
Section 5: Outer measures and the construction of Lebesgue measure

As in the Section 4 annotated slides, we use the abbreviation SAEPN to indicate results whose
statements and applications are examinable, but whose proofs are not examinable as bookwork.

We also indicate as optional material which is not examinable as bookwork at all (neither state-
ments nor proofs).

Of course, this does not imply that such material will not be relevant to a non-bookwork part of
an examination question.

We begin our construction of Lebesgue measure by checking that the notion of length we are used to

really does give a measure on our usual semi-ring of half-open intervals, P. First we investigate some

elementary results for finite unions of intervals in .

Lemma 5.1 (SAEPN)

(i) If

(a, b] ⊆
k =1
∪n

(ak , bk ],

then

k =1
∑
n

(bk − ak ) b − a.

(ii) If

(a, b] ⊇ .
k =1
∪n

(ak , bk ]

then

k =1
∑
n

(bk − ak ) b − a.

(iii) If

(a, b] = .
k =1
∪n

(ak , bk ]

then

(b − a) =
k =1
∑
n

(bk − ak ).

Proof (There is a fairly easy direct proof available but we use the Riemann integral.)

We can assume that all of the intervals (ak , bk ] and (a, b] are contained in some closed interval

[ −m, m]. Then
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(b − a) = ∫−m

m

χ(a, b](t) dt

and

(bk − ak ) = ∫−m

m

χ(bk , ak ](t) dt.

(i) If

(a, b] ⊆
k =1
∪n

(ak , bk ]

then

χ(a, b]
k =1
∑
n

χ(ak , bk ]

at every point, so

b − a = ∫−m

m

χ(a, b](t) dt

∫−m

m

k =1
∑
n

χ(ak , bk )(t) dt

=
k =1
∑
n

(bk − ak ).

(ii) If

(a, b] .
k =1
∪n

(ak , bk )

then

χ(a, b](t)
k =1
∑
n

χ(ak , bk )(t) ∀t.

Integrating as in (i),

(b − a)
k =1
∑
n

(bk − ak ).

(iii) If

(a, b] = .
k =1
∪n

(ak , bk ],

then (i) and (ii) apply and

(b − a) =
k =1
∑
n

(bk − ak ).
�
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A similar result holds in n -dimensions (see question sheets for 2).

Recall from G12MAN: closed and bounded subsets of are sequentially compact. Those who

have attended G13MTS will also be familiar with the corresponding topological notion of compactness

in terms of covers by open sets. We need the following special case.

Proposition 5.2

Let a and b be real numbers with a b , and suppose that

(ak , bk ) (k = 1, 2, 3, . . . )

are open intervals s.t.

[a, b] ⊆
k =1
∪∞ (ak , bk ).

Then ∃ m ∈ s.t.

[a, b] ⊆
k =1
∪m (ak , bk ). �

Proof will be given in lectures

Corollary 5.3

If

[a, b] ⊆
k =1
∪∞ (ak , bk )

then

(b − a)
k =1
∑
∞

(bk − ak ).

Proof

By Proposition 5.2 there exists m ∈ such that [a, b] ⊆
k =1
∪m (ak , bk ). But then

(a, b] ⊆
k =1
∪m (ak , bk ], and the result follows from 5.1(i). �

Theorem 5.4

Define µ : P → [0, ∞] by µ((a, b]) = b − a . Then µ is a measure on P.
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Proof

Certainly µ(∅) = 0. Now suppose that

(a, b] = .
n =1
∪∞ (an , bn ].

We must show that

b − a =
n =1
∑
∞

(bn − an ).

Certainly we may assume b > a . First note that, for all m ∈ ,

.
n =1
∪m (an , bn ] ⊆ (a, b]

and so, by 5.1(ii),

n =1
∑
m

(bn − an ) b − a.

Since this is true for all m ∈ , we have

n =1
∑
∞

(bn − an ) b − a.

To conclude the proof we must prove the reverse inequality. Let ε > 0. Then, provided that ε < b − a ,

[a + ε, b] ⊆
n =1
∪∞

(an , bn +
2n

ε
��� )

so, by Corollary 5.3,

(b − (a + ε))
n =1
∑
∞

(bn +
2n

ε
��� − an) ,

i.e. b − a − ε (
n =1
∑
∞

(bn − an )) + ε,

b − a
n =1
∑
∞

(bn − an ) + 2ε.

Since this is true for all ε ∈ (0, b − a), we obtain

(b − a)
n =1
∑
∞

(bn − an )

as required.
�

A similar result holds in n: e.g. in 2, the function ν defined on half-open rectangles by

ν((a, b] × (c, d]) = (b − a)(d − c)



- 5 -

is also a measure (on P2).

We now wish to measure the size of more complicated sets. A good start is to extend µ to a

measure on the elementary figures (finite unions of sets in P). The fact that this is possible is a

special case of a more general theorem. First we define extension.

