1. INTRODUCTION

Consider functions \(f \) meromorphic in \(\mathbb{C} \), i.e. \(f = f_1/f_2 \) with \(f_j \) entire. Value distribution theory begins with:

Picard’s theorem (ca. 1879)
If \(f \) is meromorphic in the plane and omits each of the distinct values \(a, b, c \) then \(f \) is constant.

Refined and generalized by R. Nevanlinna: \(T(r, f), m(r, f) \), first and second fundamental theorems etc. Consider here:

1. Critical points and critical values of functions (connections to iteration)
2. Higher derivatives

Critical points

\(f \) non-constant, meromorphic. Then \(f \) is one-one on a nbd of \(z_0 \) and the inverse function \(f^{-1} \) exists on a nbd of \(w_0 = f(z_0) \)

iff \(f'(z_0) \neq 0 \) or \(z_0 \) is a simple pole.

If \(f'(z_0) = 0 \) or \(z_0 \) is a multiple pole,

\(z_0 \) is a **critical (multiple) point**, and \(w_0 = f(z_0) \) a critical value.

\(f^{-1} \) has an algebraic singularity over \(w_0 \) (\(n \) "sheets").

Critical points and values countable.

Examples

1. The Weierstrass doubly periodic function \(p \) solves

\[
(p')^2 = 4(p-e_1)(p-e_2)(p-e_3),
\]

with \(e_j \) distinct constants. Critical values are \(e_j, \infty \).
2. \(f(z) = 1/(e^z + 1) \) has no critical points. But if we continue \(f^{-1} \) along a path on which \(w \to 1 \), then \(f^{-1}(w) \) tends to infinity in the left half plane.

Asymptotic values

If \(f \) is transcendental and we have a path \(\gamma \to \infty \) such that

\[
f(z) \to a, \text{ with } a \text{ finite or } \infty, \text{ as } z \to \infty \text{ on } \gamma,
\]

then \(a \) is an asymptotic value of \(f \) (transcendental singularity of \(f^{-1} \)).

Iversen's theorem (1913)

If \(f \) is transcendental meromorphic and \(f(z) = a \) only finitely often in the plane, then \(a \) is an asymptotic value of \(f \).

Converse false: \(e^z(e^z - 1) \).

More examples

1. \(\tan z \) has 2 omitted values \(\pm i \), both asymptotic, and no critical values.
2. \(\tan^2 z \) has one asymptotic value \(-1\) and two critical values \(0, \infty \).
3. \(\int_0^z e^{-t^2} dt \) has three asymptotic values (two finite) and no critical values.
4. Weierstrass \(p \) function has no asymptotic values.
5. Eremenko (1979): there exists a meromorphic function \(f \) for which every value in \(\mathbb{C} \cup \{\infty\} \) is asymptotic.

How many singular values?
Asymptotic and critical values called SINGULAR values of f^{-1}.

Must be at least 3, except in special cases.

Suppose f^{-1} has singularities only over $0, \infty$.

Then f/f' is entire. Either f/f' is constant and $f(z) = \exp(az + b)$

or Iversen gives $\gamma \to \infty$ on which $f/f' \to \infty$.

If f/f' is linear, $f(z) = (az + b)^k$.

If f/f' non-linear, can get

$$\int_{\gamma} |f'(z)/f(z)| \ |dz| < \infty, \ f(z) \to a \neq 0, \infty, z \in \gamma.$$

2. ORDER OF A FUNCTION f

Many questions depend on growth.

Write $f = f_1/f_2$, f_j entire. Say f has FINITE ORDER if there exists $k > 0$ such that

$$\log |f_j(z)| \leq O(|z|^k) \text{ as } z \to \infty, \ j = 1, 2.$$

The order $\rho(f)$ is the infimum of such k.

ALTERNATIVELY, take any 3 distinct values a,b,c in $\mathbb{C} \cup \{\infty\}$.

Let $n(r)$ be the number of points in $|z| \leq r$ at which $f(z) = a,b$ or c. Then (Nevanlinna)

$$\rho(f) = \lim_{r \to \infty} \frac{\log n(r)}{\log r}.$$

Examples:

$$\rho(e^z) = 1, \ \rho(\cos(\sqrt{z})) = 1/2,$$
\[\rho(\tan(e^z)) = \infty. \]

E.g. note that \(\tan(e^z) = \infty \) whenever \(e^z = (k + 1/2)\pi \), with \(k \) integer.

3. GROWTH AND CRITICAL POINTS

1. F. Nevanlinna, 1920s. Take \(f \) transcendental, of order \(\rho \), and assume that \(f \) has no multiple points (locally one-one).

