Integer-valued analytic functions in a half-plane

J.K. Langley *

Abstract

A classical theorem of Pólya states that if \(f \) is an entire function taking integer values at the non-negative integers and satisfying \(f(z) = O\left(|z|^{M_2}\right) \) as \(z \to \infty \), for some \(M > 0 \), then there exist polynomials \(P_1, P_2 \) with \(f(z) \equiv P_1(z)z^2 + P_2(z) \). It is shown that the same result holds for functions analytic in a half-plane \(\Re z \geq A \).

Keywords: analytic functions, forward differences.
MSC 2000: 30D20, 30D35.

1 Introduction

The following classical theorem of Pólya [12] (see also [19, p.55]) shows in particular that \(2^z \) is the slowest growing transcendental entire function which is integer-valued, that is, takes integer values at the non-negative integers.

Theorem 1.1 ([12]) Let \(f \) be an entire function which satisfies

\[
f(n) \in \mathbb{Z} \quad \text{for} \quad n = 0, 1, 2, \ldots \tag{1}
\]

and

\[
M(r, f) = \max\{|f(z)| : |z| = r\} = O(r^{M_2 r}) \tag{2}
\]

as \(r \to \infty \), for some \(M > 0 \). Then there exist polynomials \(P_1, P_2 \) with \(f(z) \equiv P_1(z)z^2 + P_2(z) \).

In particular if (2) is replaced by

\[
\limsup_{r \to \infty} \frac{M(r, f)}{2^r} < 1 \tag{3}
\]

then \(f \) is a polynomial.

It was shown by Selberg [14] that if the entire function \(f \) satisfies (1) and

\[
\tau(f) = \limsup_{r \to \infty} \frac{\log M(r, f)}{r} \leq \log 2 + \frac{1}{1500} = 0.6938138 \ldots \tag{4}
\]

then again there exist polynomials \(P_1, P_2 \) with \(f(z) \equiv P_1(z)z^2 + P_2(z) \), and subsequently by Pisot [1, 11, 13] that (4) may be weakened to

\[
\tau(f) < |\log(3/2 + \sqrt{3}i/2)| = 0.758876 \ldots
\]

*Research supported by Engineering and Physical Sciences Research Council grant EP/D065321/1
Further results on integer-valued entire functions may be found in [1, 3, 9, 10, 13, 15, 16, 17, 18].

The present note is concerned with analogous results for functions analytic in a half-plane. In this direction it was proved in [6] that if \(f \) is analytic of polynomial growth in \(\text{Re} \, z \geq 0 \) and \(f \) satisfies (1) then \(f \) is a polynomial, a result which has several applications in value distribution theory and differential equations. These include: determining meromorphic functions \(f \) and \(g \) of finite order when \(f \) and \(g \) have the same zeros and poles and the same is true of \(f' \) and \(g' \) [7]; determining meromorphic functions \(f \) such that \(f \) and \(f'' + Bf \) have no zeros, where \(B \) is a rational function [6]; determining Bank-Laine functions of finite order from their zero-sequences [8].

It is then natural to consider functions \(f \) analytic in the right half-plane satisfying (1) and of exponential growth comparable to (2). The methods of [1, 11, 13] appear difficult to transfer to a half-plane, being based on the Borel-Laplace transform of an entire function of exponential type, and for technical reasons the approach of [14] also seems difficult to adapt. On the other hand the method of [12] may be modified using different contours and integral estimates, and even admits slight simplification in parts.

Theorem 1.2 Let \(A \in \mathbb{R} \) and \(M > 0 \) and let \(f \) be analytic in the half-plane \(H \) given by \(\text{Re} \, z \geq A \), such that

\[
\tag{5} f(n) \in \mathbb{Z} \quad \text{for all } n \in \mathbb{Z} \text{ with } n \geq A.
\]

Assume that

\[
|f(z)| = O(\left|z\right|^{M2^{|z|}}) \quad \text{as } \left|z\right| \to \infty, z \in H.
\]

\[
\tag{6}

Then there exist polynomials \(P_1, P_2 \) with \(f(z) \equiv P_1(z)2^z + P_2(z) \).

