The second derivative of a meromorphic function of finite order

J.K. Langley

January 3, 2002

Abstract

Let \(f \) be meromorphic of finite order in the plane, such that the second derivative \(f'' \) has finitely many zeros. Then \(f \) has finitely many poles. This result was conjectured by the author in 1996, and an example shows that the theorem is sharp.

A.M.S. MSC 2000 Classification: 30D35.

1 Introduction

By a theorem of Pólya [9, 22], if \(f \) is meromorphic with at least two poles in the plane then for each sufficiently large \(k \) the \(k' \)th derivative \(f^{(k)} \) has at least one zero. The following theorem established a conjecture of Hayman [8, 9, 10] from 1959:

Theorem 1.1 ([5, 7, 13]) Suppose that \(m \geq 0 \) and \(k \geq 2 \) and that \(f \) is meromorphic in the plane such that \(f^{(m)} \) and \(f^{(m+k)} \) each have finitely many zeros. Then \(f^{(m+1)}/f^{(m)} \) is a rational function. In particular, \(f \) has finite order and finitely many poles.

Related results may be found in [3, 6, 14, 18] and elsewhere. Now Gol'dberg has conjectured that the frequency of distinct poles of \(f \) is governed by the frequency of zeros of a single derivative \(f^{(k)} \), provided \(k \geq 2 \), and in the present paper we prove a related conjecture of the author [15].

Theorem 1.2 Suppose that \(f \) is meromorphic of finite order in the plane and that \(f^{(k)} \) has finitely many zeros, for some \(k \geq 2 \). Then \(f \) has finitely many poles.

Obviously it suffices to prove Theorem 1.2 for \(k = 2 \). No such result holds for functions of infinite order [15]. Indeed, we observe in Section 6 that there exists meromorphic \(f \) with infinitely many poles and with \(f^{(k)} \) zero-free, of arbitrarily slow growth subject to infinite order.

A number of partial results in the direction of Theorem 1.2 appear in [15, 16, 17, 18, 19], but the proof here is self-contained.
2 Lemmas needed for the theorem

Throughout this paper we denote by $B(z_0, r)$ the disc $\{z : |z - z_0| < r\}$ and by $S(z_0, r)$ the circle $\{z : |z - z_0| = r\}$. We will need Tsuji’s well known estimate for harmonic measure [24, p.116].

Lemma 2.1 ([24]) Let D be a simply connected domain not containing the origin, and let z_0 lie in D. Let r satisfy $0 < 4r < |z_0|$ or $4|z_0| < r < \infty$. Let $\theta(t)$ denote the angular measure of $D \cap S(0, t)$, and let D_r be the component of $D \setminus S(0, r)$ which contains z_0. Then the harmonic measure of $S(0, r)$ with respect to the domain D_r, evaluated at z_0, satisfies

$$\omega(z_0, S(0, r), D_r) \leq C \exp \left(-\pi \int_1 I \frac{dt}{t \theta(t)} \right),$$

in which C is an absolute constant, and $I = [2|z_0|, r/2]$ if $r > 4|z_0|$, with $I = [2r, |z_0|/2]$ if $4r < |z_0|$.

Note that (1) for $4r < |z_0|$ is obtained from the same estimate for the case $r > 4|z_0|$ by the substitution $\zeta = 1/z$. Next, we require the well known Cartan lemma:

Lemma 2.2 ([12], p.366) Let n be a positive integer and let a_1, \ldots, a_n be complex numbers. For each $\rho > 0$ we have

$$\left| \prod_{j=1}^n (z - a_j) \right| \geq \left(\frac{\rho}{2\pi} \right)^n$$

for all z outside a union H_ρ of discs having sum of radii at most ρ.

We need a lemma on the maximum $M(r, g)$ and minimum $m_0(r, g)$ of $|g(z)|$ on $|z| = r$, when g is a transcendental meromorphic function of small growth. If g is entire and

$$T(r, g) = O(\log r)^2$$

then [1] we have $M(r, g)/m_0(r, g) < C < \infty$ on a set of lower logarithmic density arbitrarily close to 1. Further results may be found in [1, Theorem 5 et al.], but these do not seem to suffice for our purposes here. For meromorphic g, and with an extra assumption on the concentration of zeros and poles, we prove the following.

Lemma 2.3 Let g be transcendental and meromorphic in the plane, satisfying (2), and with the following property. For every fixed constant $K > 1$ the number N_r, counting multiplicities, of zeros and poles of g in

$$B(K) = \{z : r/K \leq |z| \leq Kr\}$$

2
satisfies \(N_x = o(\log r)\) as \(r \to \infty\). Let \(\delta > 0\). Then for all sufficiently large positive \(r\) we have

\[
\frac{M(s, g)}{m_0(s, g)} \leq s^\delta
\]

(4)

for all \(s \in [r/2, 2r]\) and lying outside a set of measure at most \(\delta r\).

