Section 5: Outer measures and the construction of Lebesgue measure

We begin our construction of Lebesgue measure by checking that the notion of length we are used to
really does give a measure on our usual semi-ring of half-open intervals, P. In order to do this we
need to briefly discuss compactness.

Compactness of Closed Intervals

In terms of sequences, a metric space is compact if every sequence in X has a subsequence which
converges in X. By the Bolzano-Weierstrass theorem, then, every closed and bounded interval [a,b] in
R is compact. However there is a topological version of compactness which we need here concerning
coverings using open sets.

Leta < b e R. Suppose we have a collection of open sets in R, {U,: yel} s.t.

la,b] = U U,.
yel

Then it is always true that there are

Y12 Y2sn Yy €L

S.t.

n
[a.p] = \J U,
j=1

We shall only need a special case of this fact, (see Proposition 5.2 below). See books on metric and
topological spaces for more details on compactness.

Lemma 5.1
1 If
(a!b] c U (ak’bk]9
k=1
then
Y (bi—ay) = b-a
k=1
(1) If
n
(a,b] 2 U (ag, by ]
k=1
then

Z (bk—ak) < b-a.
k=1



(i) If
(asb] = U (ak7bk]
k=1

then

(b—a) = Z (bk—ak).
k=1

Proof (There is a fairly easy direct proof available but we use the Riemann integral.)

We can assume that all the intervals
(akabk]a (d,b]

are contained in some closed interval [—m, m]. Then

(b—a) = f X(a, by (1) dt

and
(bk—ak) = f Z(bk,ak](t) dt.
1) If
(Cl,b] ; U (ak’bk]
k=1
then
Z(ﬂ,b] < Z Z(ak’bk]
k=1
at every point, so
b—a = f Z((I,b](t) dr
< Z Z(ak’bk)([) dr
—-m k=1
= Z (b —ay).
k=1
(1) If

(a,b] = U (ak,bk)

k=1

then
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Z(a,b](t) = Z Z([lk,bk)(t) Vt.
k=1
Integrating as in (i),
(b—a) = Y (by—ay).
k=1
(i) If
n
(Cl,b] = U (ak5bk]7
k=1
then (i) and (ii) apply and
(b-a) =Y (by—ayp).
k=1
A similar result holds in n-dimensions (see question sheet 2 for Rz).
Recall: closed intervals [a, b] are compact. In particular, we have the following.

Proposition 5.2

Let [a,b] < R be a closed interval, and suppose that
(ag,by) (k=1,2,3,...)

are open intervals s.t.
la,b] c U (ay, by).
k=1

Then 3 m e N s.t.

[a,b] U (Clk,bk)-
k=1
Returning to half-open intervals, we need the following.
Corollary 5.3

If
[a7b] c U (ak’bk)
k=1

then

oo

(b—a) < Y, (bp—ay).
k=1



Proof

m

By Proposition 5.2 there exists m € N such that [a,b] < U (ay,b;). But then
k=1
m

(a,b] c U (ay, by 1, and the result follows from 5.1(i).
k=1

Theorem 5.4

Define y: P — [0,] by u((a,b]) = b—a. Then u is a measure on P.
Proof

Certainly u(&J) = 0. Now suppose that

(a,b] = 1) (a,.b,]1.
n=1

We must show that

b-a=Y (b,-a,).
n=1

Certainly we may assume b > a. First note that, for all m € N,

Lr-n) (a,,b,] c (a,b]

n=1

and so, by 5.1(ii),

Y (b,-a,) <b-a.
n=1

Since this is true for all m € N, we have

Y (b,—a,) <b-a.
1

n=

To conclude the proof we must prove the reverse inequality. Let € > 0. Then, provided that € < b—a,

oo

[a+e,b] U (an,bn+28n)
n=1

so, by Corollary 5.3,

(b-(a+e) < Y (bn+;—an),

n=1

1.e.

b—a-¢€ < ( Y (bn—an))+€,
n=1

oo

b-—a<') (b,—a,)+2e.

n=1



Since this is true for all € € (0, b—a), we obtain
(b-a) <Y (b,—a,)
n=1
as required. O

A similar result holds in R": e.g. in R?, the function v defined on half-open rectangles by
v((a, b]x(c,d]) = (b—a)(d—c)

is also a measure (on P).