Definition 5.5

Let X be a set, and let 1 , 2 be subsets of (X ) with 1 ⊆ 2 . Let

µ1 : 1 → [0, ∞], µ2 : 2 → [0, ∞]

be functions. Then µ2 is an extension of µ1 if

µ2(E ) = µ1(E ) (E ∈ 1).

In this case we say µ1 is the restriction of µ2 to 1 .

[This agrees with the usual notions of extension and restriction for functions.]

Note on summation

In the next theorem we will need to be able to change the order of summation in various series.

Recall, when we proved Proposition 1.9 we saw that if

ajk ∈ [0, ∞], ( j = 1, 2, 3, . . . , 1 k m)

then

j =1
∑
∞ (

k =1
∑
m

ajk) =
k =1
∑
m (

j =1
∑
∞

ajk) .

We shall now show how to extend measures from semi-rings to rings, and in particular from P to .

More useful facts about series of elements of [0, ∞∞∞]

Recall Proposition 1.10.

Suppose we have aik ∈ [0, ∞], where i ∈ , and 1 k ni . Then the set

{(i, k): k, i ∈ , 1 k ni}

is countable, so we can enumerate this set as

{(it , kt ): t = 1, 2, 3, . . .}.

i =1
∑
∞ (

k =1
∑
ni

aik) =
t =1
∑
∞

ait kt
. (∗)
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From this we obtain a useful fact about measures.

Lemma 5.6 (optional)

Let X be a set, let ⊆ (X ), suppose that the empty set is in , and let µ : → [0, ∞] be a

measure.

If A ∈ , and A satisfies

A = .
i =1
∪∞ .

k =1
∪ni

Dik ,

where n1 , n2 , . . . ∈ , and the sets Dik are all in , then

µ(A) =
i =1
∑
∞

k =1
∑
ni

µ(Dik ).

[In some books this is regarded as obvious!]

Proof

Let (i1 , k1 ), (i2 , k2 ), (i3 , k3 ), . . . be an enumeration of the set

{(i, k): k, i ∈ , 1 k ni}.

Then

A = .
t =1
∪∞ Dit kt

so

µ(A) =
t =1
∑
∞

µ(Dit kt
)

=
i =1
∑
∞

k =1
∑
ni

µ(Dik )

by (∗) with aik = µ(Dik ).

With these facts at our disposal, we can prove our first extension theorem.

Theorem 5.7 (SAEPN)

Let be a semi-ring of subsets of a set X, and let µ1 : → [0, ∞] be a measure. Then there is a

unique measure µ2 : R( ) → [0, ∞] such that µ2 is an extension of µ1 .

Proof

For any A ∈R( ) there are disjoint sets A1 , . . . , Am in with

A = .
j =1
∪m Aj .
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The only possible value for µ2(A) is

j =1
∑
m

µ1(Aj ).

Thus if such a measure µ2 exists it is unique. We now wish to define

µ2( .
j =1
∪m Aj) =

j =1
∑
m

µ1(Aj )

whenever A1 , . . . , Am are disjoint sets in . To see that µ2 is well defined, suppose that

.
j =1
∪m Aj = .

k =1
∪n

Bk ,

with Aj , Bk all in . Then set Cjk = Aj ∩ Bk , and obtain

Aj = .
k =1
∪n

Cjk all j,

Bk = .
j =1
∪m Cjk all k.

Thus

j =1
∑
m

µ1(Aj ) =
j =1
∑
m

k =1
∑
n

µ1(Cjk )

=
k =1
∑
n

j =1
∑
m

µ1(Cjk )

=
k =1
∑
n

µ1(Bk ).

Thus µ2 is well defined. To see that µ2 is a measure, suppose that

A ∈R( ) and A = .
i =1
∪∞ Bi

with each Bi ∈R( ). Then there are pairwise disjoint sets Aj in (1 j m) with

A = .
j =1
∪m Aj .

Also, for each i , there are disjoint sets Ci1 , Ci2 , . . . , Cini
in such that

Bi = .
k =1
∪ni

Cik .

We have

Aj = .
i =1
∪∞ (Aj ∩ Bi ) = .

i =1
∪∞ .

k =1
∪ni

(Aj ∩ Cik )



- 8 -

and Bi = .
j =1
∪m .

k =1
∪ni

(Aj ∩ Cik ).

Since the sets (Aj ∩ Cik ) are in we have

µ2(Bi ) =
j =1
∑
m

k =1
∑
ni

µ1(Aj ∩ Cik )

and, since µ1 is a measure, setting Dik = Aj ∩ Cik in Lemma 5.6 gives

µ1(Aj ) =
i =1
∑
∞

k =1
∑
ni

µ1(Aj ∩ Cik ).