Proof. We may clearly assume that \(g(0) = 1\). In addition, we assume for the time being that \(g\) is entire. By (2) there exists a positive constant \(C\) such that

\[
n(r^2) = n(r^2, 1/g) \leq C \log r
\]

for all large \(r\). Let the positive constant \(K\) be large, in particular with

\[
C \log \left(\frac{1 + 1/K}{1 - 1/K} \right) < \delta/2.
\]

(6)

Let \(r\) be large and let \(b_1, \ldots, b_N\), with \(N = o(\log r)\), be the zeros of \(g\) in \(B(K^2)\), with \(a_n\) the remaining zeros of \(g\), in both cases with repetition according to multiplicity. By Lemma 2.2 we have

\[
|Q(z)| \geq \left(\frac{\delta r}{4e} \right)^N, \quad Q(z) = \prod_{j=1}^{N} (z - b_j),
\]

(7)

for all \(z\) outside a union \(H\) of discs having sum of diameters at most \(\delta r\). Let \(s \in [r/2, 2r]\), such that the circle \(S(0, s)\) fails to meet \(H\). Then we have

\[
\log \frac{M(s, Q)}{m_0(s, Q)} \leq N \log(2K^2 r) + N \log(4e/\delta r) = N \log(8K^2 e/\delta) = o(\log r).
\]

(8)

Next, if \(|a_n| < r/K^2\) then

\[
(1 - 1/K) \frac{s}{|a_n|} \leq |1 - z/a_n| \leq (1 + 1/K) \frac{s}{|a_n|}, \quad |z| = s.
\]

(9)

Also, if \(|a_n| > K^2 r\) then

\[
1 - 1/K \leq 1 - s/|a_n| \leq |1 - z/a_n| \leq 1 + s/|a_n| \leq 1 + 1/K, \quad |z| = s.
\]

(10)

Combining (7), (8), (9) and (10), we obtain

\[
\log \frac{M(s, g)}{m_0(s, g)} \leq n(r^2) \log \left(\frac{1 + 1/K}{1 - 1/K} \right) + o(\log s) + I,
\]

(11)

in which

\[
I = \int_{r^2}^{\infty} \log \left(\frac{1 + s/t}{1 - s/t} \right) dn(t) \leq 4 \int_{r^2}^{\infty} \frac{s}{t} dn(t) \leq 4s \int_{r^2}^{\infty} \frac{n(t)}{t^2} dt = o(1).
\]

Using (5), (6) and (11), we now obtain (4).
If \(g \) is meromorphic we write \(g = g_1/g_2 \) with \(g_j \) entire and \(T(r; g_j) = O(\log r)^2 \), using (2) and [9, Theorem 1.11, p.27]. Then

\[
\frac{M(s, g)}{m_0(s, g)} \leq \frac{M(s, g_1)M(s, g_2)}{m_0(s, g_1)m_0(s, g_2)}.
\]

Proving the lemma for the \(g_j \), with \(\delta \) replaced by \(\delta/2 \), establishes (4) for \(g \). This proves Lemma 2.3.

We require some standard facts from the Wiman-Valiron theory [11]. Let \(F \) be a transcendental entire function. Provided \(r \) is normal for \(F \), that is provided \(r \) lies outside an exceptional set \(E \) of finite logarithmic measure, we have, for \(z_0 \) with \(|z_0| = r \) and \(|F(z_0)| > (1 - o(1))M(r, F) \),

\[
F'(z_0)/F(z_0) = \nu(r)z_0^{-1}(1 + o(1)),
\]

in which \(\nu(r) = \nu(r, F) \) is the central index of \(F \). In addition, with \(\mu(r) \) the maximum term,

\[
\log M(r/2, F) \leq \log \mu(r) + \log 2 \leq \nu(r) \log r + O(1), \quad \nu(r) \leq \log \mu(r) \leq \log M(r, F)
\]

so that \(\nu(r) \) and \(\log M(r, F) \) have the same order and lower order. Suppose now that \(G \) is transcendental and meromorphic in the plane, with finitely many poles \(b_1, \ldots, b_q \), repeated according to multiplicity. Then \(F(z) = G(z) \prod_{j=1}^q (z - b_j) \) is entire and the estimate (12) holds with \(F \) replaced by \(G \). Thus, abusing notation slightly, we may regard \(\nu(r, F) \) as the central index of \(G \).

3 Preliminaries

Suppose that \(h \) is transcendental and meromorphic in the plane, and that \(h(z) \) tends to the finite complex number \(a \) as \(z \) tends to infinity along a path \(\gamma \). Then \(a \) is an asymptotic value of \(h \), and the inverse function \(h^{-1} \) has a transcendental singularity over \(a \) [4, 21]. For each \(t > 0 \), the domain \(C(t) \) is that component of \(C'(t) = \{ z : |h(z) - a| < t \} \) which contains an unbounded subpath of \(\gamma \). Here \(C(t) \subset C(s) \) if \(0 < t < s \), and the intersection of all the \(C(t), t > 0 \), is empty. The singularity of \(h^{-1} \) over \(a \) corresponding to \(\gamma \) is said to be direct if \(C(t) \), for some \(t > 0 \), contains finitely many zeros of \(h(z) - a \), in which case \(C(t) \), for sufficiently small \(t \), contains no zeros of \(h(z) - a \). Singularities over \(\infty \) are classified analogously.