We now wish to measure the size of more complicated sets. A good start is to extend u to a
measure on the elementary figures & (finite unions of sets in P). The fact that this is possible is a
special case of a more general theorem. First we define extension.

Definition 5.5

Let X be a set, and let €, ¢, be subsets of (X) with ¢, < 6,. Let
ul:gl g [0700]! ‘[12362% [0’00]
be functions. Then u, is an extension of u; if

Ur(E) = u(E) (Ee€).

In this case we say u; is the restriction of u, to 6.

[This agrees with the usual notions of extension and restriction for functions.]

Note on summation

In the next theorem we will need to be able to change the order of summation in various series.

Recall, when we proved Proposition 1.9 we saw that if

aj € [0, 00], (j=123,..., 1<k<m

1 (ké ajk) B ké (/; ajk)‘

We shall now show how to extend measures from semi-rings to rings, and in particular from P to &.

then

IN ok

J

More useful facts about series of elements of [0, ]

Recall Proposition 1.10.
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Suppose we have a;;, € [0, ], where i € N, and 1 < k < n;. Then the set
{(i,k): k,ieN, 1 <k < n;}
is countable, so we can enumerate this set as

(G k)t =1,2,3,...}.

Y (Z aik) =Y a;;. (*)
i=1 ‘

k=1

From this we obtain a crucial fact about measures.
Lemma 5.6
Let X be a set, let 6 < P(X), suppose ¢ € €, and let u: ¢ — [0, o] be a measure.

If A € €, and A satisfies

n;

A=) Dy.
i=1k=1
where n,,n,,... € N, and the sets D;;, are all in €, then

uA) = ¥ ¥ uDy).

i=1 k=1

[In some books this is regarded as obvious!]
Proof

Let (iy,ky), (i, k), (i3, k3),... be an enumeration of the set

{(G,k): k,ieN, 1 < k < n;}.

Then
A = U Dl k
t:I ™t
SO
uA) =Y, ;)
t=1
= Z Z :u(Dtk)

by (¥) with ay = u(Dy).

With these facts at our disposal, we can prove our theorem.



Theorem 5.7

Let & be a semi-ring of subsets of a set X, and let u;: ¥ — [0, ] be a measure.

unique measure U,: R(S) — [0, o] such that y, is an extension of y;.

Proof
For any A € R(¥) there are disjoint sets A{,...,A,, in & with
m
j=1
The only possible value for u,(A) is
Hy(A)).
j=1

Thus if such a measure u, exists it is unique. We now wish to define

ﬂz(u Aj) =) u(4))
i=1 j=1

whenever A,...,A,, are disjoint sets in . To see that u, is well defined, suppose that
m n
A=) By
j=1 k=1

with A;, B all in ¥. Then set C; = A;N By, and obtain

all k.

Thus

Y X 11(Ciro)

j=1 k=1

Y Y wi(Cy)

k=1j=1

5
>
I

Il

n

Y wi(B).

k=1

Thus u, is well defined. To see that y, is a measure, suppose that

A=

l

A € R(¥Y) and

Bi
1

oo

with each B; € R(¥). Then there are pairwise disjoint sets A; in / (1 < j < m) with

Then there is a



Also, for each i, there are disjoint sets C;;, Cjs,..., Cj, in ¥ such that

B; = Ci
k=1

We have
oo oo n;
i=1 i=1k=1
m n

and B, =\ U (4;nCy).
j=1k=1

Since the sets (A; N Cy) are in ¥ we have

Wa(B) = Y Y, Hi(A;NCy)
i=1 k=1

and, since u,; is a measure, setting Dy = A; N Cy in Lemma 5.6 gives

ma) =Y ¥ imA,nCy).

