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Abstract. We consider a Lagrangian Moving Finite Element method which has a mesh velocity
based on conservation of the integral of a monitor function. The method arises naturally from the
theory of fluids and the monitor function can be thought of as pseudo density and the corresponding
velocity as that of a pseudo fluid. In this paper we describe a weak form of the method, which is
illustrated on a two-dimensional nonlinear diffusion equation (the Porous Medium Equation) with a
moving boundary.
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1. Introduction. In [1] a moving finite element method for PDEs using monitor
functions is introduced which uses ideas from [4] and [5]. The method exploits local
mass conservation to move the mesh and describes a Moving Finite Element method
using a density monitor function.

Implicit in the approach is a link with Lagrangian fluid dynamics. Relating con-
servation to Lagrangian mass invariance and the mesh velocity to a fluid velocity, and
using the tools described in [1], we discuss here the link with fluids in more detail.

The approach revolves around the use of a monitor function in place of the den-
sity, leading to a monitor velocity and monitor velocity potential. The moving finite
element method uses a distributed form of the approach.

The application of the method to PDEs and systems of PDEs is described. De-
tailed computations are presented for the Porous Medium Equation (PME) in two
dimensions.

2. PDEs in a Moving Frame. We consider PDEs and systems of PDEs of the
form

∂u

∂t
= Lu(2.1)

where u = u(x, t) and L is a multidimensional operator involving space derivatives
only.

Instead of working in the fixed frame define an invertible mapping between fixed
labelling coordinates (a, τ) and (Lagrangian) moving frame coordinates (x, t) of the
form

x = x̂(a, τ); t = τ

so that

u(x, t) = u(x̂(a, τ), τ) = û(a, τ)
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say. Then the chain rule gives

∂û

∂τ
=

∂u

∂t
+

∂u

∂x

∂x̂

∂τ

where ∂
∂t means differentiation with respect to time t with x frozen, so that ∂u

∂t is
given by the PDE (2.1). Hence the PDE (2.1) can be written

∂û

∂τ
−

∂u

∂x

∂x̂

∂τ
= Lu(2.2)

Two equations are required to determine the two unknowns ∂û
∂τ and ∂x̂

∂τ in (2.2).
One is the PDE but the other must be obtained from a separate principle. In much
moving mesh work the velocity ∂x̂

∂τ is found first and equation (2.2) then used to find
∂û
∂τ . In this paper we seek a velocity ∂x̂

∂τ based on modifying the Lagrangian equation
of fluid dynamics.

3. Fluid Dynamics. In classical fluid dynamics fixed a-space regions Ω0 have
fixed volumes, i.e.

∫

Ω0

da = constant in time(3.1)

Using the above transformation to a (Lagrangian) moving frame this implies that the
integral over the time-dependent transformed region Ω(t)

∫

Ω(t)

ρdx(3.2)

is constant in time, where ρ is the Jacobian. The invariance (3.2) can be interpreted
as conservation of mass and the Jacobian thus identified with the fluid density. The
kinematic equation (3.2) is referred to as the Lagrangian conservation-of-mass equa-
tion.

Differentiating (3.2) with respect to time,

∫

Ω(t)

∂ρ

∂t
dx +

∮

∂Ω(t)

ρv · dS = 0(3.3)

where v is the fluid velocity seen from an Eulerian viewpoint. This leads to

∫

Ω(v)

(
∂ρ

∂τ
+ ∇ · (ρv)

)
dx = 0(3.4)

where, to underline the fact that Ω(t) moves with velocity v, we have written Ω(t) =
Ω(v).

