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Abstract. In [9], Dawson and the second author asked whether or not a Ba-
nach function algebra with dense invertible group can have a proper Shilov

boundary. We give an example of a uniform algebra showing that this can
happen, and investigate the properties of such algebras. We make some re-

marks on the topological stable rank of commutative, unital Banach algebras.

In particular, we prove that tsr(A) ≥ tsr(C(ΦA)) whenever A is approximately
regular.

1. Introduction

LetA be a commutative, unital Banach algebra. The character space ofA is denoted
by ΦA, as in [8]. For a ∈ A, we denote the Gel’fand transform of a by â. We say that
ΦA contains analytic structure if there is a continuous injection τ from the open unit
disk D to ΦA such that, for all a ∈ A, â ◦ τ is analytic on D. In [16], Stolzenberg
gave a counter-example to the conjecture that, whenever a uniform algebra has
proper Shilov boundary, its character space must contain analytic structure (see
also [17, Theorem 29.19], [19] and [1]). Cole gave an even more extreme example
in his thesis [3], where the Shilov boundary is proper and yet every Gleason part is
trivial. It is elementary to show that the invertible group of A cannot be dense in
A whenever ΦA contains analytic structure. The converse is false, as is shown by
the uniform algebra C(D) of all continuous, complex-valued functions on D. Thus
the requirement that the invertible group be dense is strictly stronger than the
non-existence of analytic structure in the character space of the algebra. This leads
to a new conjecture: that no uniform algebra with dense invertible group can have
a proper Shilov boundary. This was raised (as an open question) by Dawson and
the second author in [9].

Here, we first modify the example of Stolzenberg to show, in §2, that this new
conjecture is also false. Our example is of the form P (X) for a compact set X ⊆ C 2.
In our example, the Shilov boundary is proper, and yet there is a dense set of
functions in the algebra P (X) whose spectra have empty interiors. It is clear that
this latter condition is sufficient for the invertible group to be dense in the algebra.

In fact, this sufficient condition is also necessary for the invertible group to be
dense, as is shown in [10] and [7, Corollary 1.10]. Note, however, that it is not true
that a function in the closure of the invertible group must have a spectrum whose
interior is empty. For example, the invertibles are dense in the uniform algebra
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C(I), where I = [0, 1], but there are functions in C(I) whose range (and spectrum)
is the unit square.

In §3, we shall obtain a new result about the topological stable rank (to be
defined below) of approximately regular commutative, unital Banach algebras; we
note that a commutative, unital Banach algebra has dense invertibles if and only if
it has topological stable rank equal to 1.

We recall some standard notation and results. For the basic theory of commu-
tative, unital Banach algebras, see, for example, [8], [12], and [17].

In our terminology, a compact space is a non-empty, compact, Hausdorff topo-
logical space. We denote by dimX the covering dimension of X; see [14] for details
of many equivalent definitions of dimX.

Let X be a non-empty set. The uniform norm on X is denoted by | · |X . Now
let X be a compact space. The algebra of continuous, complex-valued functions on
X is denoted by C(X).

Let A be a unital algebra. Then InvA denotes the invertible group of A. Now
suppose that A is a unital Banach algebra. Then we say that A has dense invertibles
if InvA is dense in A. Let A be a commutative, unital Banach algebra, and let
a ∈ A. We denote the spectrum of a by σ(a), so that σ(a) = â(ΦA). We set
expA = {exp a : a ∈ A} ; in the case where A is commutative, expA is exactly the
component of InvA containing the identity.