Thus

µ2(A) =
j =1
∑
m

µ1(Aj ) =
j =1
∑
m

i =1
∑
∞

k =1
∑
ni

µ1(Aj ∩ Cik )

=
i =1
∑
∞

j =1
∑
m

k =1
∑
ni

µ1(Aj ∩ Cik )

=
i =1
∑
∞

µ2(Bi ).

This concludes the proof. �

In particular, the measure on P

µ((a, b]) = b − a

extends to a unique measure on the ring of elementary figures in .

Example 5.8

Define µ1 : P → [0, ∞] by µ1((a, b]) = b − a . Then µ1 has a unique extension µ2 : → [0, ∞]

which is a measure satisfying

µ2( .
k =1
∪n

(ak , bk ]) =
k =1
∑
n

(bk − ak ).

(Similarly in higher dimensions.)

For our main extension theorem we will need the notion of an outer measure µ* and sets which

are ‘measurable with respect to µ*’.
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Definition 5.9

Let X be a set, and let

µ*: (X ) → [0, ∞].

Then µ* is an outer measure on X if

(i) µ*(φ) = 0,

(ii) if A, B ∈ (X ) and A ⊆ B then µ*(A) µ*(B ) (µ* is monotone),

(iii) if An (n ⊆ ) are subsets of X, then µ*(
n =1
∪∞ An )

n =1
∑
∞

µ*(An ). (µ* is countably subadditive.)

Note

An outer measure on X is defined on all subsets of X.

Examples

(i) Any measure on (X ) (e.g. counting measure) is also an outer measure on X.

(ii) Defining

µ*(E ) = { 1

0

(E ≠ ∅),

(E = ∅),

defines an outer measure which is not a measure (provided that X has at least two points!).

Definition 5.10

Let X be a set and let µ* be an outer measure on X. A set A ⊆ X is said to be measurable with

respect to µ* (or µ*-measurable) if, for every set E ⊆ X, the equality

µ*(E ) = µ*(E \ A) + µ*(E ∩ A)

holds.

Notes

(i) We know µ*(E ) µ*(E \ A) + µ*(E ∩ A) by subadditivity, thus A is µ*-measurable if and only if,

for all E ⊆ X,

µ*(E ) µ*(E \ A) + µ*(E ∩ A).

(ii) Similarly, if µ*(E ) = ∞ the equality is automatic, so the condition need only be checked for

those E with µ*(E ) < ∞.

(iii) A is µ*-measurable if and only if X \ A is µ*-measurable, because

E \ A = E ∩ (X \ A), while

E ∩ A = E \ (X \ A).
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We will be interested in using a measure defined on a ring to define an outer measure on all

subsets of a set.

[e.g. we shall show that defining, for A ⊆ ,

µ*(A) = inf{
n =1
∑
∞

(bn − an ): an bn ∈ , A ⊆
n =1
∪∞ (an , bn ]}

µ* is an outer measure on . We will show that all the Borel sets are µ*-measurable, and that

the restriction of µ* to the Borel sets is a measure.]

We now begin to prove the results we need about outer measures.

Lemma 5.11

Let X be a set and let µ*: (X ) → [0, ∞] be an outer measure. Set

= {A ∈ (X ): A is µ*-measurable}.

Then (i) is a field, and µ* is finitely additive on , and in fact (ii) (optional) for any E ⊆ X, and any

disjoint sets A1 , A2 , . . . , An ∈ ,

µ*( .
k =1
∪n

(E ∩ Ak )) =
k =1
∑
n

µ*(E ∩ Ak ).

Proof

(i) Let A, B ∈ , and let E ⊆ X. Then

note that E \ (A ∪ B ) = (E \ A) \ B,

and that E ∩ (A ∪ B ) = ((E \ A) ∩ B ) ∪ (E ∩ A).

Thus

µ*(E ) µ*(E \ (A ∪ B )) + µ*(E ∩ (A ∪ B ))

= µ*((E \ A) \ B ) + µ*(((E \ A) ∩ B ) ∪ (E ∩ A))

µ*((E \ A) \ B ) + µ*((E \ A) ∩ B ) + µ*(E ∩ A)

(by subadditivity)

= µ*(E \ A) + µ*(E ∩ A)

(B is measurable)

= µ*(E )

(A is measurable).

Since µ*(E ) appears at both ends, all the inequalities in the middle are equalities, in particular,

µ*(E ) = µ*(E \ (A ∪ B )) + µ*(E ∩ (A ∪ B )).
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This shows A ∪ B is measurable.

The fact that ∅ is measurable is trivial, and we already know that

A ∈ ⇒ X \ A ∈ .

Thus is a field.

To prove finite additivity of µ* on , let A and B be disjoint sets in . Since B is µ* measurable,

we have

µ*(A ∪ B ) = µ*((A ∪ B ) \ B ) + µ*((A ∪ B ) ∩ B ) = µ*(A) + µ*(B ).

