Module code: G1CMIN Module name: Measure and integration
Session: 2000-2001 Credits: 15
Module Lecturer: Dr J.F. Feinstein Other staff involved: None

Key concepts and results

e The extended real line, R: arithmetic, sequences and series, inf, sup, liminf and
limsup. (Lectures 2—4)

e The topology of R and R: open sets and closed sets, continuous functions. (Lectures
4-5 + printed notes)

e Collections of sets: semi-rings, rings, fields and o-fields. Half-open intervals, elemen-
tary figures in R and the Borel subsets or R and of R. (Lectures 5-9, Lecture 12,
question sheets and printed notes)

e Introduction to theory of measures: hoped-for properties of Lebesgue measure; a
non-measurable subset of [0,1]. (Lectures 9-10)

e Measures on collections of sets: measures on semi-rings, rings and fields. (Lectures
10-11)

e Properties of measures on rings: countable additivity, finite additivity, monotonicity,
countable subadditivity, continuity properties. (Lectures 11-12 and printed notes)

e Measurable spaces and measure spaces: counting measure, Lebesgue measure. Prop-
erties that hold almost everywhere. (Lecture 12 and throughout the rest of the module)
e Definitions and standard properties of Lebesgue outer measure, A*, and Lebesgue
measure, A (for subsets of R): extension of notion of length of intervals, translation
invariance, regularity. (Lecture 13, Lecture 27, Lecture 32, question sheets and printed
notes)

e Restrictions of o-fields to subsets. (Lecture 13)

e Equivalence of functions (almost everywhere equality). (Lecture 13)

e Simple functions and their properties, measurable functions (several equivalent defi-
nitions). (Lectures 14-16)

e Pointwise convergence of functions and uniform convergence of functions. (Tutorial
session, printed notes, question sheets and throughout module).

e Measurable functions are closed under inf, sup, liminf and lim sup, pointwise limits,
sums (when defined), products, and taking positive and negative parts. (Lectures 16-18
and Lecture 20)

e Monotone approximation from below of non-negative measurable functions by non-
negative simple measurable functions. (Lecture 19)

e Definition of the integral: integral of non-negative, simple, measurable functions;
integral of non-negative measurable functions; integral (when defined) of R-valued mea-
surable functions. (Lectures 20-22, Lecture 24).

e The Monotone Convergence Theorem and its corollaries. (Lectures 22-23)

e Fatou’s Lemma. (Lecture 23)

o L' spaces. (Lecture 24)

e The Dominated Convergence Theorem. (Lecture 25)

e Sets of measure zero and how to discount them when integrating. (Lectures 25-26)
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e The connection between the Lebesgue integral and the Riemann integral. (Lecture

26)

e Extension of measures: extension of a measure from a semi-ring to a ring, the theory
of outer measures and measurable sets, extension of measures from a semi-ring or ring
to a sigma-field. (Lectures 27-32)

e The construction of Lebesgue measure on the real line. (Lectures 27-32)

Lecture 1:

Lecture 2:

Lecture 3:

Lecture 4:

Lecture 5:

Lecture 6:

Detailed blow-by-blow account

Chapter 0. Introduction General description of content and motivation for the mod-
ule (length and area, connections with integrals, modes of convergence of functions,
convergence theorems for integrals, formal manipulation of co). Book recommen-
dations, especially Rudin’s Real and complex analysis.

Chapter 1. The extended real line The extended real line R = R U {—o00, 00}, a
totally ordered set. Standard facts and definitions explained: most details left
as exercises (some on question sheet 1). EVERY subset E of R has an infimum
and a supremum in R, denoted by inf(E) and sup(E) respectively. Sequences
in R: the limit infimum and limit supremum of a sequence (liminf,, o =, and
limsup,, ,. Zn). For a sequence (z,) C R and z € R, lim, ,o0(z,) = 2 if and
only if lim inf,, , x,, = limsup,, , ., n = z. This enables us to give a definition of
convergence in R extending the previous notion of convergence of sequences in R.
Convergent sequences in R. Sandwich theorem. Equivalent definitions of conver-
gence to oo in R. Arithmetic in R. The minus operator z — —z. Addition and
subtraction (where possible) and multiplication in R. Problems with the cancella-
tion law for addition (only real numbers may be cancelled).