Suppose next that \(H \) is meromorphic of finite order \(\rho(H) \) in the plane with finitely many critical values, that is, values taken by \(H \) at multiple points of \(H \). By a theorem of Bergweiler and Eremenko [4], all transcendental singularities of \(H^{-1} \) are direct and, by the Denjoy-Carleman-Ahlfors theorem [4, 21], there are at most \(2\rho(H) \) of them.
We need next some standard facts from [21, p.287] which are discussed in detail in [17, 19]. Suppose that F is a transcendental meromorphic function with no asymptotic or critical values in $0 < c_1 < |w| < \infty$. Then every component C_0 of the set $\{z : |F(z)| > c_1\}$ is simply connected, and there are two possibilities. Either (i) C_0 contains a single pole z_0 of multiplicity k, in which case $F^{-1/k}$ maps C_0 univalently onto $B(0, c_1^{-1/k})$, or (ii) C_0 contains no pole of F, but instead a path tending to infinity on which F tends to infinity.

Lemma 3.1 ([19]) Suppose that G is a transcendental meromorphic function of finite order ρ and that G' has no asymptotic or critical values in $0 < |w| < d_1 < \infty$. Let D be a component of the set $\{z : |G'(z)| < d_1\}$ on which G' has no zeros, but such that D contains a path $\gamma \to \infty$ on which $G'(z) \to 0$ as $z \to \infty$.

Then there exists a positive constant S_1 depending on G and D such that for z_1 in D with $|G'(z_1)| < e^{-1} d_1$ we have

$$|G(z_1)| \leq S_1 + \frac{C|z_1 G'(z_1)|}{\log |d_1/G'(z_1)|},$$

in which C is a positive absolute constant, in particular not depending on d_1, G or D.

Lemma 3.1 is proved in [19], but in a more complicated form than we need here, and so, partly in order to keep the present paper self-contained, we sketch a proof. We may assume that 0 is not in D, if necessary replacing G by $G(z + b)$, for some constant b. Let N be an integer with $N > 2 + \rho$. Choose d_2 with $0 < d_2 < d_1$ such that $|G'(z)| > d_2$ on some circle $S(0, \sigma)$ with $1 \leq \sigma \leq 2$, and let $D_1 = \{z \in D : |z| > \sigma, |G'(z)| < d_2\}$. Choose d as in Lemma 2 of [20], with $0 < d < d_2$, such that $z^N G'(z)$ has no multiple points with $|z^N G'(z)| = d$, while the length of the level curves $|z^N G'(z)| = d$ lying in $|z| \leq r$ is $O(r^{2+\rho})$ for all sufficiently large r. Define a function u, subharmonic in the plane, by $u(z) = \log^+ |d/z^N G'(z)|$ for z in D_1, with $u(z) = 0$ otherwise. Let W_j be a component of the set $\{z : u(z) > 0\}$, and fix $z^* \in W_j$. Since G' has finite order and

$$u(z) \leq \frac{3}{2\pi} \int_0^{2\pi} u(2re^{i\theta}) d\theta \leq 3m(2r, 1/G'), \quad |z| = r \to \infty,$$

the number of W_j is finite [12, p.562]. For z in W_j we join z^* to z by a path γ_z in the closure of W_j consisting of part of the ray $\arg t = \arg z^*$, part of the circle $|t| = |z|$, and part of the boundary ∂W_j of W_j. Partitioning ∂W_j into its intersections with annuli $\{t : 2^q-1 < |t| \leq 2^q\}$ we have

$$\int_{\gamma_z} |G'(t)| \ |dt| \leq \int_{|z^*|}^{\infty} dt^{N} dt + 2\pi d|z|^{1-N} + \sum_{q=1}^{\infty} d2^{-N(q-1)} O(2^{q(2+\rho)}) \leq O(1).$$

5
Now choose \(z_0 \in D \). Let \(g = G' \) and let \(\psi = g^{-1} \) be that branch of the inverse function mapping \(w_0 = g(z_0) \) to \(z_0 \). Choose \(v_0 \) such that \(e^{-v_0} = w_0 \) and set \(\phi(v) = \psi(e^{-v}) = g^{-1}(e^{-v}) \). Since \(G' \neq 0 \) on \(D \), the function \(\phi \) extends to be analytic and univalent on \(H = \{ v : \Re(v) > c_0 = \log 1/d_1 \} \). Also, \(\phi(H) = D \), and \(D \) is simply connected. We apply a logarithmic change of variables as used in [3] and elsewhere. Since \(0 \notin D \), we may define an analytic and univalent branch of \(\zeta = \log \phi(v) \) on \(H \). By the Koebe one-quarter theorem [23, p.9], we thus have

\[
|d\zeta/dv| = |\phi'(v)/\phi(v)| \leq 8\pi/(\Re(v) - c_0) < 32/(\Re(v) - c_0)
\]

(15)

for \(v \) in \(H \). Let \(z_1 \) be as in the statement of the lemma. Then there exists \(v_1 \) in \(H \) with

\[
z_1 = \phi(v_1), \quad v_1 = Q + iy, \quad Q = \log |1/G'(z_1)| > c_0 + 1.
\]