The result now follows by an easy induction.

(ii) (optional) Let E ⊆ X and define

ν : → [0, ∞] by

ν(A) = µ*(E ∩ A).

Then we are required to prove that ν is finitely additive on .

[NOTE: If A1 , . . . , An are disjoint sets in , then

.
k =1
∪n

(E ∩ Ak ) = E ∩ .
k =1
∪n

Ak .]
It is enough to show that if A, B ∈ and A ∩ B = ∅ then ν(A ∪ B ) = ν(A) + ν(B ). But

ν(A ∪ B ) = µ*(E ∩ (A ∪ B ))

= µ*((E ∩ (A ∪ B )) ∩ A) + µ*((E ∩ (A ∪ B )) \ A)

(since A is measurable)

= µ*(E ∩ A) + µ*(E ∩ B )

(since A ∩ B = ∅)

= ν(A) + ν(B )

as claimed.

The result follows. �

We shall see that, in fact, is a σ -field, and µ* restricted to is a measure. We will then be

able to prove the extension results we want.

Lemma 5.12 (optional)

If is a field of subsets of a set X, then the following are equivalent:

(i) is a σ -field,
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(ii) whenever A1 , A2 , A3 , . . . are pairwise disjoint sets in then

.
n =1
∪∞ An ∈ .

Proof

(i) ⇒ (ii) is trivial,

(ii) ⇒ (i) assume (ii) holds.

Let B1 , B2 , B3 , . . . ∈ .

We must show
n =1
∪∞ Bn ∈ , to see this set

A1 = B1 , An +1 = Bn +1 \
k =1
∪n

Bk (n = 1, 2, 3, . . . ).

Then A1 , A2 , A3 , . . . are pairwise disjoint elements of .

Also

n =1
∪∞ Bn = .

n =1
∪∞ An

and this is in by (ii). �

Recall

If X is a non-empty set and µ* is an outer measure on X, then, defining to be the set of µ* −
measurable subsets of X we know that is a field. Also, for any E ⊆ X and sets A1 , A2 , . . . , An ∈
which are pairwise disjoint.

We have

µ*( .
k =1
∪n

E ∩ Ak) =
k =1
∑
n

µ*(E ∩ Ak ). (*)

[Taking E = X, (*) shows µ* is finitely additive on .]

Theorem 5.13 (SAEPN)

Let µ* be an outer measure on a non-empty set X. Let be the set of µ*-measurable subsets of

X. Then

(i) is a σ -field on X,

(ii) for any set E ⊆ X and pairwise disjoint sets A1 , A2 , . . . in ,

µ*(
n =1
∪∞ E ∩ An) =

n =1
∑
∞

µ*(E ∩ An ),
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(iii) the restriction of µ* to is a measure.

Proof

First note that (iii) follows immediately from (ii) by setting E = X, so we need only prove (i) and

(ii). Also we know is a field, so to prove (i) we need only check countable disjoint unions.

To prove (i) and (ii), let A1 , A2 , . . . be pairwise disjoint elements of and let E ⊆ X.

Set

A = .
n =1
∪∞ An .

Note that

E ∩ A = .
n =1
∪∞ (E ∩ An ).

Since µ* is countably subadditive, we have

µ*(E ∩ A) = µ*(
n =1
∪∞ E ∩ An)

n =1
∑
∞

µ*(E ∩ An ). (1)

Set

Bn =
k =1
∪n

An .

We have Bn ∈ and Bn ⊆ A. Thus

µ*(Bn ) µ*(A)

(by monotonicity) and

µ*(Bn ∩ E ) µ*(E ∩ A).

By Lemma 5.11,

µ*(Bn ∩ E ) = µ*(
k =1
∪n

E ∩ Ak)
=

k =1
∑
n

µ*(E ∩ Ak ).

Thus

µ*(A ∩ E )
k =1
∑
n

µ*(E ∩ Ak ).

Letting n → ∞, we have

µ*(A ∩ E )
k =1
∑
∞

µ*(E ∩ A). (2)
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We thus obtain (using (1) and (2))

µ*(E ∩ A) =
k =1
∑
∞

µ*(E ∩ Ak ),

proving (ii).

To show that

.
n =1
∪∞ An ∈

we need to show that

µ*(E ) = µ*(E ∩ A) + µ*(E \ A).

We know that Bn ∈ , so we have

µ*(E ) = µ*(E ∩ Bn ) + µ*(E \ Bn )

µ*(E ∩ Bn ) + µ*(E \ A)

(since E \ Bn ⊇ E \ A, and µ* is monotone)

= (
k =1
∑
n

µ*(E ∩ Ak )) + µ*(E \ A).