If \(A = 0 \) and (6) is replaced by

\[
\tag{7}
\limsup_{|z| \to \infty, z \in H} |f(z)|2^{-|z|} < 1,
\]

then \(f \) is a polynomial.

No analogous result is obtainable in a sector \(|\arg z| < \alpha < \pi/2 \), as shown by the example \(\exp(-\beta z)\sin \pi z \), with \(\beta \) a large positive constant.

2 The forward difference method

Let \(h \) be a function which is defined at the points \(a, a+1, \ldots \). The forward differences are defined in the standard way [19, p. 52] by

\[
\Delta^0 h(a) = h(a), \quad \Delta h(a) = \Delta^1 h(a) = h(a+1) - h(a), \quad \Delta^{n+1} h(a) = \Delta^n h(a+1) - \Delta^n h(a),
\]

and the well known formula

\[
\Delta^n h(a) = h(a+n) - nh(a+n-1) + \cdots + (-1)^n h(a) = \sum_{k=0}^{n} (-1)^{n-k} \frac{n!}{k!(n-k)!} h(a+k), \quad n \geq 0,
\]

is easily proved by induction, as is the formula, for \(a = 0 \),

\[
(\Delta - 1)^k h(n) = 2^{n+k}\Delta^k H(n), \quad h(n) = 2^n H(n), \quad k = 0, \ldots .
\]

2
If P is a polynomial of degree $Q \geq 1$ then $\Delta P(n)$ is a polynomial of degree at most $Q - 1$, and conversely the general solution of the difference equation $\Delta F(n) = P(n)$, $n = 0, 1, \ldots$, is a polynomial of degree at most $Q + 1$. The following fact is fundamental to Pólya’s method in [12]: a proof is included for completeness.

Lemma 2.1 Suppose that f is a function defined at the points $0, 1, \ldots$, and that L and N are positive integers such that

$$\Delta^n (\Delta - 1)^L f(0) = 0 \quad \text{for all } n \geq N.$$

Then there exist polynomials P_1 and P_2 such that $f(n) = P_1(n) 2^n + P_2(n)$ for $n = 0, 1, \ldots$.

Proof. Let $g(m) = (\Delta - 1)^L f(m)$ and choose a polynomial S_1, of degree at most $N - 1$, which equals g at the N points $0, \ldots, N - 1$. Then $\Delta^n (g - S_1)(0) = 0$ for $n \geq N$ and so it follows using (8) that $g(n) = S_1(n)$ for all integers $n \geq 0$. Now choose a polynomial S_2 such that

$$\Delta^n (\Delta - 1)^L S_2(n) = S_1(n) = g(n) \quad \text{for } n = 0, 1, \ldots,$$

which is easily achieved by setting

$$S_2(n) = (-1)^L (1 + \Delta + \Delta^2 + \ldots)^L S_1(n)$$

and using the fact that $\Delta^m S$ vanishes identically if S is a polynomial and m is large enough. Finally, write

$$h(n) = f(n) - S_2(n) = 2^n H(n), \quad 0 = \Delta^n (\Delta - 1)^L h(n) = 2^n L \Delta^L H(n) \quad \text{for } n = 0, 1, \ldots,$$

using (9). The general solution of this difference equation for H is a polynomial, and the conclusion of Lemma 2.1 follows at once. \hfill \Box

