R is Borel measurable.

Let

then we can define (- f) by
(D)) = —f(x).
Proposition 4.11. If (X, %) is a measurable space and f: X — R is measurable then so is —f.
Proof. For all aOR
f([-w,a]) OF
and so

f((a, ]) 07

{xOX: (-f)(X) < —a} isin .

But this last set is just (- f)"Y([ -, —a)). Therest is easy.
In the next few propositions, (X,7) is a measurable space.

Proposition 4.12 Suppose fq, f, f3,... X - R are all measurable. Define
f(x) = sup{ f,(x): nON} OR.
Then f is measurable.

Pr oof

Let a OR. We show that f "}([ -, a]) isin Z. For x OX,
xOf Y[-w,a]) iff f(X) < a,
iff f,0) <a On,

iff xO N frY([-c,a]).

nON



Thus

f[-,a]) = | fo{([-w,a]) O
nON

Proposition 4.13. Suppose f,f,, f3,... X — R are all measurable. Then so are the functions
inf f,, liminf f,, [im sup f,.

Remark. Here the relevant functions are defined pointwise, looking at the sequence f,(X).
Proof Let
g(x) = inf{ f,(x): n ON}.
Then
9(x) = —sup{—f,(x): n ON}
and so g a measurable function by 4.11 and 4.12.

Set

h(x)

lim sup (f,(X))

inf f .
Inf (sup i (x)
Then h is a measurable function, using the above and Proposition 4.12. Finally,
liminf (f,(x)) = —lim sup(-f,(X))
n-oo n - oo
which is measurable by the above and 4.11.

Corollary 4.14 If f, is a sequence of measurable functions from X to R, and if f,(x) — f(x) Ox0OX,
then f is also measurable.

Proof. lim sup f,(x) = f(x), and so f is measurable.
n - oo

In other words, the collection of measurable functions is closed under the operation of taking
pointwise limits.

Theorem 4.15

Let (X, %) be a measurable space, and let f,g: X — R be measurable functions. Suppose that
f(x) +g(x) is defined for all x OX. Then the function f +g is measurable.

Proof. It is enough to show that, 0 aOR,
{xOX: f(x)+g(x) <a} isin 4.

But
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|:| {xOX: f(x) < pand g(x) < q}
p,qgda
p+qg<a

[ %=, p]) n g™} -0, ).
p.qUQ
p+g<a

{xOX: f(x)+g(x) < a}

a countable union of measurable sets. O

Returning to simple functions, suppose (X, %) is measurable space, and s: X - R is a simple
function. We have

n

S= ) OkXa,
k=1

for some sets A, with X = D A, where the a, are the distinct values taken by s.
k=1

When is s measurable? With this notation it is easily shown that s is measurable if and only if
each set A, is measurable.

Note, however, that if A, A,,...,A, 0%, not necessarily disjoint, and a,,a,,...,a, OR then
n
Y akXa, isasum of measurable functions, and so is measurable. It is also simple.
K=1

Integration theory begins with simple measurable functions (measurable simple functions).

Proposition 4.16 Let (X,%) be a measurable space, and let s, t be simple measurable functions on X.
Then s+t and st are also simple measurable functions.

Proof. This is immediate from Proposition 4.2 and Theorem 4.15, except for the measurability of st.
Write

n
S= Y akXa, A al measurable,
k=1

m
t=73 Bixg B; al measurable.
i=1
Then

K

st = ZJ (akBi)Xa, n B,

k

<ksn
<jsm

1
1
which is a measurable simple function, as required.

So the collection of simple measurable functions is closed under multiplication and addition.



Lemma 4.17

Let (X, %) be a measurable space, and let
f: X - [0, ]
be a function. Then there is a sequence of simple functions
Sy X - [0,0) with 0 < 5(X) <S(X) < ... < f(X
and
nIirrgosr,(x) =f(x) Ox0OX.

If fis measurable, the s, may be chosen to be measurable simple functions. If f is bounded then we
can choose s, to converge to f uniformly.

Proof. Defines,: X -~ R asfollows.

n if f(x)=n
50 ={ i
2n

j+1

2"

if f(x)<n and jOZ* satisfies % < f(x) <

NB: f(x) <n0 s,(x) = % for some integer 0 < j < n2"-1, and in this case

1
S109 < f09 < 8,09+ 5
Certainly s, issimple, and 0 < s,(X) < f(x) al x.

If KON, and f(x) = k, then certainly
s(¥) = k (because s (X) = K).

Infact, O n = k, s,(X) = k (you should check this).