Letting n → ∞ we have

µ*(E ) (
k =1
∑
∞

µ*(E ∩ Ak )) + µ*(E \ A)

= µ*(E ∩ A) + µ*(E \ A)

(by (ii))

µ*(E ).

Thus equality holds, and

µ*(E ) = µ*(E ∩ A) + µ*(E \ A).

This is true for all E ⊆ X, so A is measurable. �

Recall

Let X be a set, and define

µ*(E ) = { 1

0

otherwise.

E = ∅,

Then µ* is an outer measure. The theorem applies to tell us the collection of µ* measurable sets is a

σ -field on which µ* is a measure.
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Exercise: Show that only ∅ and X are µ*-measurable.

We now state without proof another fact about double series.

Proposition 5.14 (optional)

If ank ∈ [0, ∞] for n, k ∈ then whatever order we add up the extended real numbers ank we

always get the same answer: in particular

if you enumerate × as (n1 , k1 ), (n2 , k2 ), (n3 , k3 ), . . . then

j =1
∑
∞

anj kj
=

n =1
∑
∞ (

k =1
∑
∞

ank) . �

Remark: all these results about series have elementary proofs, but can also be obtained using integra-

tion results from Section 4 (applied to counting measure).

Lemma 5.15 (SAEPN)

Let X be a set, let be a set of subsets of X with ∅ ∈ . Suppose that µ : → [0, ∞] is a

function, and that µ(∅) = 0.

Define

µ*(A) = inf{
n =1
∑
∞

µ(En ): E1 , E2 . . . ∈ and A ⊆
n =1
∪∞ En}.

Then µ* is an outer measure on X.

Remarks

We will use Proposition 5.14 in this proof. Note that µ*(A) may be +∞ for two reasons:

either there are no sets E1 , E2 , E3 , . . . in with

A ⊆
n =1
∪∞ En ,

in which case µ*(A) = inf(∅) = +∞ or it could be that

µ*(A) = inf{∞}.

But certainly

µ*(A) ∈ [0, ∞] ∀ A ⊆ X.

Proof

Certainly µ*: (X ) → [0, ∞]. To see that µ*(∅) = 0 take

E1 = E2 = . . . = ∅ ∈ .
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Then

∅ ⊆
n =1
∪∞ En ,

so

µ*(∅)
n =1
∑
∞

µ(En ) = 0.

Thus µ*(∅) = 0.

To check monotonicity, suppose that A ⊆ F. Set

SA = {
n =1
∑
∞

µ(En ): E1 , . . . ∈ , A ⊆
n =1
∪∞ En}

SF = {
n =1
∑
∞

µ(En ): E1 , . . . ∈ , F ⊆
n =1
∪∞ En}

since A ⊆ F, we have SF ⊆ SA .

∴ inf(SA ) inf(SF ),

i.e. µ*(A) µ*(F ).

To prove countable subadditivity suppose that

A =
n =1
∪∞ An ,

where A, A1 , A2 , . . . are in (X ). We must show

µ*(A)
n =1
∑
∞

µ*(An ).

Two cases:

(i) if
n =1
∑
∞

µ*(An ) = ∞, the result is trivial;

(ii) otherwise
n =1
∑
∞

µ*(An ) < ∞, so also each µ*(An ) < ∞.

Let ε > 0. Because µ*(An ) is finite, we can choose Enk ∈ (k ∈ ) s.t.

An ⊆
k =1
∪∞ Enk

and

(
k =1
∑
∞

µ(Enk )) < µ*(An ) +
2n

ε
���
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[by definition of µ*(An )].

Then

A =
n =1
∪∞ An ⊆

n =1
∪∞

k =1
∪∞ Enk .

N.B.

n =1
∑
∞

(
k =1
∑
∞

µ(Enk ))
n =1
∑
∞

(µ*(An ) +
2n

ε
��� )

= (
n =1
∑
∞

µ*(An )) + ε

< ∞.

Thus, the countable sum of all the µ(Enk ) is equal to

n =1
∑
∞

k =1
∑
∞

µ(Enk ) (
n =1
∑
∞

µ*(An )) + ε.

Thus

µ*(A)
n =1
∑
∞

µ*(An ) + ε

since this is true ∀ ε > 0, we obtain

µ*(A)
n =1
∑
∞

µ*(An ).
�

Theorem 5.16 (SAEPN) (Extension Theorem)

Let R be a ring of subsets of a set X, and let µ : R → [0, ∞] be a measure on R. Then µ has an

extension to a measure µ̃ defined on a σ -field ⊇ R.

Proof

Define

µ*(E ) = inf{
n =1
∑
∞

µ(An ): A1 , A2 , . . . ∈R, E ⊆
n =1
∪∞ An}.

Then the conditions of the Lemma are satisfied, and so µ* is an outer measure on X. Let be the set

of µ* measurable subsets of X. Let µ̃ be the restriction of µ* to . Then is a σ -field, and µ̃ is a

measure on .