3 Lemmas required for Theorem 1.2

Lemma 3.1 There exists a positive constant c with the following property. Let n be a positive integer and let

$$\phi(y) = \phi_n(y) = \frac{2^y}{\exp(2y \arctan(n/y))(1 + (y/n)^2)^{n}}.$$

Then

$$\phi(y) \leq e^{-cy} \quad \text{for } 0 < y \leq 2n.$$

Proof. Set

$$y = un, \quad h(u) = \frac{\ln \phi(y)}{n} = 2u \ln 2 - 2u \arctan \left(\frac{1}{u} \right) - \ln(1 + u^2)$$

for $u > 0$. Then

$$h(u) \to 0 \quad \text{as } u \to 0+, \quad h(2) = 4 \ln 2 - 4 \arctan \frac{1}{2} - \ln 5 < 0.$$
Differentiating (12) gives
\[h'(u) = 2 \ln 2 - 2 \arctan \left(\frac{1}{u} \right), \]
so that if \(h'(u) = 0 \) then \(h(u) = -\ln(1 + u^2) < 0 \). Hence \(h(u) < 0 \) for \(0 < u \leq 2 \), using (13). Moreover
\[h'(u) \to 2 \ln 2 - \pi < 0 \quad \text{as} \quad u \to 0+, \]
and so \(h(u) < (\ln 2 - \pi/2)u \) for small positive \(u \). Hence there exists a positive constant \(c \) such that \(h(u) < -cu \) for \(0 < u \leq 2 \), so that
\[\ln \phi(y) = nh(u) < -cny = -cy \]
for \(0 < y \leq 2n \), which is (11). \(\Box \)

Lemma 3.2 Let \(\mu \) and \(s \) be real numbers with \(\mu \geq 0 \) and \(s > 1 \). Let \(n \in \mathbb{N} \) be large and let
\[R = R_n = 2n, \quad S = S_n = \sqrt{R^2 - s^2}. \] (14)

Let \(C_n \) be the contour consisting of the arc \(\Omega_n \) of the circle \(|t| = R \) from \(-s - iS \) to \(-s + iS \) via \(R \), described once counter-clockwise, followed by the straight line segment \(T_n \) from \(-s + iS \) to \(-s - iS \). Then
\[I_n = I_n(\mu) = \int_{\Omega_n} \frac{n!2^{|t|}}{|t(t-1) \ldots (t-n)|} \left| \frac{t-2n}{n} \right|^\mu |dt| \leq c(\mu)n^{-\mu/2} \] (15)
and
\[J_n = J_n(\mu) = \int_{T_n} \frac{n!2^{|t|}}{|t(t-1) \ldots (t-n)|} \left| \frac{t-2n}{n} \right|^\mu |dt| \leq d(\mu, s)n^{1/2 - s} \] (16)
as \(n \to \infty \), where \(c(\mu) \) and \(d(\mu, s) \) denote positive constants depending at most on \(\mu \), and on \(\mu \) and \(s \), respectively.

Proof. The estimate (15) may be found in [12, Hilfsatz, p.5] but the proof is included for completeness. The arc \(\Omega_n \) is parametrized by \(t = Re^{i\theta}, -a_n \leq \theta \leq a_n \), where \(a_n \to \pi/2 \) as \(n \to \infty \). Then for \(0 \leq k \leq n \) standard inequalities give
\[|t-k|^2 = (R-k)^2 + 2Rk(1 - \cos \theta) \geq (R-k)^2 + CRk^2 \geq (R-k)^2 \exp \left(\frac{CRk^2}{(R-k)^2} \right), \] (17)
using \(C \) to denote positive constants depending at most on \(\mu \), and the fact that \(Rk(R-k)^{-2} \leq 2 \). Combining (14) and (17) leads to
\[\prod_{k=0}^n |t-k| \geq \exp \left(\sum_{k=0}^n \frac{CRk^2}{(R-k)^2} \right) \prod_{k=0}^n (R-k) \geq \exp \left(Cn\theta^2 \right) \prod_{k=0}^n (R-k). \] (18)
Moreover, for \(t \in \Omega_n \),
\[|t-2n|^2 = |t-R|^2 = 2R^2(1 - \cos \theta) \leq CR^2\theta^2, \quad \left| \frac{t-2n}{n} \right|^\mu \leq C\theta^\mu. \] (19)
Hence it follows from (7), (14), (18), (19) and the change of variables $x = \theta \sqrt{\mu}$ that
\[
I_n \leq CR^2 R \left(\frac{n!}{R(R-1) \ldots (R-n)} \right) \int_{-\pi}^{\pi} \theta^m \exp (-Cn\theta^2) \, d\theta \\
\leq CR^2 R \left(\frac{(n-1)!}{(R-1) \ldots (R-n)} \right) n^{-\mu/2-1/2} \int_{-\infty}^{\infty} x^\mu \exp(-Cx^2) \, dx \\
\leq C2^R n^{-\mu/2+1/2} \left(\frac{\Gamma(n)\Gamma(R-n)}{\Gamma(R)} \right).
\] (20)