i=1 k=1
Thus
b)) =Y mA) =Y L L mAnCy)
j=1 j=1i=1 k=1
o m
=Y Y X m@;nCy)
i=1j=1 k=1
= Z ﬂ2(Bl)
i=1
This concludes the proof. O
In particular, the measure on P
u((a,b]) = b-a

extends to a unique measure on the ring of elementary figures in R.
Example 5.8

Define y;: P — [0,00] by u;((a,b]) = b—a. Then u, has a unique extension u,: & — [0, 0]

which is a measure satisfying

#2(U (ak’bk]) = Z (b —ay).
k=1

k=1

(Similarly in higher dimensions.)
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For our main extension theorem we will need the notion of an outer measure u* and sets which

are ‘measurable with respect to u*’.
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Definition 5.9
Let X be a set, and let
e P(X) = [0, c0].
Then p* is an outer measure on X if
» w9 =0,

(i) if A,BeP(X)and A < B then u*(A) < u*(B) (u* is monotone),

(i) if A < C) A, , where A, A, are subsets of X, then u*(A) < i wE(A,). (u* is countably subad-
ditive.)n:] "

Note
An outer measure on X is defined on all subsets of X.

Examples

(i)  Any measure on £(X) is also an outer measure on X.

(i) Defining

0 (E=09),

* =
() [1 (E # D),

defines an outer measure which is not a measure (provided that X has at least two points!).
Definition 5.10

Let X be a set and let u* be an outer measure on X. A set A ¢ X is said to be measurable with

respect to u* (or u*-measurable) if, for every set E < X, the equality
U*(E) = p*(ENA)+u*(ENA)

holds.
Notes

(i) We know u*(E) < u*(E\A)+ u*(ENA) by subadditivity, thus A is u*-measurable if and only if,
for all £ C X,

UEE) = p*(ENA)+ u*(ENA).
(il) Similarly, if u*(E) = oo the equality is automatic, so the condition need only be checked for

those E with u*(E) < oo,

(iii) A is y*-measurable if and only if X\A is y*-measurable, because

E\A = ENn(X\A), while
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ENA = E\(X\A).

We will be interested in using a measure defined on a ring to define an outer measure on all

subsets of a set.
[e.g. we shall show that defining, for A c R,
u*A) =infd Y (b,—-a,): a, <b,eR, A c \J (an,bn]]
n=1

[* is an outer measure on R. We will show that all the Borel sets are u*-measurable, and that

the restriction of u* to the Borel sets is a measure.]

We now begin to prove the results we need about outer measures. The first Lemma is fairly

weak.
Lemma 5.11

Let X be a set and let u*: P(X) — [0, ] be an outer measure. Set
F ={A e P(X): Ais u*-measurable}.

Then # is a field, and, for any E c X, and any disjoint sets A;,A,,...,A, € %,

#*(U (EﬁAk)) = UFENAY).
k=1 k=1
In particular, u* is finitely additive on Z.
Proof
Let A,Be %, and let E c X. Then
note that E\(AUB) = (E\A)\B,
and that ENn(AUB) = (ENA)NB)U(ENA).

Thus
UHE) < u(E\(AUB))+u*(EN(AUB))
= W((ENA)\B)+ u*((ENA)NB) U (ENA))
< u*((E\A)\B)+ u*((E\A) N B) + u*(ENA)
(by subadditivity)
= WH(ENA) + p*(ENA)
(B is measurable)
= WH(E)

(A is measurable).
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Since u*(E) appears at both ends, all the inequalities in the middle are equalities, in particular,
HHE) = WN(E\(AUB))+u*(EN(AUB)).

This shows A U B is measurable.

The fact that & is measurable is trivial, and we already know that
Aed = X\Aeg.

Thus % is a field.

For the last part, let E ¢ X and define
v: % — [0,00] by
V(A) = u*(ENA).