The monotone sequence theorem in R. Series in R. Series with terms in [0, co].
Fact: series with non-negative terms can be rearranged arbitrarily and still give the
same sum (finite or infinite). (Some special cases are proved in the printed notes.
These results also follow from results on integration in Chapter 4.) Open sets in
R, defined as countable unions of open intervals.

Closed sets in R. Examples. Revision of pre-images for functions. Revision: a
function f from R to R is continuous if and only if f~(U) is open in R for every
open subset U of R (and similarly for closed sets). Open/closed subsets of R are
discussed in the printed notes.

Chapter 2. Classes of sets Motivation for looking at different collections of sets
(not all sets will be measurable). The power set of X, P(X) (or 2%). Levels
of abstraction, notation e.g x € R, A C R, F C P(X). Set operations revised:
intersection, union and set difference. Countable intersections and unions. De
Morgan’s laws (finite and countable versions). Symmetric difference introduced,
various equivalent definitions. Symmetric difference is associative (see question
sheet 2).

Semi-rings of sets: Intervals in R, rectangles in R?. Half-open intervals P = {(a,b] :
a,b € R,a < b}. Half-open rectangles. Rings of sets. Elementary figures in R: finite
(disjoint) unions of half-open intervals from P. Elementary figures in R".
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Lecture 7:

Lecture 8:

Lecture 9:

Lecture 10:

Lecture 11:

Definition and examples of fields and o-fields of subsets of a set X. Investigation
of the properties of any o-field F of subsets of R such that 2 P (where P is as
defined above). (Note that P(X) is such a o-field.) Any such o-field must include
all open intervals, all open subsets of R, all closed subsets of R and all countable
subsets of R (including single-point sets {a}, where a € R, and also N, Z, Q).
Question to be resolved later: are there any such o-fields on R other than the
o-field P(R)?

The o-field on X generated by a collection C of subsets of X, denoted in this module
by F(C). This is the smallest possible o-field on X which includes all of the sets in
C. More formally, F(C) is a o-field on X, C C F(C) and, whenever G is a o-field on X
such that C C G then we have also F(C) C G. Proof of the existence and properties
of F(C). The o-field, B, of all Borel sets in R (also called Borel subsets of R or
Borel measurable subsets of R), B: B is the o-field generated by the collection of
all open subsets of R. Examples of Borel subsets of R, including open sets, closed
sets, intervals, countable sets, F, sets and Gg sets. There are many other Borel
sets. Brief comments on transfinite induction (beyond the scope of this module,
but see books if interested).

The Cantor middle-thirds set and the Cantor function. Short cuts for proving
F(C1) = F(C3). Proof that F(P) = B (P and B as above).

Chapter 3. Measures and measure spaces Our aim is to measure the size of all ‘sen-
sible’ subsets of R, R*, R? etc. (including at least all the Borel sets) in accordance
with their length, area, or volume etc.. We will construct Lebesgue measure to do
this. However some subsets of R™ will not fit into our collection of ‘measurable’
sets. An example of a ‘non-measurable’ subset of [0, 1] (using equivalence classes
modulo the rationals).

Finished showing that the ‘non-measurable’ set constructed in the previous lecture
cannot be assigned a length in a sensible way. Definition of (positive) measure
on a collection C of subsets of X (with () € C). Simpler version of definition when
C = Fis a o-field. Stated the fact (proved later during the construction of Lebesgue
measure) that length is a measure on our usual semi-ring P of half-open intervals
in R. This is not true for ‘intervals of rationals’, so some important property of the
real numbers must be used. Examples of measures: the zero measure, the biggest
possible measure and counting measure.