But Stirling’s formula gives
\[
\Gamma(x) \sim \sqrt{2\pi} x^{x-1/2} e^{-x} \quad \text{as} \ x \to +\infty,
\] (21)
and so (14) and (20) lead to
\[
I_n \leq C2^R n^{-\mu/2+1/2} \left(\frac{n^{-1/2}e^{-n}(R-n)^{R-n-1/2}e^{n-R}}{R^{R-1/2}e^{-R}} \right) \\
\leq C2^R n^{-\mu/2+1/2} \left(\frac{n^{-1/2}(R-n)^{R-n-1/2}}{R^{R-1/2}} \right) \\
\leq C2^R n^{-\mu/2+1/2} n^{-1/2} 2^{-R} = Cn^{-\mu/2},
\]
which proves (15).

To prove (16) requires a different approach. Let $0 \leq k \leq n$ and $t \in T_n$ and write $t = -s + iy$ where
\[
-S \leq y \leq S, \quad |t - k|^2 = (s + k)^2 + y^2.
\] (22)
Combining (22) with (14) gives
\[
J_n \leq D \int_0^S \frac{n!2^y \, dy}{\prod_{k=0}^n \sqrt{(s + k)^2 + y^2}}.
\] (23)
using D to denote positive constants depending at most on μ and s. Note next that for $y > 0$ integration by parts leads to
\[
L_n := \sum_{k=0}^n \ln (s^2 + y^2) \geq \ln(s^2 + y^2) + \int_s^{n+s} \ln(t^2 + y^2) \, dt \\
= (n + s) \ln((n + s)^2 + y^2) + (1 - s) \ln(s^2 + y^2) - 2 \int_s^{n+s} \frac{t^2}{t^2 + y^2} \, dt \\
= (n + s) \ln((n + s)^2 + y^2) + (1 - s) \ln(s^2 + y^2) - 2n + 2 \int_s^{n+s} \frac{y^2}{t^2 + y^2} \, dt \\
= (n + s) \ln((n + s)^2 + y^2) + (1 - s) \ln(s^2 + y^2) - 2n + \\
+ 2y \arctan \left(\frac{n + s}{y} \right) - 2y \arctan \left(\frac{s}{y} \right) \\
\geq (n + s) \ln((n + s)^2 + y^2) + (1 - s) \ln(s^2 + y^2) - 2n + \\
+ 2y \arctan \left(\frac{n + s}{y} \right) - D.
\] (24)
With \(\phi(y) \) as in (10) and using Lemma 3.1, (21) and (24) it now follows that

\[
\frac{(n!)^{2}2^{2y}}{\prod_{k=0}^{n}((s+k)^{2}+y^{2})} \leq \frac{Dn^{2n+1}e^{-2n(s^{2}+y^{2})^{n}e^{2n+2y}}}{((n+s)^{2}+y^{2})^{n}e^{2y\arctan((n+s)/y)}} \leq \frac{Dn^{2n+1}(s^{2}+y^{2})^{s-1}2^{2y}}{(n^{2}+y^{2})^{n}e^{2y\arctan(n/y)}} \leq Dn^{2n+1-2n-2s}(s^{2}+y^{2})^{s-1}\phi(y) \leq Dn^{1-2s}(s^{2}+y^{2})^{s-1}e^{-cy}
\]

for \(0 < y \leq S \), since \(S \leq R = 2n \). Substituting this estimate into (23) gives

\[
J_{n} \leq Dn^{1/2-s} \int_{0}^{\infty} (s^{2}+y^{2})^{(s-1)/2}e^{-cy/2} \, dy = Dn^{1/2-s},
\]

which establishes (16) and proves Lemma 3.2. \(\Box \)