Let X be a compact space. A Banach function algebra on X is a unital subal-
gebra of C(X) that separates the points of X and is a Banach algebra for a norm
‖ · ‖ ; such an algebra is a uniform algebra if it is closed in (C(X), | · |X). Let A
be a Banach function algebra on X. As usual, we identify X with the subset of
ΦA consisting of the evaluations at points of X, and we say that A is natural if
ΦA = X. The Shilov boundary of A, denoted by ΓA, is the minimum (non-empty)
closed subset K of ΦA such that |f |K = |f |ΦA

(f ∈ A). For f ∈ C(X), the zero
set is

ZX(f) = {x ∈ X : f(x) = 0} .
Let A be a commutative, unital Banach algebra. Then A is regular if, for each

proper, closed subset E of ΦA and each ϕ ∈ ΦA \ E, there exists a ∈ A with
ϕ(a) = 1 and ψ(a) = 0 (ψ ∈ E), and A is approximately regular if, for each proper,
closed subset E of ΦA and each ϕ ∈ ΦA \ E, there exists a ∈ A with ϕ(a) = 1 and
|ψ(a)| < 1 (ψ ∈ E). Let E be a closed subset of ΦA. Then AE is the closure in
(C(E), | · |E) of {â | E : a ∈ A}. We see that A is approximately regular if and only
if each such uniform algebra AE is natural on E. There are many uniform algebras
that are approximately regular, but not regular. For example, let X be a compact
subset of C with empty interior. Then R(X) is always approximately regular [20,
Proposition 4.7], but need not be regular (see, for example, [11]).

2. The new counter-example

We are now ready to construct our main example.
The topological boundary of a set X ⊆ C n is denoted by ∂ X. We shall use the

notation z = (z, w) for a typical element of C 2.
Let X be a compact subset of C n. The polynomially convex hull and the ra-

tionally convex hull of X are denoted by X̂ and hr(X), respectively. The algebras
P (X) and R(X) are the uniform closures in C(X) of the set of restrictions to X of
the polynomials and of the rational functions with poles off X, respectively. It is
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standard that ΦP (X) and ΦR(X) can be identified with X̂ and hr(X), respectively.
With this identification, P (X̂) and R(hr(X)) are equal to the sets of Gel’fand
transforms of the elements of the algebras P (X) and R(X), respectively.

Theorem 2.1. There exists a compact set Y ⊆ ∂ D 2
in C 2 such that (0, 0) ∈ Ŷ ,

and yet P (Y ) has dense invertibles. In particular, setting X = Ŷ , the uniform
algebra P (X) is natural on X and has dense invertibles, but ΓP (X) is a proper
subset of X.

Proof Let F be the family of all non-constant polynomials p in two variables
with coefficients in Q+iQ such that p(D 2

) ⊆ D. This is a countable family, and the
family {p|Y : p ∈ F} is guaranteed to be dense in the unit ball of P (Y ) whenever
Y is a compact subset of D 2

. We shall construct a compact set Y ⊆ ∂ D 2
such that

(0, 0) ∈ Ŷ and such that, for each p ∈ F , the spectrum of p|Y with respect to P (Y )
has empty interior. From this it quickly follows that Y has the desired properties.

Choose a countable, dense subset {ζi : i = 1, 2, . . . } of D which does not meet
the countable set {p(0, 0) : p ∈ F}. Define sets Ei,p for i ∈ N and p ∈ F by

Ei,p = {z ∈ D 2
: p(z) = ζi} .

Each Ei,p is compact, and there are only countably many such sets. Enumerate
those pairs (i, p) ∈ N × F for which Ei,p is non-empty as (ij , pj)∞j=1, and then set
Kj = Eij ,pj

(j ∈ N). For notational convenience, set aj = ζij
, so that

Kj = {z ∈ D 2
: pj(z) = aj} .

Note that there may be repeats in the sequence (aj), and that the sets Kj need not
be pairwise disjoint, but this will not matter.

Define polynomials Gj for j ∈ N by

Gj =
pj − aj

pj(0, 0)− aj
.

