Linear differential equations with entire coefficients of small growth

J.K. Langley

August 14, 2000

Abstract

We prove that if \(n \geq 3 \) and \(A_0, \ldots, A_{n-2} \) are entire functions of small growth, not all polynomials, then the linear differential equation

\[
w^{(n)} + \sum_{j=0}^{n-2} A_j w^{(j)} = 0
\]

cannot have a fundamental set of solutions each with few zeros.

A.M.S. Classification: 30D35.

1 Introduction

Our starting point is the following theorem, the notation as in [7].

Theorem 1.1 ([1, 14, 15]) Suppose that \(A \) is a transcendental entire function with order

\[
\rho(A) = \limsup_{r \to \infty} \frac{\log^+ T(r, A)}{\log r} < \frac{1}{2}.
\]

Then the linear differential equation

\[
w^n(z) + A(z)w(z) = 0
\]

cannot have linearly independent solutions \(f_1, f_2 \) each with

\[
\lambda(f_j) = \limsup_{r \to \infty} \frac{\log^+ N(r, 1/f_j)}{\log r} < \infty.
\]

Theorem 1.1 was proved by Bank and Laine [1] for \(\rho(A) < \frac{1}{2} \), and by Rossi [14] and Shen [15] independently for \(\rho = \frac{1}{2} \), the proofs depending heavily on a formula [1] for \(A \) in terms of the product of linearly independent solutions of (1). It has been conjectured that if \(A \) is transcendental entire and \(\rho(A) \) is finite but is not a positive integer then (1) cannot have linearly independent solutions \(f_1, f_2 \) satisfying (2).

The present paper is concerned with an analogue of Theorem 1.1 for the higher order equation

\[
w^{(n)}(z) + \sum_{j=0}^{n-2} A_j(z)w^{(j)}(z) = 0,
\]

in which \(n \geq 3 \) and \(A_0, \ldots, A_{n-2} \) are entire functions, not all polynomials. If one coefficient \(A_s \) is assumed to have dominant growth in some sense compared to the other \(A_j \), then it is possible [2, 10, 11, 12] to prove some results concerning the maximum number of linearly independent solutions with few zeros, the proofs being based upon local representations for solutions in terms of \(A_s \). With no such assumption on the relative growth of the \(A_j \), these representations are not available, but the following was conjectured in [10].
Conjecture 1.1 To each integer \(n \geq 2 \) corresponds a positive real number \(L(n) \) such that if \(A_0, \ldots, A_{n-2} \) are entire functions of order less than \(L(n) \), not all polynomials, then the equation (3) cannot have linearly independent solutions \(f_1, \ldots, f_n \) each satisfying (2).

Of course, Theorem 1.1 shows at once that \(L(2) \geq \frac{1}{2} \), and it was proved in [10] that \(L(3) \geq \frac{1}{3} \), this improved to \(L(3) \geq \frac{1}{4} \) in [4, 5]. It seems likely that \(L(n) = 1 \) for every \(n \geq 2 \), and the following well known example (see e.g. [6]) shows that this would be sharp. If \(n \) is a positive integer and \(D = d/dz \) then

\[
f_j(z) = e^{-nz} \exp \left(e^{2\pi i j/n} e^z \right), \quad j = 1, \ldots, n,
\]

are linearly independent solutions of

\[
(D + 1) \ldots (D + n) w = e^{nz} w,
\]

and a standard transformation leads to an equation of form (3).

In the present paper we show that \(L(n) \geq \frac{1}{2(n-1)} \) for every \(n \geq 3 \).

Theorem 1.2 Let \(n \) be an integer not less than 3, and let \(A_0, \ldots, A_{n-2} \) be entire functions, not all polynomials, of order less than \(\frac{1}{2(n-1)} \). Then the linear differential equation (3) cannot have linearly independent solutions \(f_1, \ldots, f_n \) each satisfying (2).

As already noted, it does not seem possible to prove Theorem 1.2 by asymptotic methods. Instead we use the following Wronskian identity [13, p.663], which the author first came across in a paper of Steinmetz [16].