Then we are required to prove that v is finitely additive on %.

[Note: If A,,...,A, are disjoint sets in %, then

n

n
) (ENA) =En() A
k k

k=1 k=1

It is enough to show that if A,Be % and AnB = & then v(A UB) = v(A)+Vv(B). But
V(AUB) = u*(ENn(AUB))
= u*(EN(AUB)NA)+u*(EN(AUB))\A)

(since A is measurable)

= u*(ENA)+u*(ENB)
(since AnNB = &)
= v(A)+Vv(B)
as claimed.
The result follows. U

We shall see that, in fact, 7 is a o-field, and u* restricted to # is a measure. We will then be
able to prove the extension results we want.

Lemma 5.12

If % is a field of subsets of a set X, then the following are equivalent:
(i) & is a o-field,

(1) whenever A;,A,,A5,... are pairwise disjoint sets in ¥ then

(J A, ed
n=1
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Proof

(i) = (i) is trivial,
(ii) = (i) assume (ii) holds.
Let BI9BZ’B3"" € .

We must show U B, € 7, to see this set

n=1

A]ZBI, An+1 :Bn+1\U Bk (n:1,2,3,...).
k=1

Then A;,A,,A5,... are pairwise disjoint elements of 7.

Also
U B, = U A,
n=1 n=1
and this is in ¥ by (ii). |
Recall

If X is a non-empty set and u* is an outer measure on X, then, defining 7 to be the set of u* —
measurable subsets of X we know that ¥ is a field. Also, for any E X and sets A;,A,,...,A, €%

which are pairwise disjoint.

We have
ﬂ*(U EmAk) = Y utENAp). )
k=1 k=1
[Taking E = X, (*) shows u* is finitely additive on %.]
Theorem 5.13

Let u4* be an outer measure on a non-empty set X. Let Z be the set of y*-measurable subsets of
X. Then

(i) % is a o-field on X,

(i1) for any set £ < X and pairwise disjoint sets A;,A,,... in 7,

,u*(o EmAn) = E UEENA,),

n=1 n=1
(iii) the restriction of u* to 7 is a measure.

Proof

First note that (iii) follows immediately from (ii) by setting £ = X, so we need only prove (i) and

(i1). Also we know % is a field, so to prove (i) we need only check countable disjoint unions.
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To prove (i) and (ii), let A;,A,,... be pairwise disjoint elements of ¥ and let E c X.
Set
A= O A,.
n=1
Note that

ENA = O (ENA,).

n=1

Since u* is countably subadditive, we have

HENA) = ﬂ*(U EmA”) < Y u*ENA,). (1)
n=1 n=1
Set
n
Bn = An
k=1

We have B, € # and B,, < A. Thus
H¥(B,) < pH(A)
(by monotocity) and
w*(B,NE) < u*(ENA).

By Lemma 5.11,

1*(B,NE)

,U*(U EmAk)
k=1

Il

Y uHENAY.
k=1

Thus
U (ANE) = Z HEHENAL).
k=1

Letting n — oo, we have

U (ANE) = U (ENA). (2)
k=1
We thus obtain (using (1) and (2))
WHENA) = ¥ u*ENA),
k_

=1

proving (ii).
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To show that

\JA,e?

n=1
we need to show that
UHE) = p*(ENA)+pu*(E\A).
We know that B, € #, so we have
u*(E) = p*(ENB,)+u*(E\B,)
> p*(ENB,)+ u*(E\A)

(since E\B,, © E\A, and y* is monotone)

= (Z u*(EmAk>)+u*(E\A>.
k=1

Letting n — o we have

WH(E) = ( y u*(EmAk))w*(E\A)
k=1
= u*(ENA)+u*(E\A)
(by (ii))

= u*(E).

