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Abstract

A Lagrangian moving finite element algorithm is presented whose

mesh velocity is determined by the invariance of the local ”mass”.

The method is applied to second and fourth order nonlinear diffusion

equations with moving boundaries in one and two dimensions.

1 Introduction

We consider adaptive finite element solutions of second order and fourth order
nonlinear diffusion equations with moving boundaries using a Lagrangian
moving finite element method. The method is prompted by recent interest
in geometric integration and scale invariance (for references see [6]) which
has rekindled interest in the use of adaptive moving meshes in the solution
of these equations, suggesting new numerical approaches. The invariance
properties combine independent and dependent variables, suggesting that
these variables should be treated similarly in numerical work. A natural
consequence is to use moving adaptive meshes.

Scale invariance implies a local relationship between the variables which
can be used to drive mesh movement. The mechanism is similar to the use of
monitor functions to control the movement of the mesh, as in the MMPDE
(Moving Mesh Partial Differential Equations) method [9]. It is also related to
the Geometric Conservation Law [11] and its associated invariance property
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[7]. The local relationship induces a mesh movement which retains the scale
invariance properties of the original PDE.

The method is a generalisation of the finite volume approach used in [3, 4]
in one dimension. It uses a weighted form of the invariance equation on a
patch of elements, as in [1], resulting in a Lagrangian moving finite element
method. In order to obtain uniqueness in higher dimensions we exploit the
idea of a mesh velocity potential, as proposed in [7]. The link between the
method and classical fluid dynamics is discussed in [2].

We describe the Lagrangian moving finite element method and its role in
free boundary problems requiring adaptivity. The method is tested against
the radial self-similar solution of the two-dimensional Porous Medium Equa-
tion (PME) with a free boundary. We also consider applications to prob-
lems governed by a fourth order nonlinear diffusion equation with a moving
boundary.

We begin by setting up a moving framework for the theory.

2 Fixed and Moving Frames

Consider a scalar PDE in the general form

∂u

∂t
= Lu (1)

where u = u(x, t) in a fixed frame of reference with coordinate x and L is a
multidimensional operator involving space derivatives only.

Instead of working in the fixed frame we take a Lagrangian viewpoint.
Define an invertible mapping between fixed labelling coordinates a at time τ
and moving coordinates x at time t, of the form

x = x̂(a, τ), t = τ

so that
u(x, t) = u(x̂(a, τ), τ) = û(a, τ)

say, where û, x̂ are Eulerian coordinates.
By the chain rule,

∂û

∂τ
= ∇u ·

∂x̂

∂τ
+

∂u

∂t

dt

dτ
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where ∂
∂t

means differentiation with respect to time t with x frozen, so that
∂u
∂t

is given by the PDE (1). Hence, writing

u̇ =
∂û

∂τ
, ẋ =

∂x̂

∂τ
,

we obtain the form of the differential equation in the moving frame,

u̇ −∇u · ẋ = Lu . (2)

Clearly, a second equation is required to determine the two unknown Eulerian
velocities u̇ and ẋ.

An integral form similar to (2) may be obtained using Leibnitz’ rule on
a moving test volume Ω(t) in the form

d

dt

∫

Ω(t)
udΩ =

∂

∂t

∫

Ω(t)
udΩ +

∮

∂Ω(t)
uẋ · dΓ =

∫

Ω(t)

(

∂u

∂t
+ ∇ · (uẋ)

)

dΩ (3)

giving the integral form in the moving frame (cf. (2)),

d

dt

∫

Ω(t)
udΩ −

∫

Ω(t)
∇ · (uẋ)dΩ =

∫

Ω(t)
LudΩ (4)

where we have made use of the integral form of the PDE (1) in the fixed
frame.