It remains to show that R ⊆ and that µ̃(A) = µ(A) ∀ A ∈R.

Let A ∈R, then
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A ⊆ A ∪ ∅ ∪ ∅ ∪ . . .

so µ*(A) µ(A).

But, if A1 , A2 , . . . ∈R and

A ⊆
n =1
∪∞ An

then, since µ is a measure on R, µ(A)
n =1
∑
∞

µ(An ). This holds for all such sequences An so

µ(A) µ*(A). Thus µ(A) = µ*(A).

Finally, we show that A is µ*-measurable. Let E ⊆ X. We must show that

µ*(E ) = µ*(E ∩ A) + µ*(E \ A)

as usual we only need to prove that LHS RHS. Set

SE = {
n =1
∑
∞

µ(An ): A1 , A2 , . . . ∈R, E ⊆
n =1
∪∞ An} .

Since µ*(E ) = inf SE it is enough to show that µ*(E ∩ A) + µ*(E \ A) is a lower bound for SE . Let

A1 , A2 , . . . ∈R with E ⊆
n =1
∪∞ An . Then

E ∩ A ⊆
n =1
∪∞ (An ∩ A),

E \ A ⊆
n =1
∪∞ (An \ A).

So

µ*(E ∩ A)
n =1
∑
∞

µ(An ∩ A),

µ*(E \ A)
n =1
∑
∞

µ(An \ A).

Adding gives

µ*(E ∩ A) + µ*(E \ A)
n =1
∑
∞

(µ(An ∩ A) + µ(An \ A))

=
n =1
∑
∞

µ(An )

because µ is a measure on R.

This shows µ*(E ∩ A) + µ*(E \ A) is a lower bound for SE . Thus

µ*(E ∩ A) + µ*(E \ A) µ*(E ).

This concludes the proof. �
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With our measure µ : → [0, ∞] defined by

µ( .
k =1
∪n

(ak , bk ]) =
k =1
∑
n

(bk − ak )

we obtain an outer measure µ* as usual. This particular outer measure is called Lebesgue outer meas-

ure on and we shall denote it by λ*. The set, , of subsets of which are λ*-measurable, is known

as the collection of Lebesgue measurable subsets of . Our theorem tells us that is a σ -field con-

taining , and that the restriction of λ* to is a measure. We shall denote this restriction by λ and

call it Lebesgue Measure. Note that contains the σ -field generated by , which is precisely , the

collection of all Borel sets in .

With this notation we have

P ⊆ ⊆ ⊆ ⊆ ( ),

and we can measure the size of all Borel sets using λ .

Definition 5.17

Let (X, ) be a measurable space. Then we say that the sets E in are -measurable sets (or

measurable if the σ -field is unambiguous). In particular, if X is a metric space, by default we take

= {E ⊆ X � E is a Borel set}. In this case the measurable sets are the Borel sets in X, so we say such

sets are Borel measurable. When we have an outer measure µ* on a set X we already have defined

µ*-measurable. This coincides with the -measurable sets when = {E ⊆ X � E is µ*-measurable}.

In the particular case of Lebesgue outer measure on , λ*, the λ*-measurable sets are the Lebesgue

measurable sets (or Lebesgue sets) in .

Every Borel set is Lebesgue measurable. The converse is false but tricky. It turns out that the

cardinality of is the same as that of , whereas the cardinality of is the same as that of ( ).

[Recall: Two sets A, B are said to have the same cardinality if there is a bijection f : A → B. For

every set X, X and (X ) have different cardinalities.]

Is every subset of Lebesgue measurable? The answer is no, but most sets you meet are.

Proposition 5.18 (SAEPN)

Let be a semi-ring of subsets of a set X, and set R = R( ).

Suppose µ : R → [0, ∞] is a measure, and we form µ* as usual by

µ*(E ) = inf{
n =1
∑
∞

µ(An ): A1 , A2 . . . ∈R, E ⊆
n =1
∪∞ An}.

Then, in fact, we also have

µ*(E ) = inf{
n =1
∑
∞

µ(An ): A1 , A2 . . . ∈ , E ⊆
n =1
∪∞ An}.
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Proof

The sets of extended real numbers

S1 = {
n =1
∑
∞

µ(An ): A1 , A2 . . . ∈R, E ⊆
n =1
∪∞ An}

and S2 = {
n =1
∑
∞

µ(An ): A1 , A2 . . . ∈ , E ⊆
n =1
∪∞ An}

are in fact the same. The fact that S2 ⊆ S1 is obvious. Now suppose x ∈S1 . Then there are

A1 , A2 . . . ∈R with

E ⊆
n =1
∪∞ An and x =

n =1
∑
∞

µ(An ).