For all x OX, we can see that s,(X) - f(X) asn — o because, if f(X) < o, then O n > f(x),
1
S0~ )] < 5,
while if f(X) = o thens,(x) = n On and so s,(X) - f(X).
To see that s,(X) < s,.1(X) there are two cases:
i) f(x)=n
In this case s,(X) = n and s, ,41(X) = n.

(i) f(x) <n

Then there is j < n2" with J—n < f(x) < j+1
2

"




Then s,(X) = 1 But also

I’1

2j 2j+2

2n+1 < f( ) 2n+1
2 2j+1
on+1 on+l-

and 0 s,,1(X) =

In either case, s,.1(X) = s,(X).
In all cases s,(X) < S,+1(X).

If f is bounded then thereis NON with
0< f(X) <N O xOdx.

But then, O n > N,
1
ISh(X) = f(X)| < o al x.
Sointhiscases, — f uniformly.

Note:

I\)|._

_ . e C i*+1
s, = nx{xOX: f(x) = n Z PO S < f(x) < .

If f is measurable, each of these subsets is measurable, and so s, is a measurable function. O

Corollary 4.18

Let f,g: X - [0,] be measurable functions, where (X, %) is a measurable space. Then fg is
also measurable.

Pr oof

We can choose simple functions s,, t,, such that s,,,t, are measurable,
0 < 5,(X) < 8741(%)
0<ty(X) <tyy1(x) aln
and all xOX,
$(0 — f(x),
th(x) ~ 9(x).
Then O n, s,t, is a simple measurable function
OxOX (St = $(9t() — F()gx) as n — o,

because the sequences s,(x) and t,(x) are nondecreasing. Thus fg is a pointwise limit of measurable
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functions and so fg is measurable. O
Recall:

If (f,) is asequence of measurable functions, then the function

X 1= sup fo(X)
n

is also measurable. It follows that if f,g are measurable then
X - max{ f(x), g(x)}

is also measurable.

Definition 4.19. Let X be aset and let f: X — R. We define
f(x) = max{ f(x), 0},
f~(x) = max{—-f(x),0}.

f* is the positive part of f, f~ is the negative part.

Note that if X is a measurable space and f is measurable, then f*, f7: X - [0, o] are measur-
able. We always have f(x) = f*(x)—f~(x) all x OX.

The Integral
We begin by defining the integral of a non-negative, simple measurable function.
Definition 4.20

Let (X, %, u) be a measure space, let s: X - [0, o) be a simple measurable function. Then, for
every E 0% we define the integral of s over E with respect to u, 1g(s,u),
as follows.

Let aq,...,a, bethe distinct values taken by s. Let A, = {xOX: s(x) = a,}. Then

n
le(su) = 5 au(En Ay).
k=1
NB: a, are all real numbers, but u(E n A,) may be . Iz(s,u) is awell defined element of [0, e].
Proposition 4.21. (@) If s(x) = a O x0OX, then
le(s,u) = a-u(E) OEUOZ.
(b)
In(su) =0

for any simple measurable s.
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(c) If EO% and s,t are simple measurable functions with
s(x) < t(x) al xOE
then
le(s.u) < 1g(tp).

Proof. Parts (a) and (b) are trivial. To prove (c),
let a,,0a5,...,0, be the values taken by s.
Let B1.B,,..., B, be the values taken by t

and set
A = {xOX: s(x) = a;}
B, = {xOX: t(x) = By}.

Since s(x) < t(x) U xUE, it follows that if Ajn By n E # [, then a; < . Also
X = m A] = Ij Bk'
j=1 k=1

m

le(s,u) = Y H(A; N E)
i=1

m n
a; 5 H(AjnBynE)
=1 k=1

m n

> > aju(A nBgnE)
j=1k=1

m n

Y Y BcH(AjnBynE)
51 k=1

A

n
Y BcH(Bcn E) (reversing order)
K=1

It 1)-

Further Properties of the Integral
Proposition 4.22 (X, %, u) is a measure space. s: X — [0, o) is simple measurable.
(a) For any E 0% such that u(E) = 0,
le(s,u) = 0.
(b) If EOZ and c issuch that s(x) = ¢ O x in E, then

le(s,u) = cu(E).
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(c) Let EOZ. Then recall F¢ isthe o-field {An E: AD7} on E. Let v be u|g_, (the restriction of

U to 9g), so that (E,%g,v) is a measure space. Then s|g is a simple measurable function
E - [0, ), and

le(s,u) = le(s]g,v).

Proof. Easy exercise! (See question sheet 4).
Lemma 4.23.
Let (X, %, u) be a measure space.