Lemma 1.1 ([13]) Let \(m \) and \(n \) be positive integers and let \(f_1, \ldots, f_m \) and \(g_1, \ldots, g_n \) be functions meromorphic on a domain \(D \). Then

\[
W(f_1, \ldots, f_m, g_1, \ldots, g_n) W(f_1, \ldots, f_m)^{n-1} = W(W(f_1, \ldots, f_m, g_1), \ldots, W(f_1, \ldots, f_m, g_n)) \quad (4)
\]
on \(D \).

The identity (4) may be proved by induction on \(m \), and it follows from (4) that the functions \(W(f_1, \ldots, f_m, g_j) \) are linearly independent on \(D \) if and only if the \(f_1, \ldots, f_m, g_1, \ldots, g_n \) are.

2 Lemmas needed for Theorem 1.2

We begin with the following lemma, the proof of which is obvious.

Lemma 2.1 If \(h_1, \ldots, h_n \) are entire functions of finite order, and \(W_1, \ldots, W_n \) are functions meromorphic of finite order in the plane, then we may write

\[
W(W_1 e^{h_1}, \ldots, W_n e^{h_n}) = V e^h, \quad h = h_1 + \ldots + h_n, \quad (5)
\]
in which \(V \) is meromorphic of finite order in the plane.

Let \(H \) be analytic on an unbounded subset \(G \) of the plane. We shall say that \(H \) grows transcendently on \(G \) if

\[
\lim_{|z| \to \infty, z \in G} \frac{\log |H(z)|}{\log |z|} = \infty. \quad (6)
\]
Following [9], we shall use the term R-set to denote a countable union of discs $B(z_j, r_j)$, in which $z_j \to \infty$ as $j \to \infty$ and $\sum r_j < \infty$, and we will use the well known fact [9, p.87] that if $V \neq 0$ is meromorphic of finite order in the plane then there exists $M > 0$ such that

$$V'(z)/V(z) = O(|z|^M)$$ \hspace{1cm} (7)

for all z outside an R-set U_V.

Lemma 2.2 Let h_1, \ldots, h_n, with $n \geq 2$, be entire functions of finite order, and let W_1, \ldots, W_n be functions meromorphic of finite order in the plane, and set $f_j = W_j e^{h_j}$ for $j = 1, \ldots, n$. Suppose that G is an unbounded subset of the plane such that $h'_1 - h'_j$ grows transcendentally on G for $j = 2, \ldots, n$, and that f_1, \ldots, f_n are linearly independent. Then

$$H = \frac{W(f_1, \ldots, f_n)}{f_1 W(f_2, \ldots, f_n)}$$ \hspace{1cm} (8)

grows transcendentally on $G \setminus G_1$, in which G_1 is an R-set.

Proof. For $n = 2$ we need only write

$$\frac{W(f_1, f_2)}{f_1 f_2} = f'_2/f_2 - f'_1/f_1 = h'_2 - h'_1 + W'_2/W_2 - W'_1/W_1$$

and apply (6) to $h'_2 - h'_1$ and (7) to W_2/W_1.

Assume next that $n \geq 3$, and that the lemma is true for $n - 1$. Lemma 1.1 gives

$$W(f_1, \ldots, f_n)W(f_2, \ldots, f_{n-1}) = \pm W(W(f_1, \ldots, f_{n-1}), W(f_2, \ldots, f_n)).$$ \hspace{1cm} (9)

But, by Lemma 2.1, we may write

$$W(f_1, \ldots, f_{n-1}) = V_1 e^{g_1}, \quad W(f_2, \ldots, f_n) = V_2 e^{g_2},$$

in which V_1, V_2 are meromorphic of finite order, not identically zero, and g_1, g_2 are entire of finite order, with $g'_1 - g'_2 = h'_1 - h'_n$. Using the fact that the lemma has been established for $n = 2$, and the induction hypothesis, there exist R-sets G_2, G_3 such that

$$H_1 = \frac{W(W(f_1, \ldots, f_{n-1}), W(f_2, \ldots, f_n))}{W(f_1, \ldots, f_{n-1})W(f_2, \ldots, f_n)}$$

grows transcendentally on $G \setminus G_2$, while

$$H_2 = \frac{W(f_1, \ldots, f_{n-1})}{f_1 W(f_2, \ldots, f_{n-1})}$$

grows transcendentally on $G \setminus G_3$. Since (8) and (9) give $H = \pm H_1 H_2$, Lemma 2.2 is proved.