(16)

Let \(L \) be the horizontal half line given by \(v = s + iy, s \geq Q \). For \(s \geq Q \), by (15),

\[
|\phi(s + iy)| \leq |\phi(Q + iy)| \exp\left(\int_Q^s 32(t - c_0)^{-1}dt \right) = |\phi(Q + iy)|(s - c_0)^{32}(Q - c_0)^{-32}.
\]

(17)

We have \(\phi(s + iy) \to \infty \) as \(s \to +\infty \) and

\[
\int_{\phi(L)} |G'(z)| \ |dz| = \int_L \exp(-\Re(v))|\phi'(v)| \ |dv| = \int_Q^\infty e^{-s}|\phi'(s + iy)|ds.
\]

Using (15), (16) and (17) we get

\[
\int_{\phi(L)} |G'(z)| \ |dz| \leq |z_1| \int_Q^\infty e^{-s}32(s - c_0)^{31}(Q - c_0)^{-32}ds \leq C_1|z_1|e^{-Q(Q - c_0)^{-1}},
\]

(18)

after integrating by parts, in which \(C_1 \) is a positive absolute constant. But (17) gives

\[
\log |1/G'(z)| = s \geq c_0 + (Q - c_0)|z/z_1|^{1/32}
\]

and so \(z = \phi(s + iy) \), for large \(s \), is in some \(W_j \). It follows that a sub-path of \(\phi(L) \) joins \(z_1 \) to a point in one of the finitely many \(W_j \). Since (14) implies that \(G \) is bounded on each of the \(W_j \), (13) now follows from (18).

4 Critical points and asymptotic values

Suppose that \(F \) is meromorphic of finite order in the plane, and that \(F \) has infinitely many poles, but \(F' \) has finitely many zeros. Then, by Section 3, \(F \) has finitely many asymptotic values, and each corresponds to finitely many direct transcendental singularities [4, 21] of the inverse function.
Let J be a simple closed polygonal path, such that every finite critical or asymptotic value of F lies on J, but is not a vertex of J. Then J divides its complement into two simply connected domains B_1 and B_2, such that B_1 is bounded, while $\infty \in B_2$. Fix conformal mappings $h_m : B_m \to B(0, 1)$, for $m = 1, 2$, with $h_2(\infty) = 0$. By the reflection principle, if I is a closed line segment contained in J and not meeting any vertex of J then for $m = 1, 2$ there are positive constants d_m such that

$$d_m \leq |h'_m(w)| \leq 1/d_m, \quad w \in I. \quad (19)$$

Let J' be the set of vertices of J and critical and asymptotic values of F, and let $J'' = J \setminus J'$. For each component J^* of J'' we choose a closed line segment I_q contained in J^*, and hence not meeting J', and for each such I_q there are constants d_m as in (19).

Take a quasiconformal homeomorphism ψ_1 of the extended plane onto itself such that $\psi_1(\infty) = \infty$ and $\psi_1 = h_1$ on B_1 [23, p.94]. There exist a function g meromorphic in the plane and a quasiconformal mapping ψ such that $\psi(\infty) = \infty$ and $\psi_1 \circ F = g \circ \psi$. This g has finitely many critical and asymptotic values b_ν, all of modulus 1, and g' has finitely many zeros.

Let $A_1 = B(0, 1)$ and $A_2 = \{w : 1 < |w| \leq \infty\}$. Then, as in Section 3, for each component T of $g^{-1}(A_2)$, either T contains just one pole of g, or T contains no pole of g, but instead a path tending to infinity on which $g(z)$ tends to infinity. Because the inverse function g^{-1} has finitely many singularities, there are only finitely many components T of the latter type. Each component of $g^{-1}(A_1)$ is conformally equivalent under g to the unit disc $B(0, 1)$. Using Section 3 and the fact that g' has finitely many zeros, all components of $g^{-1}(A_j), j = 1, 2$, are simply connected, and all but finitely many are unbounded.

Let S be a component of $g^{-1}(A_1)$ having no zero of g' in its closure in the finite plane. Then g is univalent on the finite boundary ∂S, which consists of finitely many simple level curves of g, each going to infinity in both directions. As z tends to infinity along a boundary arc of ∂S, the image $g(z)$ tends to one of the b_ν, and we call S type I if there is only one such asymptotic value of g approached along a boundary arc of S, and type II if there are at least two distinct such values. Clearly a type I component S with no zero of g' on its boundary ∂S is such that ∂S consists of just one simple analytic curve going to infinity in both directions, and such an S cannot separate the plane. We shall call an unbounded component S' of the set $F^{-1}(B_1)$ type I or II if $S = \psi(S')$ is a type I or II component of $g^{-1}(A_1)$.

Let z_1 be a pole of g, of multiplicity p, with $|z_1|$ large, lying in a component T_1 of $g^{-1}(A_2)$. Then T_1 is simply connected and unbounded and $g^{-1/p}$ maps T_1 conformally onto $B(0, 1)$. Again the finite boundary ∂T_1 consists of finitely many simple level curves of g, each going to infinity in
both directions, of which at least one must be a boundary curve of a type II component of $g^{-1}(A_1)$. In particular, g has at least two distinct finite asymptotic values and so has F.