Then Gj |Kj = 0 and Gj(0, 0) = 1 for each j ∈ N.
We now define inductively a sequence (Fj) of entire functions on C 2 which also

satisfy the conditions that Fj |Kj = 0 and Fj(0, 0) = 1 for each j ∈ N.
We begin with F1 = G1. Thus F1|K1 = 0 and F1(0, 0) = 1.
Now suppose that j ∈ N, and assume that F1, . . . , Fj have been defined so as to

satisfy Fm|Km = 0 and Fm(0, 0) = 1 (m = 1, . . . , j). Set

(1) Lj = {z ∈ D 2
: ReFj(z) ≤ 1/2} ,

and Hj+1(z) = exp(Fj(z) − 1). We see that |Hj+1|Lj
≤ exp(−1/2) < 1 and that

Hj+1(0, 0) = 1. Choose N ∈ N large enough so that

|HN
j+1Gj+1|Lj

< 1/4 .

Since Gj+1|Kj+1 = 0, we then also have

|HN
j+1Gj+1|Lj∪Kj+1 < 1/4 .

Set Fj+1 = HN
j+1Gj+1. Clearly Fj+1|Kj+1 = 0 and Fj+1(0, 0) = 1. The inductive

construction now proceeds.
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Note that this construction also produces a sequence (Lj) of compact subsets of
D 2

as specified in (1). We have Kj ⊆ intLj (j ∈ N) (here and below the interior is
taken in D 2

). Moreover, for each j ∈ N, we have

|Fj+1|Lj∪Kj+1 < 1/4 ,

and hence Lj ∪Kj+1 ⊆ intLj+1.
For each j ∈ N, consider the variety Wj = {z ∈ C 2 : Fj(z) = 1}. Note that

(0, 0) ∈ Wj and Wj ∩ Lj = ∅. Set Vj = Wj ∩ D 2
. Since Wj is the zero set of an

entire function on C 2 which vanishes at (0, 0), it follows (using, for example, [13,
Theorem C5, Chapter I]) that Vj ∩ ∂ D 2 6= ∅.

Finally, set Mj = {z ∈ D 2
: ReFj(z) ≥ 1/2}. We now see that the following

three facts hold.
(a) The sets intLj are nested increasing, and

∞⋃
j=1

Kj ⊆
∞⋃

j=1

intLj .

(b) We have Vj ⊆Mi (j ≥ i).
(c) For each j ∈ N, there is a polynomial hj such that |hj |Mj < |hj(z)| (z ∈ Kj).

Here (a) and (b) are clear from the definitions and properties above. For (c), note
that

| exp(−Fj)|Mj
≤ exp(−1/2) < 1 = exp(−Fj(z)) (z ∈ Kj) ,

and so we may take hj to be a suitable partial sum of the power series for exp(−Fj).
We now consider the space of all non-empty, closed subsets of D 2

, with the Haus-
dorff metric. (For more details on this metric, see, for example, [8, Appendix A.1].)
This metric space is compact, so the sequence (Vj) has a convergent subsequence,
say Vjk

→ V ⊆ D 2
. We see that (0, 0) ∈ V because (0, 0) is in all of the sets Vj .

By property (b) above, V ⊆ Mi for each i ∈ N. Finally, as noted above, all of the
sets Vj have non-empty intersection with ∂ D 2

, and so the same is true of V . Set
Y = V ∩ ∂ D 2

, a non-empty, compact set. We shall show that this set Y has the
desired properties.

We first show that Ŷ = V̂ (and so, in particular, that (0, 0) ∈ Ŷ ). For this
it is enough to show that, for every polynomial p, we have |p|V = |p|Y . Given a
polynomial p, assume for contradiction that there is a z0 ∈ V \ ∂ D 2

such that
|p(z0)| > |p|Y . Then there are disjoint open sets U1 and U2 in C 2 with

z0 ∈ U1 ⊆ D 2 ,

with Y ⊆ U2, and such that |p(z)| > |p|U2 for all z ∈ U1. By the definition of
V , there must be a j ∈ N such that Vj ∩ U1 6= ∅ and Vj ∩ ∂ D 2 ⊆ U2. Thus
max{|p(z)| : z ∈ Vj} is attained at a point of D 2, and not at any point of Vj ∩∂ D 2

.
This contradicts the maximum principle [13, Theorem B16, Chapter III] on Vj .
Thus we must have Ŷ = V̂ , as claimed.