In most fluid dynamics models equation (3.2) is coupled with a kinetic equation
and the two provide a system of PDEs for the unknowns ρ and v. However if the
vorticity curlv is specified, the kinematic equation decouples from the kinetic equation
and then, given ρ, constancy of (3.2) is a distinct equation for the fluid velocity v.
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4. A Pseudo Density Monitor Function. If the density ρ is replaced by a
general (non-negative) pseudo density monitor function, M say, equation (3.2) deter-
mines a new velocity, vM say, which we shall call the monitor velocity, satisfying the
invariance

∫

Ω(vM )

Mdx = constant in time,(4.1)

a property which is related to the Geometric Conservation Law ([5],[7]).
Differentiating (4.1) with respect to time, we obtain

∫

Ω(vM )

(
∂M

∂t
+ ∇ · (MvM )

)
dx = 0(4.2)

(cf. (3.4)). As for fluids, if the vorticity curlvM is specified, specification of M gives
an equation for the monitor velocity vM (see next section).

4.1. A Vorticity Condition. In [5] the curl condition is taken to be of the
form

curl(µvM ) = curl(µvp)(4.3)

where µ is a non-negative function and vp is a prescribed velocity.

There then exists a monitor velocity potential φM such that

vM − vp = µ−1∇φM(4.4)

where from (4.2) φM satisfies the monitor potential equation

−

∫

Ω(vM )

∇ · (Mµ−1∇φM )dx =

∫

Ω(vM )

∇ · (Mvp)dx +

∫

Ω(vM )

∂M

∂t
dx(4.5)

The pointwise form of equation (4.5) possesses a unique solution for φ if φ or the
normal component of ∇φ is given on the boundary.

4.2. The Monitor Function. The monitor M can be any function of the vari-
ables of the problem for which the time derivative ∂M

∂t can be expressed in terms of
space derivatives.

For example, if M is the fluid density ρ

∂M

∂t
=

∂ρ

∂t
= −∇ · (ρv)

giving from (4.2) the pointwise form

∇ · (ρ(vM − v)) = 0

Then, if vM satisfies (4.3) with vp = v, and the normal component of vM − v is zero
at the boundary, it follows that vM = v.

Generally, if M is any function of the field variables the term ∂M
∂t in (4.5) can be

expressed in terms of their space derivatives on the right hand side of (4.5) using a
chain rule and the field equations (2.1).
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5. Summary. We solve the coupled system for M , vM and φM consisting of the
invariance equation (4.1), the monitor velocity equation (4.4), and the the monitor
velocity potential equation (4.5). The time derivative ∂M

∂t in (4.5) is expressed in terms
of space derivatives of the field variables using (2.1). Equation (4.1) can be used to
express M in terms of x for substitution into (4.4) and (4.5) to yield a self-contained
ODE for x. (N.B. vM = ẋ.)

Equation (4.1) may also be used as a recovery equation for u or, if that is not
feasible, we can use (5.2) or (2.2).

5.1. Application to Scalar PDEs. For a scalar PDE of the form (2.1) the
method is self-contained. As in [3] we can use (4.1) to express the monitor M in
terms of the (Lagrangian) coordinates x and, substituting into (4.3) or (4.5), we
obtain an equation for φ in terms of x only. Moreover, writing vM in Lagrangian
form as ẋ, equation (4.4) becomes

ẋ = vp + µ−1∇φM(5.1)

which, coupled with the solution of (4.5), gives an ODE system for x. After x has
been obtained, back substitution into the (algebraic) invariance equation (4.1) allows
the reconstruction of M and hence u.

5.2. Application to Systems. The same procedure can be used for systems of
equations (including the equations of fluid mechanics), except for the final reconstruc-
tion step. However, if the monitor function M contains only one field variable, then
that field variable can be reconstructed from (4.1) in the same way. More generally,
the field variables can be obtained directly from the PDE in the moving frame (2.2).
For example, in the special case where Lu is the divergence of a flux function F we
can use an ALE (Arbitrary Lagrange Euler) equation in the flux balance form

d

dt

∫

Ω(vM )

udx = −

∮

∂Ω(vM )

{F− uvM} · dS(5.2)

5.3. Finite Volumes. The integral forms (4.1) and (4.5) hold for finite volumes
Ωi(vM ), provided only that the corresponding volumes Ωi in the fixed frame remain
fixed in time. A finite volume form of (4.4) (with vM = ẋ) is

∫

Ω(ẋ)

(ẋ − vp)dx =

∫

Ω(ẋ)

µ−1∇φMdx(5.3)

Taking finite dimensional approximations to the dependent variables the Finite
Volume equations may be solved as in the continuous case by using (4.1) to express
M in terms of x and then forming and integrating the ODE system for x inherent in
(5.3) through the solution of (4.5) for φM .