The next lemma simplifies somewhat the approach of [12, Hilfsatz, p.4 and Korollar, p.5].

Lemma 3.3 Let \(L \) be a positive integer. For \(x, y \in \mathbb{C} \) and \(p = 0, \ldots, L \) write

\[
G(p, x, y) = \left(\prod_{0 \leq q \leq p-1} (1+x+qy) \right) \left(\prod_{p \leq q \leq L-1} (1-qty) \right) = (1+x)(1+x+y) \ldots (1+x+(p-1)y)(1-ty) \ldots (1-(L-1)y), \tag{25}
\]

with the convention that a product is unity if the corresponding range of \(q \) is empty. Then:

(i) each \(G(p, x, y) \) is a polynomial

\[
G(p, x, y) = \sum_{\mu, \nu} B_{\mu, \nu}(p)x^{\mu}y^{\nu} \tag{26}
\]

in \(x \) and \(y \) of degree at most \(L \) in \(x \) and at most \(L-1 \) in \(y \);

(ii) for each pair \(\mu, \nu \) with \(0 \leq \mu \leq L \) and \(0 \leq \nu \leq L-1 \) there exists a polynomial \(C_{\mu, \nu}(p) \) in \(p \) of degree at most \(\mu + 2\nu \) such that \(B_{\mu, \nu}(p) = C_{\mu, \nu}(p) \) for \(p = 0, \ldots, L \).

Proof. Assertion (i) is obvious, and it is convenient to regard the sum in (26) as being over all integers \(\mu, \nu \), with \(B_{\mu, \nu}(p) = 0 \) unless \(0 \leq \mu \leq L \) and \(0 \leq \nu \leq L-1 \).

Assertion (ii) will now be proved by induction on \(m = \mu + \nu \), and it is obvious that \(B_{0,0}(p) = 1 \) for every \(p \). Assume now that \(m \) is a positive integer and that assertion (ii) holds whenever \(0 \leq \mu + \nu < m \). Suppose that \(\mu + \nu = m \). There is nothing to prove if \(\mu \) or \(\nu \) is negative, so assume that \(\mu \geq 0 \) and \(\nu \geq 0 \). From (25) it follows that, for \(p = 0, \ldots, L-1 \),

\[
(1-ty)G(p+1, x, y) = G(p, x, y)(1+x+py).
\]

Comparing the coefficients of \(x^{\mu}y^{\nu} \) shows that

\[
B_{\mu, \nu}(p+1) - pB_{\mu, \nu-1}(p+1) = B_{\mu, \nu}(p) + B_{\mu-1, \nu}(p) + pB_{\mu, \nu-1}(p),
\]
and this may be written in the form
\[B_{\mu,\nu}(p + 1) - B_{\mu,\nu}(p) = pB_{\mu,\nu-1}(p + 1) + B_{\mu-1,\nu}(p) + pB_{\mu,\nu-1}(p). \] (27)

The induction hypothesis gives a polynomial \(g(p) \) of degree at most \(\mu + 2\nu - 1 \) which equals the
right hand side of (27) for \(p = 0, \ldots, L - 1 \). Thus (27) may be viewed as a difference equation
\[\Delta F(p) = g(p), \] (28)
satisfied by \(B_{\mu,\nu}(p) \) for \(p = 0, \ldots, L - 1 \). There exists a polynomial \(F \) of degree at most
\(1 + \deg g \leq \mu + 2\nu \) satisfying (28) for all integers \(p \), and \(F \) may be chosen so that \(F(0) = B_{\mu,\nu}(0) \).
It then follows that \(B_{\mu,\nu}(p) = F(p) \) for \(p = 0, \ldots, L \), and Lemma 3.3 is proved. \(\square \)

The next lemma is a special case of Carlson’s theorem for a half-plane [2], or may be proved
directly using the Nevanlinna characteristic in a half-plane [4, p.38].