Finally, let p ∈ F . We wish to show that the spectrum of p|Y in P (Y ) has empty
interior, i.e., that the set p(Ŷ ) = p(V̂ ) has empty interior. Assume for contradiction
that this is not the case. Then there must be some i ∈ N with ζi ∈ p(V̂ ), and there
is some z0 ∈ V̂ with p(z0) = ζi. In particular, z0 ∈ Ei,p, and so there is a j ∈ N
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with ζi = aj , p = pj , and Ei,p = Kj . Thus z0 ∈ Kj ∩ V̂ . Since V ⊆ Mj , it follows
from (c), above, that the polynomial hj satisfies

|hj |V ≤ |hj |Mj
< |hj(z0)| ,

and this contradicts the fact that z0 ∈ V̂ .
We have proved that Y has the desired properties.
Finally, we set X = Ŷ . The required properties of P (X) are now immediate

from the standard theory discussed earlier. �

Remarks Let X and Y be as in Theorem 2.1, and set A = P (X).
(a) The coordinate projections π1 : (z, w) 7→ z and π2 : (z, w) 7→ w are polyno-

mials and are clearly in F . Thus the projections of X on the two coordinate
planes have empty interior, and so intX = ∅.

(b) Since A is natural on X and A 6= C(X), we must have dimX > 0. By [14,
Theorem IV 3], since intX = ∅, we must have dimX ≤ 3. In fact, P (X)
clearly has 2 generators, and so, by [7, Remark 2.2], dimX ≤ 2. Thus
dimX is equal to either 1 or 2. We conjecture that dimX = 2 ; if so, as we
shall note below, C(X) does not have dense invertibles.

(c) Set E = π1(X). Since E has empty interior, the Shilov boundary of R(E)
is E. By considering functions in A of the form f : (z, w) 7→ r(z)p(w),
where r ∈ R(E) and p is a polynomial, we see easily that X∩(D×T) ⊆ ΓA.
Applying the same argument to the second coordinate projection, we obtain
X ∩ ∂ D 2 ⊆ ΓA, and hence we must have ΓA = Y = X ∩ ∂ D 2

.

The following result shows that the example constructed above has some further
unusual properties. This result is probably known, but we know of no explicit
reference. We use the term clopen to describe sets which are both open and closed.

Theorem 2.2. Let A be a uniform algebra with compact character space ΦA, and
suppose that A has dense invertibles. Then every component of every (non-empty)
zero set for A meets ΓA.

Proof Set X = ΓA. Assume for contradiction that f ∈ A has a non-empty zero
set Z(f) which has a component K ⊆ ΦA \X. Then K is the intersection of the
family of all relatively clopen subsets of Z(f) which contain K, and so there is a
relatively clopen subset E of Z(f) with K ⊆ E ⊆ ΦA \X. We may then choose an
open subset U of ΦA \X with E ⊆ U and such that Y := ∂ U ⊆ ΦA \ Z(f).

Set δ = inf{|f(x)| : x ∈ Y }, so that δ > 0, and then choose an invertible element
g ∈ A with |g − f |X < δ/2. Then |g−1|K > 2/δ > |g−1|Y , which contradicts the
local maximum modulus principle [17, Theorem 9.8]. �

Let X and Y be as constructed in Theorem 2.1. Let z ∈ X̂, and suppose that
p is a polynomial with p(z) = 0. Then, since P (X) has dense invertibles, the zero
set of p must meet Y . It follows that z is in the rational hull hr(Y ) of Y . Thus we
have hr(Y ) = Ŷ and P (Y ) = R(Y ).