(i) Lets: X - [0,) be asimple measurable function. Define
®E) = le(s.k) (ED).
Then ¢ is a measure on 7.
(ii) Letst: X - [0, ) be simple measurable functions and let E 0%. Then
le((s+1).u) = le(s,u) +1e(t.p).
Proof
(i) To show ¢ is a measure, note that ¢(E) 0[0,] O E 0% and that ¢(00) = 0 because | ;(s,u) = 0.
It remains to show that ¢ is countably additive.

Let E 0%, and suppose that
e= e,
n=1

where E, isin 7 O n. Weshow that o(E) = 5 @(E,).

n=1
Let aq,0,,..., 0, be the distinct values taken by s, and set

A = {xOX:s(X) = a,}.

Asusual X = B Ay
k=1
By definition
m

WE) = le(s,u) = kZ aM(E N AY)
=1

wE,) = |En(S,#):kZ a H(Eq 0 Ay)
=1

since
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EﬂAk = D (EnﬂAk).

n=1

We have
HENA) = 5 UE,N A
n=1

and so

m (o)

Y ak Y H(E,nA)
k=1 n=1

¢(E)

o m

Y Y au(EnnA)

n=1k=1

(o]

> HEn).

n=1

Thus @ is a measure.

(ii) Let s,t: X - [0,0) be simple measurable functions and let E[0%. Then s+t is also simple
measurable.

To show that

le((s+1).u)=le(s,u) +1e(t.p)
define

P(A) = 1a(SH) (AOF)

@A) = Ta(t 1) (AOZ)

Pa(A) = 1a((s+1).p) (ADF).
We must show

@(E) + po(E) = o5(E).

We know @, @,, @5 are measures.

Let aq,0a,,..., 0., be the distinct values taken by s, 3;,8,,..., 3, be the values taken by t.

Set
A = {x0OX: s(x) = aj},
B, = {xOX: t(x) = By}-

Set E]k =En /A\J n Bk' Then

e=[] [] g
j=1k=1
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On Eji s is constantly a;, t is constantly equal to B and (s+t) is constantly equal to a;+p5,. By
4.22(b),
lg, ((s+1),u) = (a;+By) u(Ejk),
|E,k(3all) = aj u(Ej),
le, (t.4) = Br(Eji)-
Hence @5(Ejx) = @u(Ejx) + ¢(Ejx). But @1, ¢, @3 are measures, and

E=[]E
j, k

@s(E) = _Zk @s(E;j ),
i,
= .Zk (@(Eji) + o(Eji)),
i,
=Y ou(Ep) + 5 e(Ej),
ik LS
= i(E) + u(E). O

Note in particular that if a;,a,,...,a, OR" and A, A,,..., A, 07, then
n n
Ix(Y aXa M) = Y agH(A)
k=1 k=1
even if the a, are not distinct and the A, are not be disjoint.
Recall:
s<tU Ig(s,p) < Ig(tp).

The following result follows immediately.

Proposition 4.24 For s: X — [0, o), measurable simple.

t: X - [0, ) simple, measurable
and 0 < t(x) < s(x) all xOX ’

IE(SJJ) = Sup{ IE(t’y) ‘

Definition 4.25 We now define, for any f: X - [0, ] measurable, and E 0%

f fdu = SUIO{ Ie(s,)
E

s: X - [0, ) simple measurable and
0<s(x) < f(x) OxOX '

In view of proposition 4.24, we can safely call f f du the (Lebesgue) integral of f over E with
E

respect to u.
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All our results about the integrals of simple measurable functions remain true (for simple
measurable functions) if we change to our new version of the integral (which has the same value for
such functions). From now on, this is the version of the integral which we shall use.

Properties
Proposition 4.26.
(@) If f(X) < g(x) Ox0OXthen
ffdysfgdy
E E

(f, g non-negative measurable functions).

(b) If EO% and p(E) = 0 then
ffdu=0
E
(even if f(x) = o al x OX) for any measurable function f: X - [0, c].

(c) Letf: X - [0,0) be measurable, E 0% and suppose that f(x) =0 O x inE. Then

Ifdu=a
E

(d)
fE f du :fE (fxe) du :fx (fxe) du

for f: X — [0, ] measurable and E 00 .
(e) Let f,g: X - [0,] be measurable, let E (1%, and suppose f(X) < g(x) 0O xOE. Then

Ifdusfgdu
E E

Pr oof

(a) Thisis because we take the sup of alarger set (for g).