Thus equality holds, and
PHE) = uH(ENA)+p*(E\A),

This is true for all £ < X, so A is measurable. O

Recall

Let X be a set, and define

0 E=0,
1 otherwise.

WH(E) = {

Then u* is an outer measure. The theorem applies to tell us the collection of u* measurable sets is a

o-field on which u* is a measure.
Exercise: Show that only & and X are y*-measurable.

We now state without proof another fact about double series.
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Proposition 5.14
If a,;, €10,] for n,ke N then whatever order we add up the extended real numbers a,;, we

always get the same answer: in particular

if you enumerate NxN as (n;,k;), (n,,k,), (n3,k3),... then

Z anjkj= Z (Z ank). D
j=1 -1

n k=1
Remark: all these results about series have elementary proofs, but can also be deduced from results in

our section on integration (later).

Lemma 5.15
Let X be a set, let 6 be a set of subsets of X with & e €. Suppose that u: € — [0,00] is a

function, and that u(<) = 0.

Define

u*(A) =infd Y w(E,): E;,E,...€€ and A c En]
n=1 n=1

Then u* is an outer measure on X.

Remarks
We will use Proposition 5.14 in this proof. Note that *(A) may be +eco for two reasons

either there are no sets E,, E,, E5,... in € with

Ac \JE,
n=1

in which case u*(A) = inf(J) = +oo or it could be that
H*(A) = inf{eo}.

But certainly
UEA) € [0,00] VA CX

Proof
Certainly u*: P(X) — [0,00]. To see that u*(J) = 0 take

E1=E2: e :@Gg.
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Then
g c O E,,
n=1
SO
u* Q) < il u(E,) = 0.
Thus u*() = 0.

To check monotonicity, suppose that A < F. Set

S
Il

N

Cs

=l‘11
[ —

n=1

SA = { Z ﬂ(En) El"" S g, A

SF={ HE,)): E,...€6, F c
n=1

(@
|
N
[ —

3
Il
—

since A c F, we have Sp < S,.
inf(S,) < inf(Sg),

ie. u*(A) < u*(F).
To prove countable subadditivity suppose that
A C O A,,
n=1
where A,A,A,,... are in (X). We must show
u*A) < g A,

Two cases:

(1) if Z L*(A,) = oo, the result is trivial;

n=1

(ii) otherwise ) wu*(A,) < oo, so also each u*(A,) < eo.

n=1

Let € > 0. Because p*(A,)) is finite, we can choose E,; € € (k€ N) s.t.
An c U Enk
k=1

and

(Z u(Enn) < W5A)+ 2i
k=1
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[by definition of p*(A,)].
Then
A;UA,,QU UEnk‘
n=1 n=1 k=1

N.B.

Zl (k; u(Enk>) <Y (u*(An>+§)

=1

=

n=1
< oo,
Thus, the countable sum of all the u(E,;) is equal to

Z Z :u(Enk) < ( ﬂ*(An))’l'g-
n=1

n=1 k=1

Thus

u*(A) < u*A,)+e
=1

n=

since this is true V € > 0, we obtain

pEA) < Y ptA,). m
n=1

Theorem 5.16 (Extension Theorem)

Let R be a ring of subsets of a set X, and let u: R — [0, ] be a measure on R. Then u has an

extension to a measure f defined on a o-field ¥ D R.
Proof

Define

)

u,): Ay, A,,...eR, Ec U An}.
=1 n=1

n=

pw*(E) = inf{

Then the conditions of the Lemma are satisfied, and so g* is an outer measure on X. Let Z be the set
of u* measurable subsets of X. Let g be the restriction of u* to #. Then 7 is a o-field, and g is a
measure on #.

It remains to show that R < ¥ and that fi(A) = u(A) Vv A €R.

Let A € R, then
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AcCcAuQZBudu...
so u*(A) < u(A).

But, if A{,A,,... € R and

Ac A4,
n=1

then, since u is a measure on R, u(A) < Z H(A,). This holds for all such sequences A, so
n=1

H(A) < p*(A). Thus u(A) = u*(A).