Measures on rings. We will later see as part of general theory how to extend
measure from a semi-ring to a ring. In particular, the ring of elementary figures
in R (finite unions of sets in P) has a measure given by adding the lengths of the
disjoint half-open intervals making up the set. Properties of measures on rings.
Countable additivity (part of definition), finite additivity, monotonicity, countable
subadditivity, continuity properties (the measure of a countable union is the limit
of the measures of the finite unions, and the same goes for countable intersections
provided the sets involved do not all have infinite measure).
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Lecture 12:

Lecture 13:

Lecture 14:

Lecture 15:

Problems with countable intersections when all the sets have infinite measure. Mea-
surable spaces and measure spaces: counting measure on P(N), Lebesgue measure
on the Borel sets in R (details of the construction of Lebesgue measure are given
in Chapter 3 of the printed notes and will be covered later in the module). The
Borel sets in R. Our default o-fields on R and R will in each case be the o-field of
Borel sets (on the relevant set). Integration in measure spaces is covered in Chap-
ter 4. Integration on N with respect to counting measure is the same as summing
series. Dominated convergence theorem stated in this setting in terms of limits
of sequences of series under appropriate conditions. Properties that hold almost
everywhere e.g. almost every real number is irrational (because A(Q) = 0, where A
is Lebesgue measure on R).

Definitions of Lebesgue outer measure, A*, and Lebesgue measure A. Some standard
properties stated (details to be proved later) for these. Restrictions of o-fields to
subsets (new o-fields from old). Equivalence (almost everywhere equality) of func-
tions on measure spaces. Positive measures and other kinds of measures: complex
measures, real measures, signed measures. Hahn decomposition for complex/signed
measures stated in the form p = p1 — po+ipus —ips (Where p; are positive measures,
1 <i < 4). For Chapters 1-5 of this module we work only with positive measures,
but the Hahn decomposition allows us to extend much of the theory effortlessly to
more general measures. Finite (positive) measures and probability measures.

Chapter4: The Integral Revision of Riemann integration: approximation of func-
tions from below and above using step functions (staircase functions). The non-
integrability of the characteristic function of Q. The idea behind the Lebesgue
integral: work with finite linear combinations of characteristic functions of sets
more general than intervals (can use any measurable sets). These will be easy to
integrate (in particular we will have no problem integrating XQ) and we will then
extend our integral to cover all non-negative ‘measurable’ functions with values in
R (most functions you will ever meet are measurable!). Our theory of integration
will then continue to discuss more general measurable functions with values in R.
We will cover the theory in the setting of a general measure space, so our theory
will apply to give us new information about values of series and Riemann integrals.
Simple functions on X: definition (n.b. simple functions are real-valued), exam-
ples, standard form (using the distinct values, partition the set X and so form a
finite linear combination of characteristic functions). Sums, products and linear
combinations of simple functions are still simple functions. Every finite linear com-
bination of characteristic functions is a simple function (even if the sets do not form
a partition of X or the coefficients are not distinct).

Comments on homework: every countable union of intervals is a Borel set but not
every Borel set is a countable union of intervals. Continuous functions, images and
pre-images revised. Measurable functions in terms of pre-images of measurable sets
in the co-domain. Every continuous function from R to R is Borel measurable. Ex-
ercise: every monotone function from R to R is (Borel) measurable. Stated criteria
for measurability of a function f from X to R or R in terms of the measurability
of the sets {z € X : f(z) < a}.



Lecture 16:

Lecture 17:

Lecture 18:

Lecture 19:

Lecture 20:

Functions defined on N are automatically measurable (when we use the o-field
most commonly used on N, namely P(N)). Proof of the criterion stated last time
for measurability of functions (real-valued case). Several other equivalent criteria
stated (left as exercises). Sketch of proof that every monotone function from R
to R is (Borel) measurable. The function —f is measurable if and only if f is
measurable.