(b) Thisis becausef s du = 0 for al simple functions which are measurable and satisfy 0 < s < f.
E

(c)

f fdu:sup{f sdu:smeasurablesimple,Ossgf}
E E

since f(x) = 0 O x in E, then whenever 0 < s < f we have s(x) = 0 all x in E, and so
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fsdu

E

ffd,u
E

(d) Certainly fxg is measurable. Since fyg < f, we have

f (fxg) du sf f du.
E E

Now suppose s is a simple function with s measurable and 0 < s < f. We shall show

fsdusf fxe du.
E E

(Taking sup over s will then give equality.)

I
o

for all such measurable simple s. Hence

I
o

S = Sxg +Sxx\g (the sum of two simple measurable functions).

fE s du :fE (Sxg) du "‘fE (SXx\e) du,

=f SXe dy,

E

gf fxe du.
E

Taking sup over s,

f fdusf fXe du,
E E

hence equality.

For therest: if 0 < s < fyg then s = 0 on X\E, so

fsd/.l:fsdu+f s du
E E X\E
:fsdu
X

so taking sup over s,
f fxe du =f fxe du.
E X

(€)

f fxEdu=f f du,
E E
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fgmdu=fgdu
E E

But f(X) xe(®) < g(X)xe(X) O x in X, therefore, by property (a),

f Oxe du Zf fxe du.
E E
Corollary 4.27. Let (X,%,u) be a measure space, let f: X — [0,0] be measurable, and let A,B 0% with

A contained in B. Then
Ifdusffdu
A B

Proof Thisis because fxy, < fxg.
Proposition 4.28
Let f,g: X - [0,] be measurable. Then {x OX: f(x) < g(x)} is measurable.
Pr oof
Easy exercise (using Q as usual).
The following trivial result is used in the proof of the Monotone Convergence Theorem.

Lemma 4.29. If (X, 7, 1) is a measure space, s: X — [0, ) is simple measurable and a OR*, then as
is also a simple measurable function, and 0 E 0%,

f (as) du = a(f sdu).
E E

Thisisbecauses = y Bxa, for some By, B;,..., B U[0, ) and measurable sets A,,..., A,. But then
k=1

as =
k

(aB) X aks
1

n
which is simple, measurable, and

n

fE (as) du = S (aB)UEN A

k=1

=a
k

:af s dpu.
E

BrH(En Ay)
=1
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Theorem 4.30 (Monotone Convergence Theorem)

Let (X, f, 4) be a measure space, let
fr: X = [0, ]
be a sequence of measurable functions with
< f1(x) < fr(x)... OxOX
Suppose

f(x) = lim f,(x) OxOX.
n - o

Then f is measurable and

n- oo

ffdy— lim f du.

Remark

Without the assumption that 0 < f; < f, < ... the result is false: there are many examples of
functions which converge pointwise, but whose mtegrals do not converge.

Proof Since f(x) = lim f,(x), f is a pointwise limit of measurable functions, and hence f is measur-
n - oo

able, and f: X — [0, ].

We have

/N
—

O<fysf,< ...

Osf fndusf fn+1dusf f du.
X X X

Certainly thereisan a in [0, ] such that

a=lim [ f,du
X

n - o

and note

asf f du.
X

It remains to provef fdu <
X

From the definition of the integral, it is enough to show that, if s is simple measurable and

0 <s< f, then
fsdus
X
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Let s be such a function. Note that s does not take the value «. Then it is enough to show that [c
with 0 < ¢ < 1,

cf sdu < a,
X

since then

fsdy: Iim((l—i)f sdu)ga.
X n - o 2n) Jx

But, for such c,

cfx s du =]X (cs) dp.

We show thisis < a. Set A, = {xOX: (cs)(X) < f,(X)}. Then each A, is measurable, and the sets A,
are nested. Also

x=[] a,
n=1
because (two cases):
(i) if s(x) =0, thenxOA, On;
(i) if s(x) > 0, then, since s(x) # o, cs(X) < s(X) < f(X).
Since f(x) = lim f,(x) there is an n with
n-oo

fa(X) = cs(x), i.e. xOA,.

But now, for all n,
f (cs)dysf fndysf f, du.
A, A, X

But, recall,
E \_,f (cs) du
E
iS a measure on %, SO

f (cs) du = lim (cs) du by standard properties of measures
X A,

n- o

< lim f, du by above. O
X

n- oo

We now give some corollaries to the monotone convergence theorem.
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Corollary 4.31

Let f,g: X — [0, o] be measurable functions and let a (0[0,). Then

(i) fx(f+9)d#=fxfdﬂ+fxgd#,

(i) af is measurable and

fx (af) du = afx f du.