For the finite element method we need weak forms. Given a set of suitable
test functions wi moving with the velocity field ẋ a generalisation of the
Leibnitz rule (3) gives

d

dt

∫

Ω(t)
wiudΩ =

∂

∂t

∫

Ω(t)
wiudΩ +

∮

∂Ω(t)
wiuẋ · dΓ

=
∫

Ω(t)

(

wi
∂u

∂t
+ u

∂wi

∂t
+ ∇ · (wiuẋ)

)

dΩ

Assuming that the test functions wi are advected with velocity ẋ, we have

∂wi

∂t
+ ẋ · ∇wi = 0 (5)

leading to the integral weak form in the moving frame,

d

dt

∫

Ω(t)
wiudΩ −

∫

Ω(t)
wi∇ · (uẋ)dΩ =

∫

Ω(t)
wiLudΩ (6)

where we have made use of the weak form of the PDE (1) in the fixed frame.
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3 A Distributed Conservation Principle

Assume that the problem and the boundary conditions are such that the
total mass

∫

Ω(t)
udΩ

is conserved in the moving frame. Motivated by the scale invariance of this
quantity, we assume that the velocity ẋ of the moving frame is determined
locally by the distributed conservation principle

∫

Ω(t)
wiudΩ = ci = constant in time. (7)

Differentiating (7) with respect to time,

d

dt

∫

Ω(t)
wiudΩ = 0

giving from (6)

−

∫

Ω(t)
wi∇ · (uẋ)dΩ =

∫

Ω(t)
wiLudΩ (8)

or, after integration by parts,

−

∮

∂Ω(t)
wiuẋ · dΓ +

∫

Ω(t)
uẋ · ∇widΩ =

∫

Ω(t)
wiLudΩ . (9)

Equation (8) is in effect an equation for the divergence of uẋ. It is insuf-
ficient by itself to determine ẋ uniquely but if the vorticity curlẋ is specified
(together with a suitable boundary condition) then, given u, equations (8)
or (9) determine the velocity ẋ.

For example, suppose that curlẋ = curlq is specified. Then there exists
a velocity potential φ such that

ẋ = q + ∇φ (10)

so that (8) can be written

−

∫

Ω(t)
wi∇ · (u∇φ)dΩ =

∫

Ω(t)
wi (Lu + ∇ · (uq)) dΩ (11)
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and (9) becomes

−

∮

∂Ω(t)
wiu∇φ · dΓ +

∫

Ω(t)
u∇φ · ∇widΩ

=
∫

Ω(t)
wiLudΩ +

∮

∂Ω(t)
wiuq · dΓ−

∫

Ω(t)
uq · ∇widΩ . (12)

Equation (12) can be used to determine φ, after which ẋ is given by the
weak form, from (10),

∫

Ω(t)
wiẋdΩ =

∫

Ω(t)
wi∇φdΩ +

∫

Ω(t)
wiqdΩ . (13)

4 A Moving Finite Element Method

A Moving Finite Element method may be constructed using the weak forms
(7), (12) and (13).

Linear elements are used for u, ẋ, and φ, here denoted by upper case U ,
Ẋ, and Φ, on a (moving) triangulation of the region. Since Ẋ is piecewise
linear and Wi is the advected form of Ŵi (cf. (5)), the corresponding functions
Wi are the usual linear basis functions on the moving mesh. The support of
the integrals in the i’th equation (12) is taken to be the patch of elements
Πi(Ẋ) surrounding the node. The Dirichlet condition U = 0 is not imposed
strongly at the boundary in the solution of (7), but weakly in the first term
of (12).

In effect we solve the ODE system

d

dt
~X = ~F(~X) (14)

using the following sequence to evaluate ~F(~X):

• Given ~X recover U from (7)

• Given U calculate ~Φ from (12)

• Calculate ~F(~X) from (13)

• Return

The overall algorithm requires the solution of a single ODE system, where
each evaluation of the right-hand side of (14) involves the solution of three
(four in the case of a fourth order problem, as outlined below) symmetric
linear algebraic systems.
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4.1 A Second Order Problem

The Porous Medium Equation in a fixed coordinate system (PME)

∂u

∂t
= ∇ · (um∇u), (15)

is a well-known model equation for gas flows in porous media, spreading
liquids etc. It admits compact support solutions with a free boundary for
which comparison results are known [6, 10]. In integral form (15) is

d

dt

∫

Ω(t)
udΩ =

∫

Ω(t)
∇ · (um∇u)dΩ =

∮

∂Ω(t)
(um∇u) · dΓ (16)

so that if um∇u vanishes on the boundary the total mass is conserved, i.e.