From the fact that (0, 0) ∈ Ŷ = hr(Y ) we quickly deduce that, for all a ∈ C,
there is some (z, w) ∈ Y with z = aw. Set U = {(z, w) ∈ X : w 6= 0}. Then
the image of U under the rational function z/w is the whole of C. This suggests
that the set X is fairly large, but does not by itself contradict the possibility that
dimX = 1.
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We conclude this section with another example with some even stronger proper-
ties.

Theorem 2.3. There is a uniform algebra A on a compact metric space such that
every point of ΦA is a one-point Gleason part and such that the invertible elements
are dense in A, but ΓA 6= ΦA.

Proof Taking the example above as our base algebra, we may form a system of
root extensions (as in [3] and [17, §19]) to obtain a new uniform algebra A on a
compact metric space such that {f2 : f ∈ A} is dense in A, and hence every point of
ΦA is a one-point Gleason part. Since the base algebra has proper Shilov boundary,
the same is true for A [3]. Finally, since the base algebra has dense invertibles, so
does A [9, pp. 2837–2838]. �

3. Topological stable rank

We now discuss the topological stable rank and some related ranks of a commu-
tative Banach algebra. Indeed, there is a variety of different types of stable rank;
for more details, history and open questions, see, for example, [2, 7, 15].

Let A be a commutative, unital Banach algebra, and let a1, . . . , an ∈ A. Set
a = (a1, . . . , an) ∈ An. Then the joint spectrum of a is denoted by σ(a), so that
σ(a) = â(ΦA). The element a is unimodular if

∑n
i=1Aai = A ; we denote the set

of unimodular elements of An by Un(A). Thus a ∈ Un(A) if and only if 0 6∈ σ(a) if
and only if â1, . . . , ân have no common zero on ΦA.

We begin with the definitions of the (Bass) stable rank and topological stable
rank, given just for commutative Banach algebras.

Definition 3.1. Let A be a commutative, unital Banach algebra.
The (Bass) stable rank of A is the least n ∈ N with the property that, for all

(a1, a2, . . . , an+1) ∈ Un+1(A), there exists (b1, b2, . . . , bn) ∈ An such that

(a1 + b1an+1, a2 + b2an+1, . . . , an + bnan+1) ∈ Un(A) ,

or ∞ if no such n exists.
The topological stable rank of A is the least n ∈ N such that Un(A) is dense in

An, or ∞ if no such n exists.

The stable rank and the topological stable rank of A are denoted by sr(A) and
tsr(A), respectively.

We see immediately that a commutative, unital Banach algebra A has dense
invertibles if and only if tsr(A) ≤ 1.

We now quote some standard results concerning (topological) stable ranks.
Let A be a commutative, unital Banach algebra. For each n ∈ N, we have

sr(A) ≤ n if and only if the natural map Un(A) → Un(A/I) induced by the natural
projection A → A/I is a surjection for every closed ideal I in A [4, Theorem 4].
Further,

(2) sr(A) ≤ tsr(A) ;

this is [4, Theorem 3] and [15, Theorem 2.3]. This inequality is strict for the disk
algebra A, where sr(A) = 1 and tsr(A) = 2 [5, 6].

Let X be a compact space, and set d = dimX. Then

(3) sr(C(X)) = tsr(C(X)) = [d/2] + 1 ,
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where [t] denotes the greatest integer less than or equal to t [21]. In particular,
C(X) has dense invertibles if and only if dimX ∈ {0, 1}.

Let A be a commutative, unital Banach algebra. Then

(4) sr(A) ≤ sr(C(ΦA)) .

This is [6, Corollary 1.6]; it depends on a deep generalization of the Arens–Royden
theorem given in [18]. This inequality is strict in many cases; for example, if A is
the disk algebra, then sr(A) = 1, whereas sr(C(D)) = 2.

