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SUMMARY

A moving mesh finite element method is proposed for the adaptive solution of second and fourth order
moving boundary problems which exhibit scale invariance. The equations for the mesh movement are
based upon the local application of a scale-invariant conservation principle incorporating a monitor
function and have been successfully applied to problems in both one and two space dimensions.
Examples are provided to show the performance of the proposed algorithm using a monitor function
based upon arc-length. Copyright c© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Moving meshes have proved to be a valuable tool in Computational Fluid Dynamics, having
been successfully applied in many different contexts, ranging from phase change and blow-up
problems to hyperbolic conservation laws and more general classes of time-dependent flow.
In this paper a moving mesh finite element method is presented for the solution of a class of
scale-invariant partial differential equations (PDEs) with moving boundaries.

The moving mesh approach has been rekindled by recent interest in geometric integration
and scale invariance, which treats independent and dependent variables alike [4]. In this paper
the mesh equations are based on the principle of conserving the integral of a scale invariant
monitor function in time within each patch of finite elements. An additional constraint is
required to specify the mesh velocity uniquely, this being carried out through a mesh velocity
potential in the manner of [5]. Unlike most approaches to moving boundary problems, the
approximation procedure uses the PDE to obtain the mesh velocities: based upon an approach
that has already been successfully applied to a range of moving boundary problems in one and
two space dimensions using the dependent variable as monitor function, [1].
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1.1. Scale invariance

Scaling is a natural property of models of physical systems due to their independence of physical
units [2]. For a scale invariant problem there exist indices β and γ such that the scaling

t = λt̂, x = λβ
x̂, u = λγ û (1)

leaves the PDE

ut = Lu (2)

(where Lu is a purely spatial operator on an evolving domain Ω(t)) and appropriate boundary
conditions invariant. For example, in the case of the porous medium equation (PME) in d
dimensions,

ut = ∇ · (un∇u), subject to u|∂Ω = 0, (3)

it can be shown that β = 1/(nd+2) and γ = −d/(nd+2), while for the fourth-order equation

ut + ∇ · (un∇∇2u) = 0, subject to u|∂Ω =
∂u

∂n
|∂Ω = 0, (4)

β = 1/(nd+4) and γ = −d/(nd+4). For both of these problems there exist known self-similar
solutions, [7, 6], which are ideal for comparison with the results obtained by numerical schemes.

1.2. Monitor Functions and Conservation

Given an initial condition for (2), a set of test functions wi, and a non-negative, solution-
dependent monitor function m(u,∇u), then one may define ki ∈ [0, 1] such that

∫

Ω

wi m(u,∇u) dΩ = ki

∫

Ω

m(u,∇u) dΩ = ci, say. (5)

If the test functions form a partition of unity then
∑

i ki = 1. Furthermore, conservation of
(5), as the solution u and domain Ω(t) evolve in time, may be used as the guiding principle
for a mesh movement algorithm (as in [1] with m(u,∇u) ≡ u). For a scale invariant problem
(5) may be modified to become

∫

Ω(t)

wi m̃(t, u,∇u) dΩ = ci (6)

where the wi are scale invariant and m̃ is given by

m̃(t, u,∇u) = t−dβ m(t−γu, t−γ+β∇u). (7)

Note that m̃ = m at t = 1 (which, without loss of generality, is taken to be the initial time
throughout this paper) and that, as a result of scale invariance, the ci are now independent
of t. We shall refer to equation (6) as the conservation principle. This equation suggests the
existence of a mapping x(t) for which scale invariance is sustained for all t ≥ 1. We next derive
the velocity ẋ(t) explicitly by differentiating (6) with respect to t.
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1.3. The velocity ẋ(t)

Using Leibniz’s rule (aka the Reynolds Transport Theorem) and assuming that ∂wi

∂t +ẋ·∇wi = 0
(i.e. the test function wi is advected with velocity ẋ), we obtain from (6)

0 =
d

dt

∫

Ω(t)

wi m̃(t, u,∇u) dΩ =

∫

Ω(t)