∫

Ω(t)
urd−1dr = constant in time. (17)

Note that for this particular problem (12), with q set to zero, becomes

−

∮

∂Ω(t)
wiu∇φ · dΓ +

∫

Ω(t)
u∇φ · ∇widΩ

= −

∫

Ω(t)
um

∇wi · ∇udΩ , (18)

where it is again assumed that um∇u vanishes on the boundary.
The radially symmetric form of (15) (in d dimensions) is

∂u

∂t
=

1

rd−1

∂

∂r

(

rd−1um ∂u

∂r

)

. (19)

Equation (19) is invariant under the scalings

t → λt, r → λβr, u → λ(2β−1)/mu . (20)

If the boundary conditions are such that the total mass is invariant, then it
follows that β = 1/(2 + md). A source-type self-similar solution,

uSS =







(

t0
t

)d/(2+md) (

1 −
(

r2

Kt2/(2+md)

))1/m
r2 ≤ Kt2/(2+md)

0 r2 > Kt2/(2+md)
(21)
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may be deduced from (20) [6], where t0, K are constants, which may be used
to test numerical results. The function uSS vanishes at the moving boundary
and a typical profile is sketched in cross-section in Figure 1 for m > 1. For
m = 1 the slope at the boundary is finite while for m > 1 it is infinite. Recall
that the global mass is conserved.

For this equation there also exists the following comparison principle [10]:
given three sets of initial conditions,

u1(x, y, t0) ≤ u2(x, y, t0) ≤ u3(x, y, t0) ∀ (x, y) ∈ Ω , (22)

then

u1(x, y, t) ≤ u2(x, y, t) ≤ u3(x, y, t) ∀ (x, y) ∈ Ω, t ≥ t0 . (23)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

u

Figure 1: Typical behaviour of the self-similar solution of the PME.

4.2 A Fourth Order Problem

A corresponding fourth order equation (in the fixed coordinate system) is

∂u

∂t
+ ∇ · (um∇(∇2u)) = 0 (24)

which arises in the flow of surface-tension dominated thin liquid films (m = 3)
and the diffusion of dopant in semiconductors. In integral form it is

d

dt

∫

Ω(t)
udΩ = −

∫

Ω(t)
∇ · (um∇(∇2u))dΩ = −

∮

∂Ω(t)
(um∇(∇2u)) · dΓ = 0

(25)
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so that if um∇(∇2u) vanishes on the boundary the total mass is constant in
time (cf. (17)). The equation (24) may be physically split up into the pair of
second order equations

ut + ∇ · (um∇p) = 0, p = ∇2u (26)

where p is a pressure. In this case, instead of (12), with q set to zero, we
now have

−

∮

∂Ω(t)
wiu∇φ · dΓ +

∫

Ω(t)
u∇φ · ∇widΩ

= −

∫

Ω(t)
um

∇wi · ∇πdΩ , (27)

again assuming that um∇(∇2u) vanishes on the boundary. In (27) π is a
weak approximation to the pressure given by

∫

Ω(t)
wiπdΩ = −

∫

Ω(t)
∇wi · ∇udΩ , (28)

where an additional boundary condition, stating that the normal derivative
of u is zero throughout ∂Ω(t), has been used.

The fourth order radially symmetric equation (24) in d dimensions (in
split form) is

∂u

∂t
+

1

rd−1

∂

∂r

(

rd−1um∂p

∂r

)

= 0, p =
1

rd−1

∂u

∂r
(29)

which is invariant under the scalings

t → λt, x → λβr, u → λ(4β−1)/mu . (30)

Again, if the boundary conditions are such that the total mass (17) is con-
served, it then follows that β = 1/(4 + md).

¿From (30) it follows that for m = 1 there exists a source-type self-similar
solution in the closed form

uSS =







(

t0
t

)d/(4+d) (

1 −
(

r2

Kt2/(4+d)

))2
r2 ≤ Kt2/(4+d)

0 r2 > Kt2/(4+d)
(31)

where t0, K are constants, which may be used to test numerical results. More
details of this similarity solution may be found in, for example, [8].
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5 Numerical Results

5.1 The Second Order Problem

Two sets of results are presented to illustrate the accuracy with which the
method approximates the second order problem presented in Section 4.1. The
first set is in one dimension (d = 1). Figure 2 shows that the rate at which
the L1 error in the approximation decreases is roughly proportional to (∆x)2

in the m = 1 case, where ∆x is taken to be the length of a cell in the initial
(uniform) mesh. The order of accuracy is noticeably lower (approximately
1 for the boundary position and 1.4 for the solution values) when m = 2
because the exact slope of the solution at the boundary is now infinite.