The next lemma is the main step in the proof of Theorem 1.2.

Lemma 2.3 Suppose that $f_1, \ldots, f_m, g_1, \ldots, g_n$ are linearly independent and given by

$$f_j = V_j e^{h}, \quad g_k = W_k e^{H_k}, \quad j = 1, \ldots, m, \quad k = 1, \ldots, n,$$ \hspace{1cm} (10)

in which h and the H_k are entire functions of finite order, and the V_j and W_k are meromorphic of finite order in the plane. Suppose further that G is an unbounded subset of the plane on which each $h' - H'_k, k = 1, \ldots, n$, grows transcendentally.
Then there exists an R-set G_1 such that

$$L = \frac{W(f_1, \ldots, f_m, g_1, \ldots, g_n)}{W(f_1, \ldots, f_m, g_1, \ldots, g_n)} \quad (11)$$

grows transcendentally on $G \backslash G_1$.

If $m = 1$ then Lemma 2.3 follows at once from Lemma 2.2. For $m \geq 2$ we require the following lemma.

Lemma 2.4 Let $f_1, \ldots, f_m, g_1, \ldots, g_n$ and G be as in Lemma 2.3, and assume that $m \geq 2$. Set

$$Q_p = \frac{W(f_1, \ldots, f_m, g_p, \ldots, g_n)}{W(f_1, \ldots, f_m, g_p, \ldots, g_n)}, \quad p = 1, \ldots, n, \quad Q_{n+1} = \frac{W(f_1, \ldots, f_m)}{W(f_1, \ldots, f_m)}. \quad (12)$$

Then for $p = 1, \ldots, n$ there exists an R-set U_p such that Q_p/Q_{p+1} grows transcendentally on $G \backslash U_p$.

Proof. Suppose first that $1 \leq p \leq n - 1$. By Lemma 1.1 we have

$$Q_p = \pm \frac{W(W(f_1, \ldots, f_m, g_{p+1}, \ldots, g_n), W(f_2, \ldots, f_m, g_p, \ldots, g_n))}{W(f_2, \ldots, f_m, g_{p+1}, \ldots, g_n) W(f_2, \ldots, f_m, g_p, \ldots, g_n)} \quad (13)$$

But we may write

$$W(f_1, \ldots, f_m, g_{p+1}, \ldots, g_n) = V_1 e^{h_1}, \quad W(f_2, \ldots, f_m, g_p, \ldots, g_n) = V_2 e^{h_2} \quad (14)$$

in which V_1, V_2 are meromorphic of finite order in the plane, not identically zero, and h_1, h_2 are entire of finite order, with $h_1 - h_2 = h - H_p$. But then, by Lemma 2.2, there exists an R-set U_p such that

$$\frac{W(V_1 e^{h_1}, V_2 e^{h_2})}{V_1 e^{h_1} V_2 e^{h_2}}$$

grows transcendentally on $G \backslash U_p$ so that, by (13) and (14), Q_p is large compared to

$$\frac{V_1 e^{h_1} V_2 e^{h_2}}{W(f_2, \ldots, f_m, g_{p+1}, \ldots, g_n) W(f_2, \ldots, f_m, g_p, \ldots, g_n)} = Q_{p+1}.$$

Thus Lemma 2.4 is proved for $p \leq n - 1$. For $p = n$ the proof is the same, except that (13) is replaced by

$$Q_n = \pm \frac{W(W(f_1, \ldots, f_m), W(f_2, \ldots, f_m, g_n))}{W(f_2, \ldots, f_m) W(f_2, \ldots, f_m, g_n)}.$$

This completes the proof of Lemma 2.4.