(

d

dt
(wim̃) + ∇ · (wim̃ẋ)

)

dΩ

=

∫

Ω(t)

wi

(

∂m̃

∂t
+

(

∂m̃

∂u
+

∂m̃

∂∇u
· ∇

)

∂u

∂t
+ ∇ · (m̃ẋ)

)

dΩ. (8)

If we now substitute for ∂u/∂t from the PDE (2) this becomes an equation for ẋ. By itself
this is insufficient to determine ẋ uniquely in more than one space dimension. However, by
the Helmholtz Decomposition Theorem uniqueness may be obtained by additionally specifying
curl ẋ and a suitable boundary condition. By writing curl ẋ = curl v, where v is prescribed,
it follows that there exists a potential function φ such that ẋ = v + ∇φ. (Since we shall not
have occasion to use a non-zero v in what follows it is set to zero, implying an irrotational ẋ.)

Equation (8) may now be written as a weak form of an elliptic equation for φ,

−

∫

Ω(t)

wi ∇ · (m̃∇φ) dΩ =

∫

Ω(t)

wi

(

∂m̃

∂t
+

(

∂m̃

∂u
+

∂m̃

∂∇u
· ∇

)

Lu

)

dΩ. (9)

A convenient weak form of the equations connecting ẋ and φ is
∫

Ω(t)

wi (ẋ −∇φ)k dΩ = 0, for k = 1, ..., d. (10)

We refer to (9) and (10) as the potential and velocity equations respectively.

1.4. Finite elements

Following [1], let x ≈ X, a piecewise linear finite element mapping from some reference domain
(typically Ω(1)). This defines a moving finite element mesh on which wi ≈ Wi, the usual
piecewise linear basis function at node i, whilst φ ≈ Φ and u ≈ U are piecewise linear
approximations. The conservation principle (6) then becomes

∫

Ω(t)

Wi m̃(t, U,∇U) dΩ = Ci (11)

say, where the Ci are known from the initial mesh and data. Similarly, the potential equation
(9) may be expressed as

∫

Ω(t)

m̃∇Wi · ∇Φ dΩ =

∫

Ω(t)

Wi

(

∂m̃

∂t
+

(

∂m̃

∂U
+

∂m̃

∂∇U
· ∇

)

LU

)

dΩ, (12)

where Φ = 0 has been applied on the boundary (corresponding to a zero tangential mesh
velocity at the boundary). The velocity equation (10) becomes

∫

Ω(t)

Wi (Ẋ −∇Φ)k dΩ = 0, for k = 1, ..., d, (13)

corresponding to the best approximation Ẋ to ∇Φ in the space spanned by the Wi.
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Using the finite element expansions X =
∑

j Xj Wj , Φ =
∑

j Φj Wj , U =
∑

j Uj Wj , the
matrix forms of equations (12) and (13) can be derived. These equations form the basis of the
method whereby, given U on a mesh X, a mesh velocity Ẋ can be found. This is used to update
the mesh via forward Euler time-stepping (say), after which the solution can be recovered on
the new mesh via the conservation principle (11). Alternatively, U may also be approximated
using time-stepping based upon the weak form

∫

Ω(t)

Wi U̇ dΩ =

∫

Ω(t)

Wi (∇U · Ẋ + LU) dΩ (14)

with U̇ = 0 on the boundary of Ω(t).

2. MONITOR FUNCTIONS

The consequences of taking m to be the “density” monitor function u have been extensively
studied in [1]. Many other possible choices for m are possible however. For the remainder
of this paper we consider just one of these, the “arc-length” monitor given by

√

1 + (∇u)2,
although the generalization to other monitors follows in a similar manner. From (7) m̃ =

t−dβ
√

1 + t2(β−γ)(∇u)2 and equation (12) then becomes

∫

Ω(t)

√

t−2(β−γ) + (∇U)2 ∇Wi · ∇Φ dΩ =

∫

Ω(t)

Wi

t
(−dβ + (β − γ))

√

t−2(β−γ) + (∇U)2 dΩ

+

∫

Ω(t)