Finally, we show that A is g*-measurable. Let E ¢ X. We must show that
PHE) = p*(ENA)+pHE\A)

as usual we only need to prove that LHS > RHS. Set

Sg=1Y wu@,:A,A,,...eR, EC UAH].

n=1 n=1
Since pu*(E) = infSg it is enough to show that u*(ENA)+u*(E\A) is a lower bound for Sp. Let

A, A,,...eRwithE c | A,. Then

n=1

EnA c U (A,NA),

n=1

E\A c U (A,\A).
n=1

So

PHENA) < ¥ (A, NA),
=1

n=

WHE\A) < f 1A N\A).
1

n=

Adding gives

HHEAA)+*EVA) < T (u(A, O A)+p(A, \A))

n=1
= Y u@,)
n=1
because i is a measure on R.

This shows u*(ENA)+ u*(E\A) is a lower bound for S;. Thus
UHENA)+u*(E\A) < u*(E).

This concludes the proof. O
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With our measure y: & — [0, o] defined by

,U(U (ak’bk]) = Z (br—ay)
k=1 k=1

we obtain an outer measure u* as usual. This particular outer measure is called Lebesgue outer meas-
ure on R and we shall denote it by A*. The set, #, of subsets of R which are A*-measurable, is known
as the collection of Lebesgue measurable subsets of R. Our theorem tells us that % is a o-field con-
taining &, and that the restriction of A* to % is a measure. We shall denote this restriction by A and
call it Lebesgue Measure. Note that ¥ contains the o-field generated by &, which is precisely &#, the
collection of all Borel sets in R.

With this notation we have
PcécBcdFc PR,

and we can measure the size of all Borel sets using A.
Definition 5.17

Let (X, %) be a measurable space. Then we say that the sets £ in ¥ are ¥-measurable sets (or
measurable if the o-field is unambiguous). In particular, if X is a metric space, by default we take
F = {E < X|E is a Borel set}. In this case the measurable sets are the Borel sets in X, so we say such
sets are Borel measurable. When we have an outer measure u* on a set X we already have defined
u*-measurable. This coincides with the %-measurable sets when 7 = {E < X|E is p*-measurable}.
In the particular case of Lebesgue outer measure on R, A*, the A*-measurable sets are the Lebesgue

measurable sets (or Lebesgue sets) in R.

Every Borel set is Lebesgue measurable. The converse is false but tricky. It turns out that the
cardinality of # is the same as that of R, whereas the cardinality of % is the same as that of P(R).

[Recall: Two sets A, B are said to have the same cardinality if there is a bijection f: A — B. For
every set X, X and £(X) have different cardinalities.]

Is every subset of R Lebesgue measurable? The answer is no, but most sets you meet are.
Proposition 5.18
Let ¥ be a semi-ring of subsets of a set X, and set R = R(Y).

Suppose u: R — [0,] is a measure, and we form g* as usual by

oo

WA, A, A,...€R, Ec | An].
=1

n= n=1

WH(E) = inf{
Then, in fact, we also have

u*(E) = inf{ Y u@,):ALA ... e¥, Ec U An}.
n=1

n=1



- 21 -

Proof

The sets of extended real numbers

S] = { ﬂ(A"): A],Az... GR, E c U An]
n=1

= n=1

and S, = [ Y uA):ALA . €Y, EcC U An]
n=1

n=1

are in fact the same. The fact that S, < §; is obvious. Now suppose x € S;. Then there are
A, A,... € R with

Ecl\JA, and x=Y u@,).
n=1

n=1

But we may write
mll
An = t) Bnk
k=1
with B,; in 4. Then

m,
:U(An) = Z lu(Bnk) all n,
k=1

x= Y uA) =Y Y uBy.
n=1

n=1 k=1

Since

o m,
Ec LJ kJ Bnk
n=1 k=1
a countable union of sets in .Y, we deduce that x € §,. This proves our claim.
Corollary 5.19

In the particular case of Lebesgue outer measure 1*, we find

n=

A*(E) = inf{f (b,—a,): Ec (an,b”]}.
1 n=1

Proposition 5.20

(i) Fora,be R witha < b,
Ala, b]) = A([a, b)) = A(a, D)),

= MU(a,b]) = b-a.