Now let A be a regular Banach function algebra on X = ΦA. Then it is proved
in [6, Corollary 1.5] that

(5) sr(A) ≥ sr(C(X)) ,

and so, by (4), sr(A) = sr(C(X)). It then follows from (2), (3), and (5) that

(6) tsr(A) ≥ tsr(C(ΦA)) .

We shall strengthen this last result by giving an elementary proof that applies to
approximately regular, rather than regular, algebras. This proof uses the standard
version of the Arens–Royden theorem [12, Theorem 7.2].

We first give a topological lemma.

Lemma 3.2. Let X be a compact space, let E be a closed subset of X, and let
n ∈ N. Suppose that (f1, . . . , fn) ∈ C(E)n, that (h1, . . . , hn) ∈ Un(C(X)), and that
there exist open subsets U1, . . . , Un of X satisfying the following properties:

(i)
⋃n

i=1 Ui = X ;
(ii) 0 6∈ hi(Ui) (i = 1, . . . , n) ;
(iii) hi | E ∩ Ui = fi | E ∩ Ui (i = 1, . . . , n).

Then there exists (g1, . . . , gn) ∈ Un(C(X)) such that gi | E = fi (i = 1, . . . , n).

Proof Choose closed subsets X1, . . . , Xn of X such that Xi ⊆ Ui (i = 1, . . . , n)
and

⋃n
i=1Xi = X , and then, for i = 1, . . . , n, define gi on Xi∪E so that gi | E = fi

and gi | Xi = hi | Xi. Clearly gi ∈ C(Xi ∪ E). Next extend gi to a function, also
called gi, in C(X). We note that, by (ii), ZX(gi) ∩ Xi = ∅ (i = 1, . . . , n). Then
(g1, . . . , gn) has the required properties. �

Theorem 3.3. Let A be an approximately regular, commutative, unital Banach
algebra. Then tsr(A) ≥ tsr(C(ΦA)).

Proof We may suppose that tsr(A) < ∞; set n = tsr(A). Recall that we have
sr(C(ΦA)) = tsr(C(ΦA)). We shall show that sr(C(ΦA)) ≤ n.

Let I be a closed ideal in C(ΦA). Then we can identify C(ΦA)/I with C(E)
for a certain closed subset E of X := ΦA. Let (f1, . . . , fn) ∈ Un(C(E)), so that⋂n

i=1 ZE(fi) = ∅. For i = 1, . . . , n, choose closed subsets F1, . . . , Fn of X such that
Fi ∩ ZE(fi) = ∅ (i = 1, . . . , n) and X =

⋃n
i=1 intXFi. Set

Ei = E ∩ Fi (i = 1, . . . , n) .

Let i ∈ {1, . . . , n}. Since A is approximately regular, AEi
is a natural Banach

function algebra on Ei, and so, by the standard Arens–Royden theorem, there exist
bi ∈ Inv (AEi

) and ri ∈ C(Ei) with fi = bi exp ri in C(Ei). Since Inv (AEi
) is open

in AEi
, we may suppose that bi = âi | Ei for some ai ∈ A. Since Un(A) is dense in
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An, we may further suppose that (a1, . . . , an) ∈ Un(A). We may also extend ri so
that ri ∈ C(X), whilst preserving the equalities

fi | Ei = (bi exp ri) | Ei = (âi exp ri) | Ei .

Set hi = âi exp ri ∈ C(X) (i = 1, . . . , n). Then (h1, . . . , hn) ∈ Un(C(X)), and
hi | Ei = fi | Ei (i = 1, . . . , n). For each i ∈ {1, . . . , n}, define Hi to be the closure
of the set

{x ∈ E : fi(x) 6= hi(x)} ,
so that

⋂n
i=1Hi = ∅ by the choice of F1, . . . , Fn. Set

Ui = X \ (ZX(hi) ∪Hi) (i = 1, . . . , n) ,

so that each Ui is an open subset of X.
We verify that clauses (i), (ii), and (iii) of Lemma 3.2 are satisfied. Clearly we

have 0 6∈ hi(Ui) and hi | E ∩ Ui = fi | E ∩ Ui for each i ∈ {1, . . . , n}.
To show that

⋃n
i=1 Ui = X, we must see that S :=

⋂n
i=1(ZX(hi) ∪ Hi) = ∅.