Wi
−2(β − γ)t−2(β−γ)−1 + 2∇U · ∇(LU)

√

t−2(β−γ) + (∇U)2
dΩ, (15)

while (11) becomes
∫

Ω(t)

Wi t−dβ
√

1 + t2(β−γ)(∇U)2 dΩ = Ci. (16)

3. APPLICATIONS

3.1. The Porous Medium Equation (PME)

Using the values of β and γ noted in Section 1 with the arc-length monitor, (15) gives

∫

Ω(t)

√

t−2(d+1)/(nd+2) + (∇U)2 ∇Wi · ∇Φ dΩ =

∫

Ω(t)

Wi t−1

nd + 2

√

t−2(d+1)/(nd+2) + (∇U)2 dΩ

+

∫

Ω(t)

Wi
−2(d + 1)t−((n+2)d+4)/(nd+2)/(nd + 2) + 2∇U · ∇Q

√

t−2(d+1)/(nd+2) + (∇U)2
dΩ, (17)

while (16) becomes

∫

Ω(t)

Wi t−d/(nd+2)
√

1 + t2(d+1)/(nd+2)(∇U)2 dΩ = Ci. (18)
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Note that due to the piecewise linear approximation it is necessary to introduce an intermediate
finite element function Q ≈ LU in (17), recovered from the weak form

∫

Ω(t)

Wi Q dΩ = −

∫

Ω(t)

Un ∇Wi · ∇U dΩ. (19)

Results for the one-dimensional equation are shown in Figure 1. In each case the results
shown were obtained using (14) to update the values of the dependent variable and the initial
mesh was uniformly spaced. The test case shown models a similarity solution to the PME of
the form given in [7, 1]. When n = 1 the scheme exhibits close to second order accuracy, while
when n = 2 (and higher) the exact solution has infinite gradient at the boundary and the
numerical order of accuracy reduces to approximately one.

Similar results are seen in two dimensions when comparisons are made with exact similarity
solutions. Figure 2 does not show a similarity solution however, instead it has been chosen to
illustrate the movement of the mesh towards a region (the moving boundary in this case) in
which the gradient of the evolving solution is steepening. The conservation of arc-length can
clearly be seen to lead to a reduction in the mesh size in the regions where the gradient has
increased sharply over time.
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Figure 1. Snapshots of one-dimensional results at various times illustrating: PME with n = 1 (left);
PME with n = 2 (middle); 4th order with n = 1 (right).

3.2. A fourth-order equation

In order to apply the proposed algorithm to the fourth-order problem (4) using piecewise linear
finite elements it is necessary to express it as a pair of second order equations:

ut + ∇ · (un∇p) = 0, p = ∇2u. (20)

As with the PME, appropriate values of β and γ (see Section 1) may be substituted into (15)
in order to obtain equations for the mesh potential function Φ. Again it is necessary to replace
LU by a weak approximation, Q, in this case given by

∫

Ω(t)

Wi Q dΩ = −

∫

Ω(t)

Un ∇Wi · ∇P dΩ, (21)
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where P is the finite element approximation to p given by
∫

Ω(t)

Wi P dΩ = −

∫

Ω(t)

∇Wi · ∇U dΩ. (22)

Figure 1 shows one set of results for this fourth order equation and compares them with
the exact similarity solution given in [6, 1] in the case when n = 1. The numerical results
suggest an order of accuracy of between 1 and 2 in one dimension and approximately 1 in two
dimensions.
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Figure 2. Snapshots of two-dimensional results at various times illustrating the evolution of the PME
solution with n = 2 from initial conditions that do not correspond to a similarity solution: successive

slices through y = 0 (left); initial mesh (middle); final mesh (right).

4. DISCUSSION

We have presented a moving mesh finite element method based on the use of a scale invariant
conservation principle incorporating an arc length monitor function. Selected computational
results have been included to illustrate typical behaviour and performance for this method.
There is no reason why the technique cannot be applied much more widely to other monitors
and other problems exhibiting scale invariance.
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