(ii) For E c R,
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A¥(E) = inf[ Y (b,-a,): Ec \J (an,bn)]
n=1 n=1
= inf{ Y (b,-a,): Ec \J [an,bn]}.
n=1 n=1
Proof. See question sheet 5. O

Slightly trickier is to show that A (Cantor set) = 0.
[Note that the Cantor set is closed, hence is Borel, hence is Lebesgue measurable.]

If A*(A) = 0, then we can show A must be Lebesgue measurable. This is a special case of the follow-

ing.
Lemma 5.21
Let u*: 2(X) — [0, ] be an outer measure on a set X.
(i) IfA ¢ Xand u*(A) = 0 then A is pu*-measurable.
(ii) If B is u*-measurable and A < B and u*(B) = 0 then A is u*-measurable.
(iii) If A ¢ C < B with A, B u*-measurable and u*(B\A) = 0 then C is g*-measurable.
Proof
(i) Given u*(A) =0, let E c X. Then
wH(E) < pH(E\A)+ u*(ENA),
< WHE)+pH(A),
= WH(E).
Thus equality holds and A is g*-measurable.
(iil) A < B, and pu*(B) = 0 then u*(A) = 0. So A is u*-measurable.

(iii) A, B pu*-measurable, A ¢ C < B, u*(B\A) = 0.
Then C\A < B\A, so C\A is u*-measurable. But C = (C\A)UA, which is g*-measurable.

In particular, given that 4 (Cantor set) = 0, we deduce that every subset of the Cantor set is
Lebesgue measurable. But the Cantor set has the same cardinality as R (FACT) and so the collection
of subsets of the Cantor set has the same cardinality as P(R). It follows that the collection of Lebes-

gue sets has the same cardinality as P(R) [using the Schroder—Bernstein theorem].

Not all of the subsets of the Cantor set are Borel sets (there are too many!). So if you restrict A

to & you have an incomplete measure, i.e. there are sets A < B with

BeB, AB)=0 but A¢ZR.
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Notation

For any E c R, we write

E+x ={y+x:yeE} (for any x in R).

Proposition 5.22
(i) IfE = (a,b] then
ME) = M(E+x) (xeR).
(ii) If E < R then
AYE+x) = A¥(E) (xeR).
(iii) If A < R is Lebesgue measurable, then so is A+x (x € R), and
AMA +x) = L(A).

(iv) If A < R is Lebesgue measurable, then so is —A, and

A(—=A) = A(A).
Proof
i) E+x=(a+x,b+x] and (b+x)—(a+x) = b—a.

(ii)) This is an easy exercise, based on (i) and the definition of A*.

(iii) AH(E—=x) = A¥(E) = AX(ENA)+A*(E\A)

EN(A+x) = (E-=x)NA)+x,

E\(A+x) = (E-x)\A) +x.

A¥(E) = AR(E-x) = A*((E-x)NA)+A*((E—x)\A)  because A is measurable
= AMEN(A+x)+A*(E\A +x).
This is true for all £ < X, and so A +x is Lebesgue measurable.
By (ib),

MA +x) = AMA).

(iv) This is similar to (i)—(iii), using —(a,b) = (=b, —a), and the definition of A* in terms of open
intervals. O
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So Lebesgue measure is translation invariant.
A non-measurable set

To find a non-measurable set we will need the axiom of choice.
Example 5.23

Working in [0, 1] we define an equivalence relation ~ by x ~ y if x—y e Q. This equivalence
relation splits [0, 1] up into equivalence classes. Note, for x € [0, 1], the equivalence class of x is
(@Q+x)N[0,1].

We now form a set E by choosing one element from each equivalence class. [This uses the
axiom of choice.]