Pr oof

Let s,,t, be simple measurable functions with
0 < sy < Syu1, O<ty<tyn

and s, - f pointwise, t, — g pointwise. Then s,+t, is simple measurable and s,+t,, converges
pointwiseto f+g. Also 0 < s,+t, < S,,.1+t,.1, SO this convergence is monotone.

By MCT we have

fsnduqf f du
X X
ftnd/,l_»fgdu
X X

and fx (Sh+tp) dy afx<f+g) dy.

But s,,t, are simple, so

I(Snﬂn)du=f Sndu+f t, du.
X X X

Taking the limit asn — oo, using the above,
f (f+9)du=f fdu+f g du.
X X X
This proves (i).
Also, (as,) is a simple measurable function with

fasndu=afsndu.
X X

Also, as, tends monotonically pointwise up to af, and so by MCT, (af is measurable) and

fafduz Iimf (as,) du Iimaf s, du
X n-e Jx n-e  Jx

a lim S, du
X

n - o
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:affd/,l. O
X

Corollary 4.32

Let f, be a sequence of measurable functions (f,: X - [0,]). Setg(x) = 5 f,(X). Thengis
n=1

measurable, and

du = f, du.
fx ? nzlfX "

Pr oof

n
Set gy = ¥ f¥) (xOX).
k=1
ie g, = fi+f+. . +f,.

Then g,, is measurable,

0<0,<0h+ 0On and

gh(¥) - g(x) as n - .

By MCT, g is measurable, and

f gdu = Iimf g, du.
X n-eJx

But g, = f,+f,+... + 1, and so by corollary 4.31,

n
fgndﬂ= S (f fkdu)
X k=1 X
(f fi du). O
1 X

Let f: X - [0, ] be measurable. Define

and so lim 0, du isjust
X

n-oo

M 18

k

Corollary 4.33

®(E) = f f du.
E
Then @ is a measure on .
Pr oof

Certainly @(0) = 0.
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Now suppose that E 0% and let E = D E,, for some set E, 0%. We show that

=
H(E) = El P(E,).
To see this, note
®(E) = fE fdu = [X (fxe) du
and ®(E,) = fx (fxe,) du.
But
E=[]E,
=

and so

fXe09 = él (fxe)() all xOX

By Corollary 4.32,
I(fXE) du =% f (fxe,) du,
X n=1JX

ie. @(E) = E [ @(En). O
n=1

Example

Set X=N, % =2(N), u = counting measure on N. All functions f: N — [0,»] are now

(o)

f(n).
=1

n=

measurable. For suchanf,whatisf f du? Itis
N
Pr oof

. (ngl{n});

f fdu = f (fXgry) du = f f(M Xy dp = F(M) u{n})
{n} N N
= f(n)

setting @(E) =] f du, @ is a measure so
E

[ fau=o0) = 5 o)
N n=1
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= E f(n).
n=1
Now let a,, , [0, ], mON, nON.
Set f,(m) = ag -
This defines a sequence of (measurable) functions
foi N - [0, 0],

Then

IR S fy(m) =
N m=1

|
iMs
£
>

By Corollary 4.32,

Lfrep {3

g(z o) = 5 (5,0

n=1 \m=1 m=1 \n=1

and we have recovered proposition 1.9 by other means! In fact, if you look carefully at our develop-
ment of integration theory, you will find that there is no circularity in taking this as our proof of 1.9.

Recall: if (X, %) is a measurable space,
(fn=1  fai X = [0,]
f, measurable. Then

X i1— lim sup f,(X)
n—- o

X = liminf f,(X)

n - o

are both measurable functions. The first is usually denoted by

lim sup f,

n-o

and the second by

liminf f,.
n—- oo
Theorem 4.34 (Fatou’s Lemma).
Let (X, %, u) be a measure space, and let f,: X - [0, o] be measurable. Then

(I|m|nff)d,u liminf [ f, du.
X

n- o n - o
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Pr oof

Recall:

liminf f,(x)

n - o

Set g,(x) = Il(gl; f(¥). Then 0 < g1(X) < go(X) < ...

sup inf f (X
nD§k>n k( )

lim (inf f(X)).
n-o k=n

and g,(x) - liminff,(x) asn - «. So, by the
m - oo

MCT,
(liminf f,) du = lim o, du
X Mmoo n-o Jx
=liminf [ g, du.
n — oo X
But
0, < f,(x) (OnON, xOX)
so
liminf [ g, du < liminf f, du. O
n - o X n — o X

Officially we will not construct Lebesgue measure A until Chapter 5, but we will assume for now the
following properties of A: A is a complete measure (see question sheet 3) on a o-field which includes
all the Borel sets, and for all intervals I, A(l) is the length of I. The o-field on which the complete
measure A is defined is the collection of Lebesgue measurable subsets of R.