The pointwise sup, inf, lim sup and lim inf of any sequence of measurable functions
is measurable. Hence every pointwise limit of a sequence of measurable functions is
a measurable function. A sum of two measurable functions is measurable provided
that the sum is everywhere defined (see printed notes for proof). Simple measurable
functions (measurable simple functions). Direct proof sketched that a sum of two
simple measurable functions is again a simple measurable function.

A product of two simple measurable functions is again a simple measurable function.
Definition of the Lebesgue integral of non-negative, simple measurable functions
and general non-negative measurable functions respect to a measure.

Tutorial session on the main three theorems of Chapter 4: the Monotone Con-
vergence Theorem, Fatou’s Lemma and the Dominated Convergence Theorem (dis-
cussed in the context of Riemann integrals of functions and sums of series). Stu-
dents worked in groups to find counterexamples when conditions of the theorems
are weakened, and an example where the inequality in Fatou’s Lemma is strict.
Answers were discussed.

Monotone approximation from below of non-negative measurable functions using
non-negative simple measurable functions. Deduction (from the corresponding re-
sult for simple measurable functions) of the fact that both the sum and the product
of two non-negative measurable functions are measurable. Many results for general
measurable functions can be deduced in the same way using the results for simple
measurable functions and this method of approximation.

Decomposition of R-valued functions into positive and negative parts: f = f*—f—.
The function f is measurable if and only if both f* and f~ are. The pointwise
maximum of two R-valued measurable functions is a measurable function. Re-
called the definition of the Lebesgue integral of non-negative, simple measurable
functions and general non-negative measurable functions over a set E respect to
a measure 4 (notation: Ig(s,p) [non-standard] for non-negative, simple measur-

able functions and fdp for general non-negative measurable functions). De-
E p—
fined (where possible) the integral of a measurable R-valued function f to be

/ fdu = / frdu — / f~du. Some elementary facts about integrals of sim-
E E E
ple functions stated (intuitively obvious, proofs in printed notes or on question

sheet 4, some proofs discussed in lectures).
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Lecture 21:

Lecture 22:

Lecture 23:

Further elementary facts about integrals of non-negative simple measurable func-
tions. The integral of a sum of two such functions is the sum of the integrals.
When s is non-negative, simple measurable, then the function ¢(E) = Ig(s,p) is
a measure on F. Recalled definition of the Lebesgue integral of a non-negative

measurable function, / fdu. In particular this gives the same value as before
E

for simple measurable functions: Ig(s,p) = / sdp. Thus we may safely switch
E

to the new notation, but maintain our old results. For example, when s is non-

negative, simple measurable, then the function ¢(F) = / sdp is a measure on

F. Elementary facts about integrals of non-negative, measurable functions stated
(proofs in printed notes, most follow directly from the definitions and the results
for non-negative, simple measurable functions).

Further elementary facts about integrals of non-negative, measurable functions dis-
cussed (proofs in printed notes). Revision of continuity properties of measures
(nested unions). Statement and proof of the Monotone Convergence Theorem.
Typical application: deduction of less elementary facts about integrals of non-
negative, measurable functions using facts about simple measurable functions and
monotone approximation. Integral of a sum of two non-negative, measurable func-

tions:
/)((erg)du:/deuvL/ngu-

Further corollaries of the MCT: for a non-negative measurable function f and

a € [0,00) we have
/afdyza/fd,u
b'e b'e

(this may also be proved by elementary means). For non-negative measurable

functions f,,
n = nd .
f(Er) w-E ([

In particular (using counting measure on N), for non-negative extended real num-
bers a, i,

5 (5 - £ ()

k=1 k=1

For any non-negative measurable function f, the function ®(E) = / fduis a
E

measure on F. Statement and proof of Fatou’s Lemma.
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Lecture 24:

Lecture 25:

Lecture 26:

Lecture 27:

Recalled definition of integral (where defined) of a measurable, R-valued function
f. The (measurable) function f is integrable (or summable) on E if both f* and
f~ have finite integral on E. The set of integrable functions f such that f take
values in R (non-standard) is denoted by L!(u). (Some authors write L'(X, u)
or L1(X,dp), and usually they allow f to be R-valued, but this makes no real
difference to the theory.) L!(u) is a vector space of functions on X, and, for f, g
in L'(p) and o, B in R, we have