We now prove Lemma 2.3 by induction on m. Repeated use of Lemma 2.4 and its notation shows that as z tends to infinity in $G \backslash U_1$, in which U_1 is an R-set,

$$L_1 = \frac{W(f_1, \ldots, f_m, g_1, \ldots, g_n)}{W(f_2, \ldots, f_m, g_1, \ldots, g_n)} = Q_1$$

is large compared to

$$L_2 = \frac{W(f_1, \ldots, f_m)}{W(f_2, \ldots, f_m)} = Q_{n+1}.$$
Assuming the lemma true for \(m - 1 \), there is an \(R \)-set \(U_2 \) such that

\[
L_3 = \frac{W(f_2, \ldots, f_m, g_1, \ldots, g_n)}{W(f_2, \ldots, f_m)W(g_1, \ldots, g_n)}
\]
grows transcendentally on \(G \setminus U_2 \). Since (11) gives

\[
L = \frac{L_1L_3}{L_2}
\]
we need only set \(G_1 = U_1 \cup U_2 \) and Lemma 2.3 is proved for \(n \).

3 Proof of Theorem 1.2

Suppose that \(n \geq 3 \) and that \(A_0, \ldots, A_{n-2} \) are entire functions, not all polynomials, of order at most \(\sigma < \frac{1}{2(n-1)} \). Suppose further that the equation (3) has a fundamental set of solutions \(f_1, \ldots, f_n \) each satisfying (2). We write \(f_j = W_j e^{h_j} \) for \(j = 1, \ldots, n \), in which the \(W_j \) and \(h_j \) are entire functions, and each \(W_j \) has finite order. By [10, p.520], each \(h_j \) has order at most \(\sigma \), and by [2, Theorem 1] the product \(f_1 \ldots f_n \) has finite order, so that \(h_1 + \ldots + h_n \) is a polynomial.

It follows that there exist entire functions \(H_1, \ldots, H_q \), with \(q \leq n \), and with the following properties. Each \(f_j \) may be written in the form

\[
f_j = V_j \exp \left(H_{mj} \right),
\]
in which \(V_j \) is an entire function of finite order and \(1 \leq m_j \leq q \). Further, the \(H_j \) all have order at most \(\sigma \), and all the differences \(H_j - H_k, j \neq k \), are transcendental. Since at least one of the \(h_j \) is transcendental, and since the sum of the \(h_j \) is a polynomial, we have \(q \geq 2 \).

Choose \(\alpha \) with \((n-1)\sigma < \alpha < \frac{1}{2} \). By the \(\cos \pi \rho \) theorem [3, 8] there exists, for each \(p \) with \(2 \leq p \leq q \), a subset \(E_p \) of \((1, \infty)\) of lower logarithmic density at least \(1 - \frac{\sigma}{\alpha} > 1 - \frac{1}{(n-1)} \), such that for \(|z| = r \in E_p \) we have

\[
\log |H_1'(z) - H_p'(z)| > (\cos \pi \alpha) \log M(r, H_1' - H_p').
\]
The intersection \(E \) of the \(E_p \), \(2 \leq p \leq q \), has positive lower logarithmic density, and we denote by \(U \) the set of \(z \) such that \(|z| \) lies in \(E \). Thus all of the \(H_1' - H_p', 2 \leq p \leq q \), grow transcendentally on \(U \).

We partition the \(f_j \) as follows, to form classes \(F_1, \ldots, F_k \) and \(G_1, \ldots, G_{n-k} \). The \(F_\mu \) are those \(f_j \) for which \(H_j = H_1 \) in (15), while the \(G_\nu \) are the remaining \(f_j \). Since \(W(f_1, \ldots, f_n) \) is a non-zero constant, it follows from Lemma 2.3 that there is an \(R \)-set \(U_1 \) such that the entire function

\[
F = W(F_1, \ldots, F_k)W(G_1, \ldots, G_{n-k})
\]
tends to 0 as \(z \) tends to infinity in \(U \setminus U_1 \). But \(U \setminus U_1 \) contains the circle \(|z| = r \), for all \(r \) in a set of positive lower logarithmic density, from which it follows that \(F \equiv 0 \). This contradicts the linear independence of \(F_1, \ldots, F_k, G_1, \ldots, G_{n-k} \) and Theorem 1.2 is proved.

References

School of Mathematical Sciences, University of Nottingham, NG7 2RD.