Example.

Working with the Lebesgue integral on R, taking

1

0 :{ 5

i.e fn = Xnn+1p- Then

xO[n,n+1]
otherwise

f f.odA = A([n,n+1]) = 1.
R

But f,(X) - O pointwise. So

lim [f, dA =1,

n - o

But Fatou's Lemma boEes hold,

liminf [f, dA = 1,

n—- o

lim (f,) dA = 0.

n - o

/

lim inf f,, = zero function.

n—- o
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Definition 4.35. Let (X, 7) be a measurable space and let f: X — R be measurable, then
f(x) = max{0, f(x)}
f7(x) = max{0, — f(x)}
f(x) = ) -f"(x) al xOX,
f*, f~ are measurable.
We can define | f(x)| = f*(x) + f "(X) to coincide with the usual definition.
If (X, 7, 1) is a measure space, f, f*, f~ as above.
We already know how to define
f f*dy, f f~ du.
X X

Let EOg. If

ff*d/.1<oo or f f-du <o
E E

then we can define

f fduzf f+d,u—f f~ du
E E E
sof f dy isin R.
E
If further bothf f* dy,f f~ du are finite we say that f is integrable or summable on E. We
E E
say f isintegrable if it isintegrable on X. We denote the set of all functions

f: X5 R

which are integrable with respect to u by LY(u). [We include measurable in the definition of integr-
able.]

For all f OLY(u) and all EOZ,
ffdu=f f"d,u—f f~ du OR.
E E E

For example, when X = N, # = 2#(N), g = counting measure, then
f:N - ROLYu) iff Sy f(n)
n=1

is absolutely convergent.
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Since | f(x)| = f*(x)+ f~(x) we have, for all E0Z,

ff*dusf || du

E E

ff‘dusf || du

E E

f|f|du=f f+d/,l+[ f~ du.
E E E

So clearly f isintegrable on E iff |f| isintegrable on E. In particular, f isintegrable iff | f| is. (This
statement is false if f is not assumed measurable: it is possible for |f| to be measurable and f to be

non-measurable). Also
—f |f] du < —f f‘dusf fdu
E E E

sf f* du
E

sf || dp.
E

Thus we have, for integrable functions f:

Proposition 4.36

Jo e
E

Note: (-f)" = f~and (-f)” = ™.

sf |f| duy D EDZ.
E

So for f OLY(u), we have 0 EOZ,
f(—f)du:[ (—f)+du—f (-f)" du
E E E
If‘du—f f* du
E E
—f f du.
E

Now if @ = 0 then (af)” = af " and (af)” = af ~ so

IE (af)d/,l:afEfd/,l

from the definition because

] (af*)d/.z:af f* du
E E

etc. Now leta < 0. Then af = (-a)(-f) and (-a) = 0, so
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fE (af) du =IE (—a)(=f) du

= (—a)fE (-f) du

(—a)(—fE fdu)
afE f du.

We have now proved the following.
Proposition 4.37.

For all f OLY(u) and all @ OR and all EO%,
j'(af)d,u=af f du.
E E

Proposition 4.38.
Let (X, , u) be a measure space, let f,g OLY(u). Then (f+g) OLY () and
f (f+g)d,u=f fdp+f gduy OEDZ.
E E E
Proof
Set h = f+g. Then
h*(x) < 7 () +g"(x)
h™(x) < 7 (¥ +9 ()
O xOX. (Easy exercise.)

So

fh*(x)dusf f+d,u+f g* du < o,
X X X

and similarly for h™, so certainly h OLY(u).

We have
h() =h"()-h"(x)
fx) = FY(x) -~ (X
99 =g (0 -97(x)
h(x) = f(x) +9(x)
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h*(x)+h™(x) = f*() - f"(x)+g"(x) -9 ().
These are all real numbers, so
h™ () +f () +g7(x) = h" () +f " (x) +g"(x).

Thus, for EOZ,

f(h++f‘+g') du=f (h™+f"+g™) du

E E

fh*dy+f f‘dy+f g‘d,u:j' h'd/.z+j' f+d/.1+f g du.
E E E E E E

Rearranging gives
f hdy=f fd,u+f g du
E E E

as required. O

With a little care, we can now prove the following fact: Let h: X - [0,0] measurable with
f hduy<ow,letf: X - R, fOLY, f(x)=0 alx Then
X

fx(h—f)duzthdu—fxfdu.