5 Proof of Theorem 1.2

We assume that f is meromorphic of finite order $\rho(f)$, and that f has infinitely many poles, while f'' has finitely many zeros, and apply the reasoning of Section 4, with $F = f'$, retaining the notation there. We may assume that $0 \in B_1$, and that $h_1(0) = 0$, since if this is not the case we may replace f by $f(z) - \lambda z$, for some constant λ. Let the finite asymptotic values of f' be a_n, repeated according to how often they occur as direct transcendental singularities of $(f')^{-1}$. In particular, f' has at least two distinct finite asymptotic values.

Lemma 5.1 The lower order of f'' is at least $\frac{1}{2}$.

Proof. If this is not the case then the function $1/f''$ has finitely many poles and is transcendental of lower order less than $\frac{1}{2}$. The cos $\pi \lambda$ theorem [2] now gives $r_n \to +\infty$ such that $f''(z) = O(r_n^{-2})$ on $|z| = r_n$, and integrating around $|z| = r_n$ we obtain a contradiction, since f' has at least two distinct finite asymptotic values. This proves Lemma 5.1.

Next choose $\varepsilon_0 > 0$ such that, for each n, there are no critical or asymptotic values of f' in $0 < |w - a_n| \leq 4\varepsilon_0$. The following lemma is an immediate consequence of Lemma 3.1 and the discussion preceding it.

Lemma 5.2 There exist $\varepsilon_1 > 0$ and, for each n, an unbounded simply connected domain U_n, a component of the set $\{z : |f'(z) - a_n| < \varepsilon_0\}$, such that U_n contains a path tending to infinity on which $f'(z)$ tends to a_n. Further, $f'(z) \neq a_n$ on U_n and $|f(z) - a_n z| < \varepsilon_0|z|$ for all large z in U_n with $|f'(z) - a_n| < \varepsilon_1$.

Now let ε_2 be such that, for each n, if $|h_1(v) - h_1(a_n)| \leq \varepsilon_2$ then $|v - a_n| < \varepsilon_1$, in which ε_1 is as determined in Lemma 5.2.

Lemma 5.3 There exist positive constants C_1, C_2 with the following property. If D is a type II component of the set $(f')^{-1}(B_1)$ and $z_0 \in D, f'(z_0) = 0$, then provided $|z_0|$ is large enough we have

$$B(z_0, C_1|z_0|) \subseteq \{z \in D : |h_1(f'(z))| < \frac{1}{2}\}$$

(20)
and
\[|f'''(z)|/f''(z)| \leq C_2/|z_0|, \quad z \in B(z_0, \frac{1}{2}C_1|z_0|). \] (21)

Proof. Assume that there is no positive constant C_1 such that (20) holds for all but finitely many type II components. Since $V = h_1 \circ f'$ maps each such D conformally onto $B(0, 1)$, it follows from the Koebe one-quarter theorem [23, p.9] that we may choose arbitrarily large z_0 such that the inverse function G of V maps $B(0, 1)$ conformally onto D, with $G(0) = z_0$ and $G'(0) = o(|z_0|)$. Since D is a type II component, we may assume that $a_1 \neq a_2$ and that a_1, a_2 are each asymptotic values of f' on ∂D. For $n = 1, 2$, let μ_n be a path in D, close to ∂D and tending to infinity, on which $f'(z) \to a_n$. Then $V(\mu_n)$ is a path in $B(0, 1)$ tending to $h_1(a_n)$, since h_1 extends to be continuous in the plane. Hence, if $z \in D$ and $|V(z) - h_1(a_n)| < \varepsilon_2$, we have $z \in U_n$.

By the Koebe distortion theorem [23, p.9], we have $|G'(w)| = o(|z_0|)$ for $|w| \leq 1 - \frac{3}{4}\varepsilon_2$, and the image under G of the line segment $w = th_1(a_n)$, $0 \leq t \leq 1 - \frac{3}{4}\varepsilon_2$, has length $o(|z_0|)$. This allows us to choose a path γ^* in D, of length $o(|z_0|)$, such that γ^* joins η_1 to η_2, with $\eta_n \in U_n$ for $n = 1, 2$. Thus Lemma 5.2 gives
\[|f(\eta_n) - a_n\eta_n| \leq \varepsilon_0|\eta_n|, \quad n = 1, 2. \] (22)

But γ^* has length $o(|z_0|)$, and f' maps γ into the bounded domain B_1, and so $f(\eta_2) - f(\eta_1) = \int_\gamma f'(z)dz = o(|\eta_1|)$. Since $a_1 \neq a_2$, this contradicts (22), and the first assertion of Lemma 5.3 is proved. Finally, (21) follows by applying [23, Proposition 1.2, p.9] to $g_1(z) = f'(z_0 + C_1|z_0|z)$.