The variable x may be used via (4.1) to reconstruct the function M and therefore
the solution u. Alternatively, u can be obtained through the ALE equations (5.2) or
the PDE in the moving frame (2.2).

The procedure with finite volumes works well in 1-D (see [3],[2]) but if the number
of dimensions is greater than one a finite element approach is more effective.

6. A Distributed Monitor Density. To construct a finite element method we
require weighted weak forms. Consider therefore the original fixed frame invariance
(3.1) in the weighted form

∫

Ω0

ŵda = constant in time(6.1)
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where ŵ is a non-negative weight function (thus conserving partial particle counts).
Transforming to the Lagrangian frame (moving under the velocity vM ) as in

section 2, we obtain the weighted invariance (cf. (3.2))

∫

Ω(vM )

wMdx = constant in time(6.2)

where M is the Jacobian
∣∣ ∂a
∂x

∣∣ and w is the image of the weight function ŵ under the
transformation.

Differentiating the invariance equation (6.2) leads to the weighted monitor velocity
equation (cf. (4.2))

d

dt

∫

Ω(vM )

wMdx =

∫

Ω(vM )

(
∂

∂t
(wM) + ∇ · (wMvM )

)
dx = 0.(6.3)

¿From (6.1)

0 =
d

dt

∫

Ω0

ŵda =

∫

Ω0

dŵ

dt
da =

∫

Ω0

(
∂w

∂t
+ vM · ∇w

)
da(6.4)

so that, pointwise,

∂w

∂t
+ vM · ∇w = 0(6.5)

Using (6.5), equation (6.3) reduces to

∫

Ω(vM )

w

(
∂M

∂t
+ ∇ · (MvM )

)
dx = 0.(6.6)

As before, assuming a curl condition of the form (4.3) there exists a monitor
velocity potential φM satisfying (4.4), giving from (6.6) a weighted monitor potential
equation (cf. (4.5))

−

∫

Ω(vM )

w∇ · (Mµ−1∇φM )dx =

∫

Ω(vM )

w

(
∇ · (Mvp) +

∂M

∂t

)
dx(6.7)

Finally, using integration by parts, the left hand side of equation (6.7) may be written
as

−

∮

∂Ω(vM )

wMµ−1∇φM · dS +

∫

Ω(vM )

Mµ−1∇w · ∇φMdx(6.8)

The time derivative ∂M
∂t in (6.7) can be expressed in terms of space derivatives of the

field variables using the weak form

∫

Ω(vM )

wM ′(u)
∂u

∂t
dx =

∫

Ω(vM )

wM ′(u)Ludx(6.9)

of the PDE (2.1), giving

−

∮

∂Ω(vM )

wMµ−1∇φM · dS +

∫

Ω(vM )

Mµ−1∇w · ∇φMdx



6 M.J.BAINES, M.E.HUBBARD AND P.K.JIMACK

=

∫

Ω(vM )

w∇ · (Mvp)dx +

∫

Ω(vM )

wM ′(u)Ludx(6.10)

In the case where Lu = ∇ ·F(u) integration by parts on the last term gives

∮

∂Ω(vM )

wM ′(u)F(u) · dS −

∫

Ω(vM )

∇(wM ′(u)) · F(u)dx(6.11)

To recover the velocity vM a weak form of equation (4.4) is required which, with
vM = ẋ, we take in the form (cf. (5.3))

∫

Ω(vM )

w(ẋ − vp)dx =

∫

Ω(vM )

µ−1w∇φMdx(6.12)

6.1. Summary. The procedure in the distributed case is to solve a coupled
system for M , φM and vM consisting of the invariance equation (6.2), the monitor
velocity potential equation (6.10) and the monitor velocity equation (6.12).