The Schwarzian derivative

\[S(f) = f^{(3)}/f' - (3/2)(f''/f')^2 \]

is ENTIRE. Also \(f \) can be written \(f_1/f_2 \), where \(f_j \) solve

\[y'' + A(z)y = 0, \quad A(z) = S(f)/2. \]

If \(\rho < \infty \) then \(A \) is a polynomial

\[\rho(f) = (\deg(A) + 2)/2. \]

Example:

\[f(z) = (\int_0^z e^{-t^2} dt)/(C + \int_0^z e^{-t^2} dt), \]

\[C \text{ constant}, \quad A(z) = -1 - z^2. \]

\(f(z) \) tends to different asymptotic values in sectors, depending (on \(C \) and) on whether \(\exp(t^2) \) big or small.

Eremenko’s theorem (1994)

Suppose that \(f \) has finite order \(\rho \) and very few multiple points. Then \(2\rho \) is an integer \(\geq 2 \), and \(f \) behaves asymptotically like examples above.

Growth and critical points, cont’d

\(f \) transcendental meromorphic, order \(\rho \).

2. If \(\rho < 1 \) then \(f' \) has infinitely many zeros. (Eremenko, Langley, Rossi ’94) (cf. tan \(z \))
3. If \(f \) is entire and \(\rho < 1/2 \), then \(f \) has infinitely many critical values (folklore). Sharp, due to \(\cos(\sqrt{z}) \).

4. For meromorphic \(f \), if \(n(r) = o(\log r) \) as \(r \to \infty \), then \(f \) has infinitely many critical values. (Langley, '94) Again sharp.

4. GROWTH AND ASYMPTOTIC VALUES

Recall: a transcendental singularity \(w \) of \(f^{-1} \) arises from a path \(\gamma \) tending to infinity on which \(f(z) \to w \).

Denjoy-Carleman-Ahlfors Theorem (ca. 1930)

A non-constant entire function of finite order can have at most \(2\rho(f) \) finite asymptotic values.

Note: \(\infty \) asymptotic value (Iversen)

Examples: \(z^{-1/2} \sin(z^{1/2}) \) ; \(\int_0^z \sin t \; dt/t \).

Reason for DCA

More asymptotic values means narrower regions between paths, hence \(f \) must grow faster.

Note: no analogue of DCA for meromorphic \(f \): can have EVERY complex value asymptotic. (Eremenko 1979)

Bergweiler-Eremenko Theorem (1995)

If \(f \) is meromorphic of finite order and \(f \) has only finitely many critical values, then \(f \) has at most \(2\rho(f) \) asymptotic values.

Note: Order assumption necessary in both DCA and Bergweiler-Eremenko theorems:

\[
 f(z) = \int_0^z e^{e^t} \; dt \text{ is entire, with no critical values, but with infinitely many asymptotic values.}
\]

Here \(\rho = \infty \).
An application of Bergweiler-Eremenko theorem

Several results have easier proofs using the last theorem.

Theorem. If f is transcendental entire with $\rho(f) < 1$ then f'/f has at least one zero. (Clunie, Eremenko, Rossi 1993)

Suppose no zeros. Then the only possible critical value of f is 0. Also ∞ is an asymptotic value of f (Iversen).

By Bergweiler-Eremenko, ∞ is the only asymptotic value of f.

But then f^{-1} has at most two singular values.

5. APPLICATIONS OF SINGULARITIES OF f^{-1}.

1. If f is meromorphic, $u = \log |f|$ is a potential, harmonic except $\mp \infty$ at zeros/poles.

The gradient ∇u models e.g. fluid or heat flow; zeros and poles of f correspond to sources, sinks.

∇u vanishes where $f'/f = 0$. (cf. papers by Clunie, Eremenko, Rossi, Langley, Shea)

2. Iteration theory

Given meromorphic f, look at iterates f_n, where $f_{n+1} = f(f_n)$.

A "stable point" z_0 means roughly: a small change in z_0 makes a small change in the forward orbit (equicontinuity)

$$O^+(z_0) = \{ f_n(z_0): n \geq 0 \}. $$

z_0 is in the (stable set) Fatou set if:

The iterates f_n are all defined on a nbd V of z_0 and form a normal family on V.
(normal: every sequence has a convergent subsequence, possibly with limit ∞.)

The complement is the Julia set, non-empty if f is not Moebius.

Montel Criterion

If a family F of functions f meromorphic on a domain D is such that each f omits 3 fixed values a,b,c in D, then F is normal in D.

(Local analogue of the Picard theorem)

Periodic points

Suppose $f_n(z_0) = z_0$ and $|f_n'(z_0)| < 1$ (attracting periodic point). Then z_0 lies in a component of Fatou set, which contains a singularity of f^{-1}.