J(ar+sp)du=a [ sauss [ gan

Recalled Fatou’s Lemma and discussed the inequality

‘/deu‘S/le\du

(valid whenever f is a measurable R-valued function such that at least one of

/ fT dp and / f~ dp is finite). All our convergence theorems are also valid for
X X

/ rather than / , where E € F (using question sheet 4, question 1). These conver-
E X
gence theorems also remain true when the given conditions hold almost everywhere

with respect to p rather than for all z. Statement and proof of the Dominated
Convergence Theorem (DCT).

Further comments on conditions that hold almost everywhere: since a countable
union of sets of measure zero is always another set with measure zero, you can
always throw out any countable collection of ‘bad’ sets which have measure zero
(where conditions fail) and work on the remainder of the space (where the inte-
grals are the same as over the whole space). The connection between the Riemann
integral and the Lebesgue integral (with respect to Lebesgue measure on an inter-
val): these agree for all Riemann integrable functions (proof sketched, based on
approximation of a Riemann integrable function by step functions). This allows us

b

to use the notation / f(z) dz for the Lebesgue integral f dX of a Lebesgue
a [a,b]

integrable function (even if it is not Riemann integrable). We may also use the

notation / f(z,y) du(xz) when integrating functions of more than one variable.

Recalled dé(ﬁnition of Lebesgue outer measure A*. Explained our strategy for con-
struction Lebesgue measure: prove that length is a measure on P, then show that
every measure on a semi-ring S can be extended to a complete measure on a o-field
F O S (using the theory of outer measures). In particular, using Lebesgue outer
measure allows us to extend our notion of length (defined on P) to a measure on
the Borel sets (and more). Statements and proofs of some elementary facts about
finite unions of half-open intervals and their lengths. Brief discussion of compact-
ness: recalled Heine-Borel Theorem and looked at some open covers of (0,3) and
[0,3) (which are NOT compact). Compactness of [a,b]: follows from the Heine-
Borel Theorem, or see standard proof in the printed notes, or can deduce the result
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Lecture 28:

Lecture 29:

Lecture 30:
Lecture 31:

32:

from a Lemma concerning the ‘Lebesgue number’ for a covering. We only need the
result concerning the situation when [a, b] is a subset of a union of a sequence of
open intervals.

Proof of Lemma in the specific situation above (compactness result for closed inter-
vals follows). Connection with length: if [a, ] is a subset of a union of a sequence
of open intervals, then the sum of the lengths of the open intervals must be at
least b — a. (This is NOT true for the set [a,b] N Q.) Length of half-open intervals,
p((a,b]) = b—a, really is a measure on our usual semi-ring P of half-open intervals.
Extension of a measure from a semi-ring to a ring: formula given, details in printed
notes. In particular, ‘total length’ of a finite disjoint union of half open intervals
gives a measure on the ring generated by our usual semi-ring P. Definition and
examples of outer measures. Standard procedure for obtaining an outer measure
from a measure on a semi-ring (proof that this gives an outer measure omitted:
see printed notes). In particular we will work with Lebesgue outer measure, which
is obtained in this standard way from our usual measure on P. Stated that such
an outer measure takes the correct values on sets in the semi-ring (proof later).
Defined the notion of measurable with respect to an outer measure (u*-measurable
sets). Elementary properties of measurability.

Tutorial session on measures and outer measures.

Recalled definition of p*-measurable sets. The collection of p*-measurable sets is
a o-field and the restriction of p* to this o-field is a measure.

Extension of measures from semi-rings to o-fields using outer measures. In par-
ticular this gives us Lebesgue measure on the Lebesgue measurable subsets of R
extending our notion of length of half-open intervals (defined on P). Some proper-
ties of Lebesgue measure: translation invariance, regularity.