As in the continuous and finite volume cases, equation (6.2) can be used to express
M in terms of x and an ODE system formed for x from (6.12) using the solution of
(6.10) for φM . The new mesh is obtained by integrating the ODE system. The
function M may be reconstructed via equation (6.2) and thereby the solution u. If
that is not feasible (for example for systems), an alternative is to obtain u through
the ALE equations (5.2) or the PDE in the moving frame (2.2).

6.2. A Moving Finite Element method. A Moving Finite Element method
may be constructed using the weak forms (6.2), (6.10) and (6.12). For full details see
[1]. Linear elements are used for u, vM , and φM , here denoted by U , Ẋ, and Φ, on a
(moving) triangulation of the region. The weight function ŵ is taken to be the usual
piecewise linear basis function Ŵi (in the reference space). Since vM is piecewise
linear and Wi is the advected form of Ŵi (cf. (6.6)), the corresponding functions Wi

are the usual linear basis functions on the moving mesh. The support Ω(vM ) of the
integrals in the i’th equation is the patch of elements Πi(Ẋ) surrounding the node.

6.3. Matrix Forms. Expanding M in the space of functions Wi as

M =
∑

MiWi(6.13)

equation (6.2) leads to the matrix equation

A(~X) ~M = ~C(6.14)

where ~M is the vector of coefficients Mi and ~C is a vector of constants determined by
the initial distribution of M in (6.2). Here

A(~X) = {Aij} with Aij =

∫

Πi(Ẋ)

WiWjdΩ(6.15)

is a mass matrix.
Also expanding Φ in the space of functions Wi as

Φ =
∑

i

ΦiWi(6.16)
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equation (6.10) leads in the standard way to the matrix equation

K(~X, M)~Φ = ~f(6.17)

where ~Φ is the vector of coefficients Φi and ~X is a vector of the nodal positions Xi.
Here (apart from boundary terms)

K(~X, M) = {Kij} with Kij =

∫

Πi(Ẋ)

µ−1M∇Wi.∇WjdΩ(6.18)

is a weighted stiffness matrix and

~f = {fj} with fj =

∫

Πj(Ẋ)

Wj (∇ · (MVp) + M ′(U)LU)dΩ(6.19)

where Vp is the discretisation of vp.

Finally, equation (6.12) determines the Ẋi from the Φ. Since Φ and Ẋ are piece-
wise linear functions we have the matrix equation

A(~X)
d

dt
~X = ~b(6.20)

where

~b = {bi} with bi =

∫

Πi(Ẋ)

Wi(Vp + µ−1∇Φ)dΩ(6.21)

The boundary conditions on (6.14) are not imposed strongly, otherwise the re-
sulting equations are inconsistent with mass conservation and the velocity potential
equation (6.17). Note that if M = 0 on the outer boundary then since Wi = 0 on the
internal boundaries all the boundary terms in (6.10) vanish.

Once the X’s are known another application of (6.14) allows us to recover the
function M . Then, by inverting this function U may be obtained.

6.4. ALGORITHM. We solve the ODE system

d

dt
~X = ~F(~X)(6.22)

using the sequence
• Given ~X recover M from (6.14)

• Given M calculate ~Φ from (6.17)

• Calculate ~F(~X) as A(~X)−1~b (see (6.20))
• Return

No iteration is needed. Once M is known the solution U may be recovered by inverting
M(U).