Pr oof

Set N = {xOX: h(X) = «}. Then we can see N has measure O:

°°>f hdu>j h du
X N

For all nON, h(x) = n on N, and so
f h du = nu(N).
N
True O nON. Thus u(N) must be 0.

f(h—f) du:f (h—f)dy+f (h-f) du [check!]
X N X\N

:f (h-f) du
X\N

(satisfies conditions for result proved previously)

=f hdu - f du
X\N X\N

:f hd,u—f f du.
X X
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Theorem 4.39 (Dominated Convergence Theorem)

Let (X, %, 1) be a measure space, let g: X - [0, o] be a measurable function With[
X

Let f,, f be measurable functions from X to R such that

[f,(0)] <g(x) OxOX alnON.

Suppose
fa(X) - f(x) Ox0OX
Then
(i) lim |f,—f| du=0
n-— oo X
(ii) Iimf f dy=f f du.
n-eJx X
Pr oof

Note first that | f(X)| < g(x) all xOX, and so f,, f are all in L(u), with

f Ifnlduéf g du < o
X X

f |f|dusfgd/,1<oo.
X X

Also set
gn(¥) = [f- ()]
Then
gn(¥) < 29(x).
Thus
20(x)—g,(x) = 0 Ox.
Set

ha() = 2909 = | f = fo(¥)].
Then h,: X - [0, ] and h,, is measurable.
We now apply Fatou’s lemma:
(liminfh,) du < liminf [ h, du.
X N-w n-e Jx

We have h,(X) - 2g(x) asn - o. Soliminf(h,) = 2g,

f(zg) dugliminf(f (Zg—|f—fn|)d/,1)
X n-e \Jx

g du < o.
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:Iiminf(f (29)d/.1—f |f—fn|du)
n-o \JXx X

=[ 2g du+|iminf(—f |f— 1, du).
X

X n - oo

Butf (2g) du is finite, so
X

0< Iiminf(—f |f- 1| du)
n - oo X

= -limsup [ |f-f,| du
X

n - oo

N
o

Thus equality holds,

O=Ilimsup [ |[f-f,|du.
X

n- o

It follows that

lim [ |f=f,| du=0
X

(proving (i)).

But now

Ifdu—f fndu‘=‘f (f—fn)du‘
X X X

gf |f—f, | du
X

- 0 a n - oo,

Thus

Iimf fnd/.z:f f du.
n-oJx X

The result is proved.

In general whenever N is a set of measure zero and f: X — R isintegrable then

ffdu:f f du.
X X\N
ffdu:f f*du—f £~ du
X X X

Write f = f*—f",
[
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:f f* du - f~ du
X\N X\N

:f f du.
X\N

Question Sheet 5: f = g aimost everywhere, f,g integrable

D] fdu:f g dy O measurable E.
E E

All the theorems we have given have versions with the words “almost everywhere” inserted. For
example, if f, - f amost everywhere on X, f, al measurable, f measurable, and if |f,(X)| < h(x)
almost everywhere and h is integrable, then

lim [ |f(X)-f,(q| du = 0.
n - oo X

Proof of this version
Choose set N of measure zero such that f,(x) — f(x) O x in X\N.

Choose for each k N, a set N, of measure 0 such that
[f,(0] < h(x) O xOX\N,.

Set

A=ND D Ny.
k=1

For x OX\A we have |f (X)| < h(X) On and f,(x) - f(x) asn - oo.
On X\ A the conditions of the dominated convergence theorem are satisfied, so

lim |f,—f| du = 0.

N—e JX\A

But A is a countable union of sets of measure zero, so u(A) = 0 also, thus
f |f, - f| d,u=f |f,—f|du -~ 0 as n - o,
X X\A

Note

Working with X = R, using Lebesgue measure A, taking f,, = x(n n+1;- Then, with f(x) = 0 all
X, we have

faX) - f(x) OxinR,
and

O0<f,(x<1 UOn,
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al x, butf f. du does not converge tof f du.
R R

(We cannot apply the Dominated Convergence Theorem because

f 1dA = o))
[1,)

Returning to the Riemann integral:

How does it compare with Lebesgue integral ?

Let us work in the interval [0, 1] (any bounded interval is similar). For any interval |1 O [0, 1],
X, is both Riemann integrable and Lebesgue integrable, with the same integral.

1
f X, dA :f X1 (X) dx
[0,1] 0

= length of | = A(l).

This is also true for finite linear combinations of characteristic functions of intervals

n
Z an|j’
ji=1
i.e. the Riemann integral and the Lebesgue integral agree for all step functions on [0,1]. However we
have xq , [0,1 1S ot Riemann integrable on [0, 1] but is Lebesgue integrable with integral 0.