If $|f_n'(z_0)| = 1$ then z_0 may lie on boundary of components each containing a singularity.

Example $f(z) = \lambda \tan z$, $0 < \lambda < 1$

$f(z)$ maps upper half plane, lower half plane, real axis into themselves.

$f(0) = 0$ (fixpoint) and $f'(0) = \lambda$ (attracting fixpoint)

Thus 0 and $\mathbb{C} \setminus \mathbb{R}$ lie in a component U of the Fatou set, as do all pre-images of 0.

Julia set is a totally disconnected subset of \mathbb{R}.

The Fatou set is U and contains two singularities of f^{-1} (namely $\pm \lambda i$).

Fatou set and Julia set invariant under f.

If U is a component of Fatou set, then f_n maps U into a component U_n of Fatou set.

U is WANDERING if all the U_n are distinct (otherwise eventually periodic).
Rational functions can’t have wandering domains (Sullivan).

Transcendental entire f can (Baker, Herman).

If f^{-1} has only finitely many singular values (Class S) then f has no wandering domains. (Goldberg, Keen, Eremenko, Lyubich, Baker, Kotus, Lu).

6. HIGHER DERIVATIVES

Pólya Shire Theorem (1922)

If f is meromorphic with at least one pole, and w is in \mathbb{C}, then:

there exist $z_n \to w$ and $k_n \to \infty$ such that $f^{(k_n)}(z_n) = 0$

iff the nearest pole of f to w is not unique.

Example 1: For $f(z) = \tan z$, the point w attracts zeros of higher derivatives iff $\text{Re}(w) = k\pi$, k in \mathbb{Z}. The strips in between are the "shires".

Only gives information about zeros of $f^{(k)}$, k large.

Must $f^{(k)}$ have zeros if f has poles?

Example 2:

Let $m \geq 0$ be integer. Then there exists a transcendental meromorphic f such that $f^{(m)}$ and $f^{(m+1)}$ have no zeros, but f has infinitely many poles.

Take any entire h with only simple zeros, and define f by

\[
\frac{f^{(m+1)}}{f^{(m)}} = \frac{e^g}{h}
\]

with g entire, chosen (Mittag-Leffler interpolation) so f meromorphic and $h = 0$ implies $f = \infty$.

Note: $\rho(f) = \infty$.
Theorem (conjectured by Hayman 1959)

Suppose that $m \geq 0, k \geq 2$, and that f is transcendental meromorphic in the plane such that $f^{(m)}$ and $f^{(m+k)}$ both have only finitely many zeros.

Then $f^{(m)}$ is of the form Re^P with R rational, P a polynomial.

In particular, f has only finitely many poles.

Essentially says that two "non-adjacent" zero-free derivatives determine f.

For $k \geq 3$ proved by Frank (1976) using Nevanlinna theory, DEs, Wronskians. For $k = 2$, proved by Langley (1993).

Sketch of proof for $k = 2$:

Assume $m=0$ and f and f'' have no zeros. Use the Newton function

$$H(z) = z - f(z)/f'(z).$$

(Edrei 1950s et al.) If H is rational, solve for f. Assume H transcendental.

$$H'(z) = f(z)f''(z)/f'(z)^2 \neq 0.$$

Also, poles of H are simple. Thus H has no multiple points, so (F. Nevanlinna)

$$H = h_1/h_2, \quad h_j'' + A(z)h_j = 0,$$

$A(z)$ entire. Work near maximum modulus of A. Show:

H has fixpoints $H(z) = z$ with $H'(z)$ large.

But $H(z) = z$ implies $f(z) = \infty$ and $H'(z) = (q+1)/q$ with q integer.

7. THE GOL’DBERG CONJECTURE

Gol’dberg has conjectured that

$$\bar{N}(r,f) \leq N(r,1/f^{(k)}) + S(r,f), \quad k \geq 2,$$

with $S(r,f)$ a relatively small error term.
i.e. if \(k \geq 2 \) the frequency of distinct poles of \(f \) controlled by frequency of zeros of \(f^{(k)} \) (cf. Pólya).

Proof of this would have major impact on several other conjectures.

Not true for \(k = 1 \) (\(\tan z \) again!).

WHAT'S KNOWN

(i) Gol’dberg conjecture is true if \(f \) has only simple poles (Mues 1971).

(ii) If \(f \) has finite order and \(f'' \) has only finitely many zeros then the number of distinct poles of \(f \) in \(|z| \leq r \) is at most \(O(\log r)^2 \).

If, in addition, \(f' \) has finitely many zeros, or the poles of \(f \) have bounded multiplicities, then \(f \) has finitely many poles. (Langley, 1995-7).

Methods for (ii): Bergweiler-Eremenko theorem, harmonic measure, length-area principles, ideas from iteration.