G1CMIN MEASURE AND INTEGRATION: QUESTION SHEET 1

Answers to questions 1 and 2 to be handed at the end of the lecture on Friday February 7th.

Although you are not required to hand in the questions on Riemann integration, I strongly recommend that you try them! They give you a chance to revise Riemann integration, and to test your understanding of fields and σ -fields.

Always justify your answers.

1.(i) Let $E \subseteq \overline{\mathbb{R}}$. Prove that

$$\inf E = -\sup\{-x : x \in E\}.$$

(ii) Use (i) to show that, as claimed in the notes, for every sequence $(x_n) \subseteq \overline{\mathbb{R}}$,

$$\liminf_{n \to \infty} x_n = -\limsup_{n \to \infty} (-x_n)$$

- 2.(i) Prove carefully the following statement: "Let (x_n) , (y_n) be nondecreasing sequences in $[0, \infty]$, and suppose that $x_n \to x$ and $y_n \to y$ as $n \to \infty$. Then $x_n y_n \to xy$ as $n \to \infty$." (Throughout convergence is as defined for sequences in $\overline{\mathbb{R}}$.)
- (ii) Does the statement in (i) remain true if the word "nondecreasing" is omitted?
- (iii) Show that the statement in (i) is false if the interval $[0, \infty]$ where x_n and y_n are assumed to be is replaced by the interval $(-\infty, \infty]$.

In the remaining questions, χ_E denotes the characteristic function of the set E:

$$\chi_E(x) = \begin{cases} 1, & \text{if } x \in E; \\ 0, & \text{otherwise.} \end{cases}$$

- 3. (Revision) Show that for every finite set $E \subseteq [0,1]$, χ_E is Riemann integrable on [0,1].
- 4. Let \mathcal{F} be the family of all sets $E \subseteq [0,1]$ such that χ_E is Riemann integrable on [0,1]. Prove that \mathcal{F} is a field of subsets of [0,1], but not a σ -field.
- 5. Give an example of a sequence of functions $f_n:[0,1] \longrightarrow [0,1]$ and a function $f:[0,1] \longrightarrow [0,1]$ such that each function f_n is Riemann integrable on [0,1], $f_n \to f$ pointwise on [0,1] but f is not Riemann integrable on [0,1].
- 6. (Harder)
- (i) Let C be the Cantor middle-thirds set. Is χ_C Riemann integrable on [0, 1]? If so, what is its integral?
- (ii) Find a closed set $E \subseteq [0,1]$ such that χ_E is not Riemann integrable on [0,1].