Moreover, any (proper) Riemann integrable function f on [0,1] must be bounded on [0, 1].
However if we define

0
f) =4 1
it is not too hard (using the next theorem, and results about measures) to prove that f is Lebesgue
integrable on [0, 1].
Facts
1. Let f: R — R be Lebesgue measurable (i.e. f “1([-w,a]) is a Lebesgue measurable set [ a OR)
and let g: @ — R be any function. If g isequivalent to f (i.e. f(x) = g(x) a.e. (1)) then g is also
measurable. This is because Lebesgue measure is complete (see question sheet 3). This result is
no longer necessarily true if we used Borel measurable functions instead.
2. Let (X,%, 1) be ameasure space, and let f: X — [0, o] be measurable. Then

ffdu:O
X

if and only if f(x) = 0 ae..
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Pr oof

If f(X) = 0 ae, then

ffdu=0
X

istrivial. Conversely, suppose that
f fdu=0.
X
Set
1

A, = {x OX: f(x) = ﬁ}'
Then

D A, = {xOX: f(x) > 0}.

n=1
Since f is non-negative,

0= tau> LA
A, n

and so y(A,) =0 On (as% > 0, u(A,) = 0). Thus

“(Q An) “o

Since
D A, ={xOX: f(x) # 0}
n=1

this proves f(x) = 0 a.e. (u).

If f is Riemann integrable on [0, 1] then we can find ‘step functions' s,,t, (finite linear combi-
nations of characteristic functions of intervals), such that s,(x) < f(x) < t,(x) and

1 1 1
f f(x) dx = Iimf s, (x) dx = Iimf t,(x) dx.
0 n-<Jo n-<Jo
(Riemann integral)

We can arrange for s; < s, < s3< ...andt; = t, > t3 > .... (One way to do this is to divide [0, 1]
up into 2" intervals and define s,,, t,, using this division of the interval.)
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Theorem 4.40

Let f: [0,1] - R be a Riemann-integrable function. Then f is Lebesgue integrable and

1
f f(x) dx :f f dA.
0 [0,1]

Proof
Choose functions s, t,,: [0,1] - R such that
$I(¥) <s(X) < ... < f(X) < ... <tp(¥) <t (X)

and such that

fl f(x) dx = lim flsn(x) dx
0 n- Jo

1

= lim t,(x) dx
n — oo 0

and such that all s,,t, are finite linear combinations of characteristic functions of intervals. Then
Sy, t, are all simple and Lebesgue measurable. Then s,(x), t,(x) are monotone sequences.

Set
f1(¢) = lim s,(x), fo(x) = lim t,(X).
We have
() < f(X) < f(x) O x0O[0,1].

Then f,, f, are pointwise limits of Lebesgue measurable functions and hence are Lebesgue measurable.
For the functions s,,, t,, we have

1 1
f s, du :f s,(x) dx  and f t, dA :f t,(x) dx.
[0,1] 0 [0,1] 0

Thus

1 1
f sn(x)dxsf fld/\sf fzd/\sf t,(x) dx.
0 [0.1] [0,1] 0

So taking the limit asn — o we obtain

1 1
f f(x) dx sj’ f, dA s[ f, dA s[ f(x) dx.
0 [0, 1] [0, 1] 0

Thus

1
f f(x)dx:f fld/\:f f, dA.
0 [0, 1] [0, 1]

But f,— f; is Lebesgue measurable on [0, 1] and non-negative and
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f (f,—f,) dA = 0.
[0,1]

Thus f,—f; =0 ae on [0,1]. Since f;(x) < f(X) < f5(x) on [0,1], we have f(x) = f;(x) ae. on
[0,1]. Thus f: [0,1] — R isalso Lebesgue measurable. But then

1
f fd/\:f fldA:f fsz:f f(x) dx. O
[0,1] [0,1] [0.1] 0

The proof on a genera interval [a,b] is the same. So Riemann integrable 00 Lebesgue integrable
with the same value of the integral.

In view of this result, we often use Riemann-style notation for Lebesgue integrals over intervals.
For example, for a Lebesgue integrable function f on [a,b] we may define

b
ff(x)dx=f fdi.
a [a,b]

We conclude by using our powerful convergence theory to prove a result concerning Riemann
integrable functions which is extremely hard to prove by elementary means.

Let

f,: [0,1] - R
continuous or, more generally, Riemann integrable,

| f,()| <1 On,

and suppose that f,(X) - 0asn — oo for each x in [0,1]. Then

1
lim fa(x) dx = 0.

n-o Jo

Pr oof

Use dominated convergence. O