Lemma 3.4 Let \(F(z) \) be analytic and satisfy (6) in the half-plane \(H \) given by \(\Re z \geq 0 \). If
\(F(n) = 0 \) for every \(n \in \mathbb{N} \) then \(F \) vanishes identically.

4 Proof of Theorem 1.2

To prove the first part of Theorem 1.2 let \(f \) satisfy the hypotheses there. Fix a positive integer
\(L \) satisfying \(L > 2M \), and assume without loss of generality that \(A < -L - 2 \). Following Pólya
[12] the aim is to show that
\[D_n = \Delta^{n-L}(\Delta - 1)^L f(0) = \sum_{p=0}^{L} \left(\frac{L!}{p!(L-p)!} \right) (-1)^p \Delta^{n-p} f(0) \]
\[= \Delta^nf(0) - L\Delta^{n-1}f(0) + \ldots + (-1)^L \Delta^{n-L}f(0) \] (29)
vanishes for all sufficiently large positive integers \(n \). Once this has been established it follows from
Lemma 2.1 that there exists a function \(h(z) = P_1(z)^2 + P_2(z) \), with \(P_1 \) and \(P_2 \) polynomials,
such that \(f(n) = h(n) \) for \(n = 0, 1, \ldots \). Applying Lemma 3.4 to \(F = f - h \) then shows that
\(f - h \) vanishes identically.

Let \(n \) be a large positive integer, and let \(R \) and \(S \) be defined by (14), with \(s = 1 + L \). Let \(C_n \)
be the contour defined in Lemma 3.2. Then (29) and the formula [19, pp. 52-53]
\[\Delta^{n-p} f(0) = \frac{1}{2\pi i} \int_{C_n} \frac{(n-p)!f(t)}{t(t-1)\ldots(t-n+p)} \, dt \]
\[= \frac{1}{2\pi i} \int_{C_n} \frac{n!f(t)}{t(t-1)\ldots(t-n)} \prod_{0 \leq q \leq p-1} \left(\frac{t-n+q}{n-q} \right) \, dt \]
for \(p = 0, \ldots, L \) imply that
\[D_n = \frac{1}{2\pi i} \int_{C_n} \frac{n!f(t)}{t(t-1)\ldots(t-n)} \sum_{p=0}^{L} \left(\frac{(-1)^p L!}{p!(L-p)!} \right) \prod_{0 \leq q \leq p-1} \left(\frac{t-n+q}{n-q} \right) \, dt. \]
With Pólya’s notation

\[x = \frac{t - 2n}{n}, \quad y = \frac{1}{n}, \quad \frac{t - n + q}{n - q} = \frac{1 + x + qy}{1 - qy}, \]

this gives

\[
D_n = \frac{1}{2\pi i} \int_{C_n} \frac{n!f(t)}{t(t-1)\ldots(t-n)} \sum_{p=0}^{L} \left(\frac{(-1)^p L!}{p!(L-p)!} \right) \prod_{0 \leq q \leq p-1} \left(\frac{1 + x + qy}{1 - qy} \right) \, dt.
\]

Let \(G(p, x, y) \) be the function defined in Lemma 3.3. Then

\[
D_n \prod_{q=0}^{L-1} (1 - qy) = \frac{1}{2\pi i} \int_{C_n} \frac{n!f(t)}{t(t-1)\ldots(t-n)} \sum_{p=0}^{L} \left(\frac{(-1)^p L!}{p!(L-p)!} \right) G(p, x, y) \, dt.
\]