7. The Porous Medium Equation. We demonstrate the method for a partic-
ular PDE, the Porous Medium Equation,

∂u

∂t
= ∇ · (um∇u),(7.1)

which is a well-known model equation for gas flows in porous media, spreading liq-
uids etc. It admits compact support solutions with a moving boundary. for which
comparison results also exist [6].
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Following Budd et al [1] we observe that the radially symmetric PME

∂u

∂t
=

1

r

∂

∂r

(
um ∂u

∂r

)
(7.2)

with global mass conservation is invariant under the scalings

t → λt, r → λ
1

2m+2 r, u → λ−
1

m+1 u(7.3)

This invariance allows self-similar solutions to be constructed and suggests that the
monitor function should be chosen to be M = u, since the integral

∫
urdr is locally

invariant. With this choice of M the boundary integrals in (6.10) vanish.
A radially symmetric self-similar solution of the radially symmetric PME is

u =






(
t0
t

) 1
m+1

(
1 −

(
r

Kt
1

2m+2

)2
) 1

m

r ≤ Kt
1

2m+2

0 r > Kt
1

2m+2

(7.4)

where t0, K are constants. The function is zero at the moving boundary and is
sketched in cross section in Figure 7.1 for m = 4. For m = 1 the slope at the
boundary is finite while for m > 1 it is infinite. The global mass is conserved. We
shall use this solution to test the 2-D algorithm.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

u

Fig. 7.1. Behaviour of the radially symmetric self-similar solution of the PME (in cross-section)
for m = 4.

8. Numerical Results. The finite element equations ((6.2), (6.10) and (6.12))
have been solved, as in section 5.3, with M = u and ∂M

∂t given by the PME (7.1).
We take µ = 1 and vp = 0 so that curlvM=0. K is chosen to give an initial

radius of 0.5.
The evolution of the three cases when m = 1, 2, 4 is illustrated in Figure 7.2, which

contains slices through the origin of the approximate and exact solutions, alongside
three-dimensional views of the numerical solution at t = 2.0 obtained on a genuinely
unstructured, but still uniform, 2349 node, 4539 cell, mesh. The approximations
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PME, self−similar solution: m = 1; T = 0.0, 0.5, 1.0, 2.0
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u

Approximate
Exact
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PME, self−similar solution: m = 1; T = 2.0
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PME, self−similar solution: m = 2; T = 0.0, 0.5, 1.0, 2.0

x
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PME, self−similar solution: m = 2; T = 2.0

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.25

0.5

0.75

1
PME, self−similar solution: m = 4; T = 0.0, 0.5, 1.0, 2.0

x

u
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Exact

−1

0

1 −1

0

1
0

0.2

0.4

0.6

PME, self−similar solution: m = 4; T = 2.0

Fig. 7.2. Slices through the origin of the radially symmetric self-similar solutions to the PME
(7.4) at various times, comparing exact with approximate (left), along with the approximation at
t = 2.0 (right), for m = 1 (top), 2 (middle) and 4 (bottom).
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are accurate, but the figures clearly show that u = 0 is enforced only weakly at the
boundary.

Clustering nodes towards the boundary improves the quality of the solution, par-
ticularly in the m = 2, 4 cases, although it begins to deteriorate if the clustering is too
pronounced, possibly because the simple node positioning algorithm used to create
the initial meshes pulls nodes away from regions where the second derivatives of the
solution are high.

The scaled variables

t1/(m+1)u and t−1/(2m+2)r

remain constant, as predicted by the theory (see (7.3)). Mass is always conserved to
machine accuracy, which is crucial to the domain maintaining its circular shape over
long time periods.

8.1. Errors. Errors in the solution are found to be O((∆x)2) in l1 for m = 1.
The two other exponents, where the gradient of the exact solution is infinite at the
boundary of the domain, give lower accuracy. Further details can be found in [1].

At any mesh point, the scaled variables, û = t1/(m+1)u and r̂ = t−1/(2(m+1))r

remain constant, as predicted by the theory [4].

A second measure of the accuracy of the solution is given by the error in the
position of the boundary of the domain. The normalised maximum and minimum
radii of the computational domain converge towards each other, and eventually to the
exact radius (see [1]).