But we may write

An = .
k =1
∪mn

Bnk

with Bnk in . Then

µ(An ) =
k =1
∑
mn

µ(Bnk ) all n,

x =
n =1
∑
∞

µ(An ) =
n =1
∑
∞

k =1
∑
mn

µ(Bnk ).

Since

E ⊆
n =1
∪∞

k =1
∪mn

Bnk ,

a countable union of sets in , we deduce that x ∈S2 . This proves our claim.

Corollary 5.19 (SAEPN)

In the particular case of Lebesgue outer measure λ*, we find

λ*(E ) = inf{
n =1
∑
∞

(bn − an ): E ⊆
n =1
∪∞ (an , bn ]}.

Proposition 5.20

(i) For a, b ∈ with a < b ,

λ([a, b]) = λ([a, b)) = λ((a, b)),

= λ((a, b]) = b − a.

(ii) For E ⊆ ,
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λ*(E ) = inf{
n =1
∑
∞

(bn − an ): E ⊆
n =1
∪∞ (an , bn )}

= inf{
n =1
∑
∞

(bn − an ): E ⊆
n =1
∪∞ [an , bn ]}.

Proof. See question sheets. �

Slightly trickier is to show that λ (Cantor set) = 0.

[Note that the Cantor set is closed, hence is Borel, hence is Lebesgue measurable.]

If λ*(A) = 0, then we can show A must be Lebesgue measurable. This is a special case of the follow-

ing.

Lemma 5.21 (SAEPN)

Let µ*: (X ) → [0, ∞] be an outer measure on a set X.

(i) If A ⊆ X and µ*(A) = 0 then A is µ*-measurable.

(ii) If B is µ*-measurable and A ⊆ B and µ*(B ) = 0 then A is µ*-measurable.

(iii) If A ⊆ C ⊆ B with A, B µ*-measurable and µ*(B \ A) = 0 then C is µ*-measurable.

Proof

(i) Given µ*(A) = 0, let E ⊆ X. Then

µ*(E ) µ*(E \ A) + µ*(E ∩ A),

µ*(E ) + µ*(A),

= µ*(E ).

Thus equality holds and A is µ*-measurable.

(ii) A ⊆ B, and µ*(B ) = 0 then µ*(A) = 0. So A is µ*-measurable.

(iii) A, B µ*-measurable, A ⊆ C ⊆ B, µ*(B \ A) = 0.

Then C \ A ⊆ B \ A, so C \ A is µ*-measurable. But C = (C \ A) ∪ A, which is µ*-measurable.

In particular, given that λ (Cantor set) = 0, we deduce that every subset of the Cantor set is

Lebesgue measurable. But the Cantor set has the same cardinality as (FACT) and so the collection

of subsets of the Cantor set has the same cardinality as ( ). It follows that the collection of Lebes-

gue sets has the same cardinality as ( ) [using the Schroder–Bernstein theorem].

Not all of the subsets of the Cantor set are Borel sets (there are too many!). So if you restrict λ
to you have an incomplete measure, i.e. there are sets A ⊆ B with

B ∈ , λ(B ) = 0 but A∉ .
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Notation

For any E ⊆ , we write

E + x = {y + x : y ∈E} (for any x in ).

Proposition 5.22 (SAEPN)

(i) If E = (a, b] then

λ(E ) = λ(E + x) (x ∈ ).

(ii) If E ⊆ then

λ*(E + x) = λ*(E ) (x ∈ ).

(iii) If A ⊆ is Lebesgue measurable, then so is A + x (x ∈ ), and

λ(A + x) = λ(A).

(iv) If A ⊆ is Lebesgue measurable, then so is −A, and

λ(−A) = λ(A).

Proof

(i) E + x = (a + x, b + x] and (b + x) − (a + x) = b − a .

(ii) This is an easy exercise, based on (i) and the definition of λ*.

(iii)
λ*(E − x) = λ*(E ) = λ*(E ∩ A) + λ*(E \ A)

E ∩ (A + x) = ((E − x) ∩ A) + x,

E \ (A + x) = ((E − x) \ A) + x.

λ*(E ) = λ*(E − x) = λ*((E − x) ∩ A) + λ*((E − x) \ A) because A is measurable

= λ*(E ∩ (A + x)) + λ*(E \ A + x).

This is true for all E ⊆ X, and so A + x is Lebesgue measurable.

By (ii),

λ(A + x) = λ(A).

(iv) This is similar to (i)– (iii), using − (a, b) = (−b, −a), and the definition of λ* in terms of open

intervals. �
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So Lebesgue measure is translation invariant.

A non-measurable set

To find a non-measurable set we will need the axiom of choice.

Example 5.23 (as seen earlier in the module)

Working in [0, 1] we define an equivalence relation ∼ by x ∼ y if x − y ∈ . This equivalence

relation splits [0, 1] up into equivalence classes. Note, for x ∈ [0, 1], the equivalence class of x is

( + x) ∩ [0, 1].