Clearly S ⊆ E because
⋂n

i=1 ZX(hi) = ∅. Assume that x ∈ S, say

x ∈ E ∩ intXFi ⊆ intEEi

for some i ∈ {1, . . . , n}. We have x ∈ ZX(hi) ∪ Hi. Since (intEEi) ∩ Hi = ∅, we
have x 6∈ Hi. Thus hi(x) = 0. Since hi | Ei = fi | Ei, we have fi(x) = 0. However
ZE(fi) ∩ Ei = ∅, and so this is the required contradiction.

It follows from Lemma 3.2 that there exists (g1, . . . , gn) ∈ Un(C(X)) such that
gi | E = fi (i = 1, . . . , n). This shows that sr(C(X)) ≤ n, as required. �

Corollary 3.4. Let A be an approximately regular, commutative, unital Banach
algebra with dense invertibles. Then C(ΦA) has dense invertibles. �

4. Open questions

We conclude with some open questions.
(1) Let X be as constructed in Theorem 2.1, and set

M = {f ∈ P (X) : f(0, 0) = 0} .

What can be said about M2 and M2?
(2) Let A be a uniform algebra with the property that expA is dense in A. Can

the Shilov boundary of A be proper? Must A be approximately regular?
Must A be C(X)?

It is conceivable (but unlikely) that expA is dense in A for the example
A = P (X) of Theorem 2.1. This is true if and only if expA = InvA, because
A has dense invertibles. By [12, Chapter III, Corollary 7.4], expA = InvA
if and only if H1(X,Z), the first C̆ech cohomology group of X with integer
coefficients, is trivial. Thus, for our example, expA is dense in A if and
only if X is simply coconnected in the sense of [17, Definition 29.24].

(3) Let A be a uniform algebra with character spaceX. Suppose that C(X) has
dense invertibles. Must A have dense invertibles? Does it help to assume
that A is regular/approximately regular/has Shilov boundary X? More
generally (as asked in [7]), is it always true that tsr(A) ≤ tsr(C(X)), and
hence tsr(C(ΦA)) = tsr(A) in the case where A is approximately regular?

We offer the following caution. Assume that one can prove that A has
dense invertibles whenever A is approximately regular and C(ΦA) has dense
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invertibles. Then we would have a solution to the famous ‘Gel’fand prob-
lem’: Is there a natural uniform algebra A on I such that A 6= C(I)? Indeed,
suppose that A is a natural uniform algebra on I. By [20, Lemma 3.1], A
is approximately regular. By our assumption, A has dense invertibles, and
so A = C(I) by [9, Corollary 1.8].

(4) Let A be a uniform algebra with dense invertibles. Does it follow that
C(ΦA) has dense invertibles? More generally (as asked in [7]), must we
have tsr(C(ΦA)) ≤ tsr(A).

Let X be as constructed in Theorem 2.1, and set A = P (X). We have
conjectured that dimX = 2. If so, then we would have a negative answer
to the first question because C(ΦA) would not have dense invertibles, but
A does.

(5) Let A be an approximately regular, commutative, unital Banach algebra.
Is it true that sr(A) ≥ sr(C(ΦA))?

(6) Our final questions concern the existence of topological disks in the char-
acter space of uniform algebras.
(a) Let A be a uniform algebra such that ΓA 6= ΦA. Does ΦA \ΓA contain

a homeomorphic copy of D?
(b) Let K be a compact subset of C n such that K̂ 6= K. Does K̂ \ K

contain a homeomorphic copy of D?
We would like to thank the referee for valuable comments and, in particular, for

a helpful suggestion that led to the present version of Theorem 3.3.
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