Lemma 5.4 Let $L(r) \to \infty$ with $L(r) \leq \frac{1}{8}\log r$ as $r \to \infty$, and for $k > 0$ and large r let $A(k) = \{z : re^{-kL(r)} \leq |z| \leq re^{kL(r)}\}$. Then the number N_1 of distinct poles of f in $A(1)$ satisfies
\[N_1 = O(\phi(r)), \quad \phi(r) = L(r) + \frac{\log r}{L(r)}, \quad r \to \infty. \] (23)

Proof. Assume that r is large and that $A(1)$ contains N_1 distinct poles w_1, \ldots, w_{N_1} of f, with $\phi(r) = o(N_1)$. Let D_j be the component of $(f')^{-1}(B_2)$ in which w_j lies, and let $\theta_j(t)$ be the angular measure of $D_j \cap S(0, t)$. Since r is large the D_j are simply connected.

We shall use in this proof c to denote positive constants, not necessarily the same at each occurrence, but in particular not depending on $r, L(r)$ or N_1. By the discussion in Section 4, we may assume that at least $16N$ of these D_j, say D_1, \ldots, D_{16N}, with N an integer satisfying
\[N \geq cN_1, \quad \phi(r) = o(N), \] (24)

are such that, with a_1, a_2 distinct finite asymptotic values of f', the following is true. To each D_j corresponds a type II component E_j of $(f')^{-1}(B_1)$, the boundaries of D_j and E_j sharing a
component K_j. Each K_j is a simple piecewise smooth curve going to infinity in both directions and mapped by f' onto a fixed sub-path J_1 of the curve J, the closure of J_1 joining a_1 to a_2. Since f' is univalent on each E_j, we have $E_j \neq E_k$ for $1 \leq j < k \leq 16N$.

A standard application of the Cauchy-Schwarz inequality gives $M^2 \leq 2\pi \sum_{j=1}^{M} 1/\theta_j(t)$ so that, as in [17, 19], at least $4N$ of the D_j, say D_1, \ldots, D_{4N}, have

$$
\int_{2r(e^{-L(r)})}^{(1/2)re^{2L(r)}} dt/\theta_j(t) > cNL(r), \quad \int_{2r(e^{-L(r)})}^{(1/2)re^{-L(r)}} dt/\theta_j(t) > cNL(r).
$$

We fix a sub-arc J_0 of J_1, one of the closed line segments I_θ chosen following (19). We write p_j for the multiplicity of the pole of f' at w_j, and for $1 \leq j \leq 4N$ define $v_j = (h_2 \circ f')^{1/p_j}$, so that v_j maps D_j conformally onto $B(0, 1)$, with $v_j(w_j) = 0$. The path K_j forming the boundary between D_j and E_j has a sub-path λ_j mapped onto J_0 by f'. As z describes the arc λ_j, the image $(h_2 \circ f')(z)$ describes an arc of the unit circle of length at least c, using (19), so that $v_j(z)$ describes an arc of the unit circle of length at least $c/p_j \geq cr^{-2p(j')}^{-1}$. This gives a harmonic measure estimate

$$
\omega(w_j, \lambda_j, D_j) \geq c/p_j \geq cr^{-2p(j')}^{-1}.
$$

Set $\sigma_j = \lambda_j \setminus A(2)$. Since w_j lies in $A(1)$, Lemma 2.1 and (25) imply that

$$
\omega(w_j, \sigma_j, D_j) \leq c \exp \left(-\pi \int_{2r(e^{-L(r)})}^{(1/2)re^{2L(r)}} dt/\theta_j(t) \right) + c \exp \left(-\pi \int_{2r(e^{-L(r)})}^{(1/2)re^{-L(r)}} dt/\theta_j(t) \right) \leq c \exp(-cNL(r)).
$$

Since (23) and (24) give $\log r = o(NL(r))$, the estimate (26) implies, provided r is large enough, that

$$
\omega(w_j, \lambda_j^*, D_j) \geq c/p_j \geq cr^{-2p(j')}^{-1}, \quad \lambda_j^* = \lambda_j \cap A(2).
$$

(27)

By (27), λ_j^* is mapped by v_j into a finite union of sub-arcs of the unit circle of total length at least c/p_j and so is mapped by f' into a union of sub-arcs of J_0 of total length at least c, using (19) again. Let $\phi_j(t)$ be the angular measure of the intersection of E_j with the circle $S(0, t)$. The same argument as for (25) gives at least N of the E_j, say E_1, \ldots, E_N, each having

$$
\int_{2r(e^{L(r)})}^{(1/2)re^{3L(r)}} dt/\phi_j(t) > cNL(r), \quad \int_{2r(e^{-L(r)})}^{(1/2)re^{-3L(r)}} dt/\phi_j(t) > cNL(r).
$$