We now form a set E by choosing one element from each equivalence class. [This uses the

axiom of choice.]

We show that E is not Lebesgue measurable.

Set S = ∩ [ −1, 1], a countable set. Then

[0, 1] ⊆
q ∈S
∪ (E + q) ⊆ [ −1, 2]

because E ⊆ [0, 1], and, ∀ y ∈ [0, 1], ∃ x ∈E with (y − x) ∈ since x, y are in [0, 1], we have then

(y − x) ∈S, and y ∈E + (y − x).

The collection of sets {E + q : q ∈S} is countable, and pairwise disjoint.

(Reason: if p ≠ q ∈S, then suppose we had

x ∈ (E + p) ∩ (E + q).

Then we would have (x − p) ∈E and (x − q) ∈E. This is impossible because E has only one member of

each equivalence class.)

By assumption, E is measurable, and so E + q is measurable ∀ q ∈S.

We have

1 = λ([0, 1]) λ(
q ∈S
∪ (E + q)) =

q ∈S
∑ λ(E + q) =

q ∈S
∑ λ(E ).

Also

λ(
q ∈S
∪ (E + q)) λ([ −1, 2]) = 3

so

q ∈S
∑ λ(E ) 3.

This is impossible:
q ∈S
∑ λ(E ) must be either 0 or ∞.
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Regularity of Lebesgue Measure (optional)

/mB This final subsection is entirely optional. /m-B Recall: (see question sheets again)

λ*(E ) = inf{
n =1
∑
∞

(bn − an ): E ⊆
n =1
∪∞ (an , bn )}.

Lemma 5.24

For any E ⊆ , λ*(E ) = inf{λ(U ): U open, U ⊇ E}.

Proof

Certainly λ*(E ) inf{λ(U ): U open, U ⊇ E}.

Suppose x > λ*(E ). Then ∃ (a1 , b1), (a2 , b2), . . . such that

E ⊆
n =1
∪∞ (an , bn ) and

n =1
∑
∞

(bn − an ) < x.

Set V =
n =1
∪∞ (an , bn ). Then λ(V )

n =1
∑
∞

(bn − an ) < x . Also E ⊆ V, and so we have

inf{λ(U ): U open, U ⊇ E} < x.

This is true ∀ x > λ*(E ) and so the result follows. �

N.B. We do not claim to be able to obtain

λ*(U \ E ) < ε.

Theorem 5.25

Let E be a Lebesgue measurable subset of . Then

(i) ∀ ε > 0 there is an open set U ⊆ with

λ(U \ E ) < ε and E ⊆ U

(ii) ∀ ε > 0 ∃ a closed set F ⊆ E with

λ(E \ F ) < ε.

Proof

(i) Set En = E ∩ [ −n, n] for n ∈ . Then En is measurable, and λ(En ) < ∞. Choose open sets Vn

with En ⊆ Vn satisfying λ(Vn ) < λ*(En ) +
2n

ε��� . We can do this because λ*(En ) < ∞. Then set

U =
n =1
∪∞ Vn . Certainly U is open, and
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U \ E =
n =1
∪∞ (Vn \ E ) ⊆

n =1
∪∞ (Vn \ En ).

Thus

λ(U \ E )
n =1
∑
∞

λ(Vn \ En ) <
n =1
∑
∞

2n

ε��� = ε

(because the sets En are measurable) proving (i).

(ii) To prove (ii), we use (i), and set A = E c. By (i) ∃ an open set U ⊇ A with λ(U \ A) < ε .

Set F = \ U. Then F ⊆ \ A = E and

(E \ F ) = ( \ F ) \ ( \ E ) = U \ A

so

λ(E \ F ) = λ(U \ A) < ε.
�

The fact that you can approximate Lebesgue measurable sets from the inside by closed sets, and

from the outside by open sets, is described by saying that Lebesgue measure λ is regular.

If (X, ) is a measurable space and E ∈ then

{F ∩ E : F ∈ } = {F ∈ : F ⊆ E}

is a σ -field on E, denoted by � E (non-standard notation) or E .

If µ : → [0, ∞] is a measure, then µ �
E

is a measure on E . We will sometimes denote this

measure by µE .

For any Lebesgue measurable set E ⊆ , we have a σ -field consisting of all Lebesgue measur-

able sets contained in E, and we can restrict Lebesgue measure to this. In particular we can work on

any interval [a, b].

Exercise

Regarding [a, b] as a metric space, show that the Borel subsets of [a, b] are precisely the sets in

[a, b] (where [a, b] = {E ∩ [a, b]: E ∈ } = {E ∈ : E ⊆ [a, b]}). So ‘Borel subsets of [a, b]’ is

unambiguous.

In particular, restricting attention to [0, 1], Lebesgue measure gives a probability measure on the

set of Borel subsets of [0, 1].