It is also possible to impose a background velocity field vp on the mesh movement
equations via the extra vorticity term in (4.3). With a background mesh velocity of
vp = 2.5r(−y, x)T the solution remains close to that obtained on a fixed mesh until
tangling becomes inevitable (see [1]).

8.2. Comparison results. The new scheme is not restricted to modelling self-
similar solutions. Within certain bounds, the evolution of any initial conditions can
be predicted.

We have investigated a comparison property of the approximate solutions which
reflects the same property of the exact solution of the PME (7.2) (viz. the comparison
theorems in [6]), i.e. given three sets of initial conditions,

u1(x, y, t0) ≤ u2(x, y, t0) ≤ u3(x, y, t0) ∀ (x, y) ∈ Ω ,(8.1)

then

u1(x, y, t) ≤ u2(x, y, t) ≤ u3(x, y, t) ∀ (x, y) ∈ Ω, t ≥ t0 .(8.2)

This property also appears to hold for the approximate solution derived here, as
can be seen in Figures 8.1 and 8.2 which show two experiments in which the initial
conditions are perturbed. In Figure 8.1 a random perturbation is applied to the initial
solution and its evolution compared with two radially symmetric solutions scaled
according to the minimum and maximum perturbations. In Figure 8.2 a sinusoidal
perturbation is applied to the initial position of the boundary and its evolution is found
to be sandwiched in a similar manner. In both cases the initial random perturbations
are smoothed out very rapidly.
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PME: m = 1; T = 1.0

x

u

Fig. 8.1. Slices of the initial conditions (left) and approximate solutions at t = 1 (right) taken
through the origin, illustrating the ‘sandwiching’ of a randomly perturbed solution to the PME with
m = 1.
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PME: m = 4; T = 0.0
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0.75
PME: m = 4; T = 1.0

x

y

Fig. 8.2. Slices of the initial conditions (left) and approximate solutions at t = 1 (right) taken
through the origin, illustrating the ‘sandwiching’ of a sinusoidally perturbed mesh for the PME with
m = 4.

9. Conclusions. A moving mesh method is described using a form of Lagrangian
fluid invariance by replacing the density with a monitor function. The resulting
monitor velocity gives a moving frame on which to solve the problem. For scalar
problems the solution can be reconstructed from the invariance equation itself.

A moving finite element method is described based on partial invariances and a
weighted form of the equations. The method, which involves no background mesh
or iteration, needs only the solution of three symmetric matrix equations and the
integration of one ODE system.

The method is demonstrated on the 2-D porous medium equation (7.1) with the
choice of monitor informed by scale invariance.



12 M.J.BAINES, M.E.HUBBARD AND P.K.JIMACK

REFERENCES

[1] M. J. Baines, M. E. Hubbard, and P. K. Jimack, A Moving Finite Element Method using
Monitor Functions, Report 2003.04, School of Computing, University of Leeds, UK (2003).

[2] K. W. Blake, Moving Mesh Methods for Nonlinear Parabolic Partial Differential Equations,
PhD thesis, Dept. of Mathematics, University of Reading, UK (2001).

[3] K. W. Blake and M. J. Baines, A moving mesh method for non-linear parabolic problems,
Numerical Analysis Report 2/02, Dept. of Mathematics, University of Reading, UK (2002).

[4] C. J. Budd and M. Piggott, The Geometric Integration of Scale Invariant Ordinary and
Partial Differential Equations, J. Comput. Methods Appl. Math., 128 (2001), pp. 399–422.

[5] W. Cao, W. Huang, and R. D. Russell, A Moving Mesh Method based on the Geometric
Conservation Law, SIAM J. Sci. Comput., 24 (2002), pp. 118–142.

[6] O. Oleinik et al., Istv. Akad. Nauk. SSR Ser. Mat., 22 (1958), pp. 667–704.
[7] P. D. Thomas and C. K. Lombard, The Geometric Conservation Law and its Application to

Flow Computations on Moving Grids, AIAA J., 17 (1979), pp. 1030-1037.