We know that $V = h_1 \circ f'$ maps E_j univalently onto $B(0, 1)$, with λ_j^* mapped onto a union μ_j of sub-arcs of the unit circle of total length at least c, by (19). Hence $\omega(w, \mu_j, B(0, 1)) \geq c(1 - |w|)$.
for $|w| < 1$. If z lies in $E_j \setminus A(3)$ then, because λ_j^* lies in $A(2)$, Lemma 2.1 and (28) imply that
\[
\omega(V(z), \mu_j, B(0, 1)) = \omega(z, \lambda_j^*, E_j)
\leq c \exp \left(-\pi \int_{(1/2)e^{\alpha L(r)}}^{(1/2)e^{-2L(r)}} dt/t\phi_2(t) \right) + c \exp \left(-\pi \int_{2e^{-3L(r)}}^{e^{-2L(r)}} dt/t\phi_2(t) \right)
\leq c \exp(-c N L(r)) = o(1).
\]
Thus for $j = 1, \ldots, N$ the annulus $A(3)$ contains the set $H_j = \{ z \in E_j : |V(z)| < \frac{1}{2} \}$. But each H_j contains, by Lemma 5.3, a disc $B(u_j, C_1 |u_j|)$ and so
\[
cN \leq \sum_{j=1}^{N} \int_{H_j} |z|^{-2} dxdy \leq \int_{A(3)} |z|^{-2} dxdy \leq cL(r),
\]
which contradicts (23) and (24). Lemma 5.4 is proved.

Choosing $L(r) = \frac{1}{8} \log r$ gives
\[
\pi(r^{9/8}, f) - \pi(r^{7/8}, f) = O(\log r),
\]
and so
\[
\overline{N}(r, f) = O(\log r)^2, \quad r \to \infty.
\]

Lemma 5.5 Let $H(z) = f'''(z)/f''(z)$. Then $T(r, H) = O(\log r)^2$ as $r \to \infty$.

Proof. We have, by (29),
\[
T(r, H) = N(r, H) + m(r, H) \leq \overline{N}(r, f''') + \overline{N}(r, 1/f'') + O(\log r) = O(\log r)^2.
\]

Lemma 5.6 There exists a subset E_0 of $[1, \infty)$, of finite logarithmic measure, such that for all $s \in [1, \infty) \setminus E_0$ there exists ζ_s with $|\zeta_s| = s$ and $|H(\zeta_s)| > s^{-2/3}$.

Lemma 5.6 follows immediately from (12), applied to $1/f''$, and Lemma 5.1.

Lemma 5.7 Let K be a large positive constant and let $P(r)$ be the number of zeros and poles, counting multiplicity, of H in $B(K)$, with $B(K)$ defined as in (3). Then $P(r) = O(\log r)^{1/2}$ as $r \to \infty$.

Proof. Since f'' has finite order, standard estimates based on [9, p.22] give a subset E_1 of $[1, \infty)$, of finite logarithmic measure, and a positive constant T, such that
\[
|H(z)| \leq s^T, \quad |z| = s \in [1, \infty) \setminus E_1.
\]
For large \(r \), choose \(R = R(r) \) with \(L(r) = \log R = (\log r)^{1/2} + O(1) \), such that the estimate (30) holds for \(s = r/R, Rr \). By Lemma 5.4, the poles \(c_1, \ldots, c_M \) of \(H \) in \(B(R) \), all of which are poles of \(f \), are such that \(M = O(\log r)^{1/2} \).

Assume next that \(r \) is large, and that \(H \) has \(Q \) zeros \(b_1, \ldots, b_Q \) in \(B(K) \), repeated according to multiplicity, with

\[
(\log r)^{1/2} = o(Q), \quad M + T = o(Q). \tag{31}
\]

Let

\[
h(z) = H(z) \prod_{m=1}^{M} (z - c_m) \prod_{q=1}^{Q} (z - b_q)^{-1}, \tag{32}
\]

so that \(h \) is analytic in \(B(R) \), and non-zero in \(B(K) \). On \(|z| = r/R \) we have \(|z - b_q| \geq r/2K \) and \(|z - c_m| \leq 2Rr \), since \(K \) and \(R/K \) are large, and using (30) we get

\[
|h(z)| \leq (r/R)^T (2Rr)^M (2K/r)^Q \leq SK^Q, \quad |z| = r/R, \quad S = r^{T+M-Q} 2^{M+Q} R^{M+T}. \tag{33}
\]

Next, on \(|z| = Rr \) we have \(|z - b_q| \geq Rr/2 \) and \(|z - c_m| \leq 2Rr \), so that (30) gives

\[
|h(z)| \leq (Rr)^T (2Rr)^M (Rr/2)^{-Q} = r^{T+M-Q} 2^{M+Q} R^{T+M-Q} = SR^{-Q}, \quad |z| = Rr. \tag{34}
\]

The function \(u(z) = \log |h(z)/S| \) is subharmonic on \(B(R) \), and by (33) and (34) satisfies

\[
u(z) \leq Q \log K \left(\frac{\log |rR/z|}{2 \log R} \right) - Q \log R \left(\frac{\log |rz/r|}{2 \log R} \right) \tag{35}
\]

on the boundary of \(B(R) \). The maximum principle then gives (35) for all \(z \) in \(B(R) \). For \(|z| \geq r/K \) we have

\[
\frac{\log |rz/r|}{2 \log R} \geq \frac{\log R/K}{2 \log R} \geq \frac{1}{4},
\]

and so

\[
u(z) \leq \frac{3}{4} Q \log K - \frac{1}{4} Q \log R \leq -\frac{1}{8} Q \log R, \quad z \in B(K),
\]

using in both steps the fact that \(R/K \) is large. This gives, recalling (31) and (33),

\[
|h(z)| \leq SR^{-Q/8} = r^{T+M-Q} 2^{M+Q} R^{M+T} R^{-Q/8} \leq r^{T+M-Q} R^{-Q/16}, \quad z \in B(K). \tag{36}
\]