−2.6 −2.4 −2.2 −2 −1.8 −1.6 −1.4

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

Second order problem, m=1: T=2.0
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Figure 2: Orders of accuracy in the L1 norm of approximations to one-
dimensional self-similar solutions of the PME for m = 1, T = t− 1

8
(left) and

m = 2, T = t − 1
6

(right). The dashed line indicates a slope of 2.

Figure 3 shows snapshots of the evolution of a solution given by equation
(21) in the cases m = 1 and m = 2 in two dimensions (d = 2). It is
approximated on a genuinely unstructured, but still uniform, 2349 node,
4539 cell, mesh. Further results, presented in [1, 2], give more details and
show that the order of accuracy obtained in two space dimensions is the same
as in one.

It should be noted that mass is conserved to machine accuracy in all of
these calculations, and indeed also for those presented in the next subsection
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Figure 3: Snapshots of approximations to radially symmetric self-similar so-
lutions (with corresponding triangular meshes) of the PME at three different
times for m = 1, T = t − 1

8
(left) and m = 2, T = t − 1
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(right).
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for fourth order problems. Furthermore, although the curl of the mesh ve-
locity field is assumed here to be zero, it is possible to successfully impose a
background velocity field q on the mesh movement equations via the extra
vorticity term in (12) [1].

5.1.1 Comparison results

The new scheme is not restricted to modelling self-similar solutions.
We have investigated a comparison property of the approximate solu-

tions which reflects the same property of the exact solution of the PME (see
(22,23)). This property holds for the approximate solution derived here, as
can be seen in Figures 4 and 5 which show two experiments in which the ini-
tial conditions are perturbed. In Figure 4 a random perturbation is applied
to the initial solution and its evolution compared with two radially symmet-
ric solutions scaled according to the minimum and maximum perturbations.
In Figure 5 a sinusoidal perturbation is applied to the initial position of the
boundary and its evolution is found to be sandwiched in a similar manner. In
both cases the initial random perturbations are smoothed out very rapidly.
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Figure 4: Slices of the initial conditions (left) and approximate solutions at
t = 1 (right) taken through the origin, illustrating the ‘sandwiching’ of a
randomly perturbed solution to the PME with m = 1.
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Figure 5: Slices of the initial conditions (left) and approximate solutions at
t = 1 (right) taken through the origin, illustrating the ‘sandwiching’ of a
sinusoidally perturbed mesh for the PME with m = 4.

5.2 The Fourth Order Problem

Similar sets of results are presented for the fourth order problem described
in Section 4.2. Figure 6 shows that the L1 error now decreases in proportion
to (∆x)4 when m = 1 and d = 1 (for which the exact self-similar solution
(31) exists). ∆x is defined as before.

Figure 7 shows snapshots of the evolution of a solution given by equation
(31) in two dimensions (d = 2), approximated on a uniform unstructured 545
node, 1024 cell mesh. The accuracy of this approximation is comparable to
that obtained in one dimension. Note, though, that explicit time-stepping is
being used and finer meshes are very expensive to use because the stability
of the method appears to require ∆t to reduce in proportion to (∆x)4.
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Figure 6: Order of accuracy in the L1 norm of an approximation to a one-
dimensional (d = 1) self-similar solution of the fourth order equation with
m = 1.

6 Conclusions

A Lagrangian moving finite element method has been described which is
based on local mass conservation, in line with the scale invariance of problems
that exhibit global mass conservation. The method is illustrated on second
order and fourth order nonlinear diffusion problems with moving boundaries
for which nass is conserved and analytic self-similar solutions exist. Results
show that the method is accurate and exhibits approximate scale invariance.

Self-similar solutions have been considered here for the purpose of illus-
trating the accuracy of the method, but the method can be applied far more
generally. For example, we have shown that in the case of the second order
problem the comparison principle (22,23), as well as a similar principle for
the boundary, is sustained on a numerical level.
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solution to the fourth order equation at four different times.
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