We show that E is not Lebesgue measurable.

Set S = 0N [-1,1], a countable set. Then

[0,1] ¢ U (E+q) c [-1,2]
qgesS

because £ c [0,1], and, V ye [0,1], 3 xe E with (y—x) € O since x,y are in [0, 1], we have then
(y—=x)e S, and ye E+(y—x).

The collection of sets {E+¢g: g € S} is countable, and pairwise disjoint.

(Reason: if p # g € S, then suppose we had
x € (E+p)n(E+q).
Then we would have (x—p) € E and (x—¢q) € E. This is impossible because E has only one member of
each equivalence class.)

By assumption, E is measurable, and so E+¢ is measurable ¥V g € S.

We have
1 =A([0,1]) < A(U (E+q)) = Z ME+q) = Z AME).
qeSs qges gesS
Also
l(u (E+q)) <AM[-1,2]) =3
qgesS

SO

Y AE) < 3.

gesS

This is impossible: Z A(E) must be either 0 or oo.
geS
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Regularity of Lebesgue Measure

Recall: (see question sheet again)

AME) = inf[i (b,—a,): EC O (an,bn)].
n=1 n=1
Lemma 5.24
For any E ¢ R, A*(E) = inf{A(U): U open, U 2 E}.
Proof
Certainly A*(E) < inf{A(U): U open, U 2 E}.

Suppose x > A*(E). Then 3 (ay, b;), (a5, b,),... such that

Ec \J (a,,b,) and Y (b,—a,) < x.
n=1

n=1

n=1

Set V=1 (a,,b,). Then A(V) < Z (b,—a,) < x. Also E c V, and so we have
n=1

inf{A(U): U open, U 2 E} < x.
This is true V x > A*(E) and so the result follows. O
N.B. We do not claim to be able to obtain

A*(U\E) < e.

Theorem 5.25

Let E be a Lebesgue measurable subset of k. Then

(i) ¥V &> 0 there is an open set U < R with

MU\E)<¢e and EcCc U

(ii) Ve > 03 aclosed set F ¢ E with

ME\F) < e

Proof

(i) Set E, =En[—-n,n] for ne N. Then E, is measurable, and A(E,) < . Choose open sets V,
€

with E, c V, satisfying A(V,) < A*(E,) + T

We can do this because A*(E,) < co. Then set

U= \J V,. Certainly U is open, and

n=1
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U\E = |J (V,\E) € \J (V,\E,).
n=1

n=1

Thus
oo el 8
MUNE)< ¥ AVNE) < Y = =¢
ng] ngl 2

(because the sets E, are measurable) proving (i).
(ii) To prove (ii), we use (i), and set A = E€. By (i) 3 an open set U 2 A with A(U\A) < €.
Set F = R\U. Then F ¢ R\A = E and
(E\F) = (R\F)\(R\E) = U\A
SO

MENF) = MU\A) < . O

The fact that you can approximate Lebesgue measurable sets from the inside by closed sets, and
from the outside by open sets, is described by saying that Lebesgue measure A is regular.

If (X, %) is a measurable space and E € ¥ then
(FNE: Fe%} ={Fe% F cC E}
is a o-field on E, denoted by 7| (non-standard notation) or .

If u: 7 — [0,0] is a measure, then p|g is a measure on Fr. We will sometimes denote this

measure by ur.

For any Lebesgue measurable set £ c R, we have a o-field consisting of all Lebesgue measur-
able sets contained in E, and we can restrict Lebesgue measure to this. In particular we can work on

any interval [a, b].
Exercise

Regarding [a, b] as a metric space, show that the Borel subsets of [a,b] are precisely the sets in
Biap) (Where B, ={En[a,bl: E€eB} ={EeB: E C [a,b]}). So ‘Borel subsets of [a,b]” is

unambiguous.

In particular, restricting attention to [0, 1], Lebesgue measure gives a probability measure on the
set of Borel subsets of [0, 1].