Using Lemmas 2.2 and 5.6, choose \(w \) with

\[
3r/4 \leq |w| \leq 5r/4, \quad |H(w)| \geq |w|^{-2/3} \geq 1/r, \quad \left| \prod_{m=1}^{M} (w - c_m) \right| \geq \left(\frac{r}{16e} \right)^M. \tag{37}
\]

We have \(|w - b_q| \leq 2Kr \) and so (32), (36) and (37) give

\[
1/r \leq |H(w)| \leq r^{T+M-Q} R^{-Q/16} (2Kr)^Q (16e/r)^M,
\]

12
which leads, using (31) and the fact that R and R/K are large, to

$$1 \leq r^{T+1} 2^{Q+6M} K^Q R^{-Q/16} \leq r^{T+1} R^{-Q/32}, \quad Q \log R \leq 32(T + 1) \log r.$$

But this contradicts (31), by the choice of R, and Lemma 5.7 is proved.

We now complete the proof of Theorem 1.2. By Lemma 5.3, there exist positive constants C_1, C_2 and arbitrarily large z_0 satisfying (21). Let δ be small and positive. By Lemmas 5.5 and 5.7, the function $H = f''' / f''$ satisfies the hypotheses of Lemma 2.3, which on combination with Lemma 5.6 gives $s > 0$ such that: (i) the circle $S(0, s)$ meets $B(z_0, C_1|z_0|/2)$; (ii) $|H(\zeta)| > s^{-2/3}$ for some ζ on $S(0, s)$; (iii) we have (4). But (ii) and (iii) give $|H(z)| \geq s^{-3/4}$ on $S(0, s)$, provided δ was chosen small enough, and this contradicts (21). Theorem 1.2 is proved.

6 An example

Take a positive integer k and a positive sequence (a_n) with $a_1 > 100$ and $a_{n+1}/a_n > 100$ for $n \geq 1$. We use a fairly standard argument of Mittag-Leffler type, and define

$$L(z) = g(z)^{k} H(z), \quad g(z) = \prod_{n=1}^{\infty} (1 - z/a_n), \quad H(z) = \sum_{n=1}^{\infty} \sum_{j=0}^{k} d_{j,n}(z - a_n)^{j-k-1},$$

in which the uniformly bounded constants $d_{j,n}$ are to be determined. Standard arguments as in [9, p.27] and Lemma 2.3 give

$$M(r, g)/m_0(r, g) \leq r^{C}, \quad \log M(r, g) \leq C n(r) \log r, \quad 2a_n \leq r \leq \frac{1}{2} a_{n+1},$$

in which $n(r) = n(r, 1/g)$ and C denotes a positive constant, not necessarily the same at each occurrence, but independent of r and n. With $h(z) = g(z)(z - a_n)^{-1}$, we obtain $|h(a_n)|^{-1} \leq C$ from (39), and using the formula $h'(z)/h(z) = \sum_{m \neq n} 1/(z - a_m)$ we get $|h^{(j)}(a_n)/h(a_n) | \leq C$ for $1 \leq j \leq k$. This gives an expansion

$$g(z)^{k} = (z - a_n)^{k} (A_0 + A_1(z - a_n) + \ldots), \quad |A_0|^{-1} \leq C, \quad |A_j/A_0| \leq C, \quad 1 \leq j \leq k.$$

The $d_{j,n}$ are determined by

$$d_{0,n} A_0 = -k - 1, \quad 0 = \sum_{p=0}^{j} A_p d_{j-p,n} = A_0 (d_{j,n} + \ldots + d_{0,n} A_j/A_0), \quad 1 \leq j \leq k,$$

and by (40) we get $|d_{j,n}| \leq C$. As $z \to a_n$ we thus have $L(z) = -(k+1)/(z - a_n) + O(|z - a_n|^{k})$ and so $f^{(k+1)}/f^{(k)} = L$ defines a meromorphic function f with simple poles at the a_n and $f^{(k)}$ zero-free.
For z outside the union of the discs $B(a_n, \frac{1}{2}a_n)$ we have $|H(z)| \leq C \sum_{n=1}^{\infty} \sum_{j=0}^{k} a_n^{j-k-1} \leq C$, and so integrating along the negative real axis and around arcs of circles we get, using (38) and (39),

$$|f^{(k)}(z)| \leq C \exp(C r \exp(C n(r) \log r)), \quad |f(z)| \leq C r^k \exp(C r \exp(C n(r) \log r)),$$

for $2a_n \leq |z| = r \leq \frac{1}{2}a_{n+1}$. Since $N(r, f) = N(r, 1/g)$, we thus have $T(r, f) \leq \exp(C n(4r) \log r)$ for all large r, and $n(r)$ may be chosen so as to tend to infinity arbitrarily slowly.

The author thanks the referee for some very helpful comments.

References

School of Mathematical Sciences, University of Nottingham, NG7 2RD.

jkl@maths.nott.ac.uk