It now follows using the formula (compare (8))

\[
\Delta^L G(0, x, y) = \sum_{p=0}^{L} \left(\frac{L!}{p!(L-p)!} \right) (-1)^{L-p} G(p, x, y)
\]

that

\[
D_n \prod_{q=0}^{L-1} (1 - qy) = \left(\frac{-1}{2\pi i} \right)^L \int_{C_n} \frac{n!f(t)}{t(t-1)\ldots(t-n)} \Delta^L G(0, x, y) \, dt.
\]

But Lemma 3.3 shows that the function \(G(p, x, y) \) has a representation (26), in which \(B_{\mu,\nu}(p) \) is a polynomial in \(p \) of degree at most \(\mu + 2\nu \), and \(B_{\mu,\nu}(p) = 0 \) unless \(0 \leq \mu \leq L \) and \(0 \leq \nu \leq L-1 \).

This gives constants \(A_{\mu,\nu} \), independent of \(n \), such that

\[
\Delta^L G(0, x, y) = \sum_{0 \leq \mu \leq L, 0 \leq \nu \leq L} A_{\mu,\nu} x^\mu y^\nu,
\]

where \(A_{\mu,\nu} = 0 \) for \(\mu + 2\nu < L \). Hence (31) may be written in the form

\[
D_n \prod_{q=0}^{L-1} (1 - qy) = \left(\frac{-1}{2\pi i} \right)^L \sum_{0 \leq \mu \leq L, 0 \leq \nu \leq L} A_{\mu,\nu} \int_{C_n} \frac{n!f(t)x^\mu y^\nu}{t(t-1)\ldots(t-n)} \, dt.
\]

Recalling the notation (30) and the fact that \(|t| = O(n)| on \(C_n \) leads to

\[
\left| D_n \prod_{q=0}^{L-1} (1 - q/n) \right| \leq d \sum_{0 \leq \mu \leq L, 0 \leq \nu \leq L} \left| A_{\mu,\nu} \right| n^{M-\nu} \int_{C_n} \frac{n!2^l}{|t(t-1)\ldots(t-n)|} \left| \frac{t-2n}{n} \right|^\mu |dt|
\]

\[
\leq d \sum_{0 \leq \mu \leq L, 0 \leq \nu \leq L} \left| A_{\mu,\nu} \right| n^{M-\nu} \left(n^{-\mu/2} + n^{1/2-\nu} \right)
\]

\[
= d \sum_{0 \leq \mu \leq L, 0 \leq \nu \leq L} \left| A_{\mu,\nu} \right| \left(n^{M-\nu-\mu/2} + n^{M-\nu-1/2-L} \right),
\]
where the constants d are independent of n, using (15), (16) and the fact that $s = 1 + L$. Since $L > 2M$ and $A_{\mu, \nu} = 0$ unless $\mu + 2\nu \geq L$ this now gives, on letting $n \to \infty$,

$$|D_n| \leq \frac{dnM^{L/2}}{2} \to 0.$$

But each D_n is an integer by (5) and (29), and so it follows that $D_n = 0$ for all sufficiently large n as required, and the first part of Theorem 1.2 is proved.

To prove the last part of Theorem 1.2 assume now that $A = 0$ and that f satisfies (7). Following Pólya [12, p.8], it is clear from the first part that $f(z) = a2^z + P_2(z)$ with $a \in \mathbb{C}$ and P_2 a polynomial. But then, for large $n \in \mathbb{N}$,

$$\Delta^n f(0) = \Delta^n(a2^z)(0) = a,$$

so that $a \in \mathbb{Z}$, and using (7) again this forces $a = 0$. \hfill \square

References

J.K. Langley

School of Mathematical Sciences
University of Nottingham
Nottingham, NG7 2RD
jkl@maths.nott.ac.uk

9