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1. Introduction

Over the past ten years multidimensional upwinding techniques have been
developed with the intention of superseding traditional conservative up-
wind finite volume methods which rely on the solution of one-dimensional
Riemann problems. The new methods attempt a more genuinely multidi-
mensional approach to the solution of the Euler equations by considering a
piecewise linear continuous representation of the flow with the data stored
at the nodes of the grid. The schemes are then constructed from three
separate stages: the decomposition of the system of equations into simple
(usually scalar) components, the construction of a consistent, conservative
discrete form of the equations and the subsequent solution of the decom-
posed system using scalar fluctuation distribution schemes. A detailed de-
scription of each of these stages can be found in [1, 2, 3].

As we shall show, the quality of the solution of a system of differen-
tial equations can be improved by means of grid adaptation. For example,
multidimensional upwind schemes will capture shocks within two or three
cells when they are aligned with the grid [3] and adaptation can be used to
take advantage of this. On unstructured grids this can be accomplished by
refinement, which reduces the size of the cells, and by edge swapping, which
realigns the grid. However, both selective refinement and edge alignment
can, to a large extent, be achieved by a third option, grid movement, which
has the added advantage of avoiding the expensive process of changing the
number of nodes or the connectivity of the grid.

In this paper one of the most recent and successful of the multidimen-
sional upwind algorithms [1, 3] is described. Following this, a very simple
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and cheap algorithm for moving nodes is presented, which improves the
accuracy of two-dimensional steady state solutions of the Euler equations
on unstructured triangular grids.

2. Multidimensional upwinding

2.1. DECOMPOSITION OF THE EULER EQUATIONS

The two-dimensional Euler equations in conservative form are written

Ut + Fx + Gy = 0 , (1)

where

U =




ρ

ρu

ρv

e


 , F =




ρu

ρu2 + p

ρuv

u(p + e)


 , G =




ρv

ρuv

ρv2 + p

v(p + e)


 , (2)

are the vectors of conserved variables and the corresponding conservative
fluxes, respectively, in which ρ is density, u and v are the x- and y-velocities,
p is pressure, and e is total energy, related to the other variables by an
equation of state which, for a perfect gas, is

e =
p

γ − 1
+

1

2
ρ(u2 + v2) . (3)

The decomposition stage of the algorithm dictates how the flux balance
within each triangle of the grid, namely

ΦU = −
∫ ∫

△

(
Fx + Gy

)
dx dy , (4)

is divided into simpler components. In this paper each of these components
will be scalar (although in some cases transforming the equations results
in a simple elliptic subsystem which could be considered without further
decomposition). The decomposed flux balance takes the form of a sum of
scalar contributions,

ΦU =
N∑

k=1

φkrk
U , (5)

where
φk = −S△

(
~λk · ~∇W k + qk

)
(6)

is the general form of the fluctuation due to the kth component of the
decomposition, in which S△ is the area of the cell. rk

U is the vector which
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maps this flux balance contribution back to the conservative variables and
N is the number of components (or waves) in the model.

Unlike in one dimension where a unique decomposition is available,
many different wave models have been proposed for the two-dimensional
Euler equations. These can be divided into groups: some decompose the
flux balance into contributions corresponding to simple wave solutions of
the Euler equations [4, 5], while others use a similarity transformation of
the system of equations into ‘characteristic’ variables [6]. However, the most
successful models which have been produced are based on the decomposi-
tion of a preconditioned form of the Euler equations [3, 7, 8].

These ‘preconditioned’ decompositions are derived by considering the
system (1) in the streamwise variables, ξ and η, and in terms of the sym-
metrising variables Q, defined by

∂Q =




∂p
ρa

∂q

q∂θ

∂p − a2∂ρ


 , (7)

where a is the local speed of sound, q =
√

u2 + v2 is the flow speed and
θ = tan−1

(
v
u

)
is the direction of the flow. When the symmetrised equations

are preconditioned by the matrix P (see below) they can be written

Q
t
+ P

(
As

QQ
ξ
+ Bs

QQ
η

)
= 0 , (8)

where the new Jacobians are the symmetric matrices,

As
Q =




q a 0 0
a q 0 0
0 0 q 0
0 0 0 q


 , Bs

Q =




0 0 a 0
0 0 0 0
a 0 0 0
0 0 0 0


 . (9)

For the purposes of this work, the preconditioner P is chosen to be
that of Deconinck and Paillère [7], a generalisation of the van Leer-Lee-Roe
matrix [9], given by

P =
1

q




χ
β2

ǫ
M2 − χ

β2
ǫ
M 0 0

− χ
β2

ǫ
M χ

β2
ǫ

+ 1 0 0

0 0 χ 0
0 0 0 1


 , (10)

in which βǫ and χ are

βǫ =
√

max(ǫ2, |M2 − 1|) , χ =
βǫ

max(M, 1)
. (11)



4 M.J. BAINES AND M.E. HUBBARD

The singularity which would otherwise occur at the sonic line is avoided by
choosing the constant ǫ > 0 (typically, ǫ = 0.05).

The preconditioned system (8) can now be completely (in the case of
supersonic flow) or partially decoupled by transforming it into a set of
characteristic equations, becoming

Wt + As
W Wξ + Bs

W Wη = 0 , (12)

where W is given by

∂W =




βǫ
∂p
ρa

+ Mq∂θ

βǫ
∂p
ρa

− Mq∂θ
∂p
ρa

+ M∂q

∂p − a2∂ρ




. (13)

The flux Jacobians resulting from this set of variables now have the very
simple form

As
W =




χν+ χν− 0 0
χν− χν+ 0 0
0 0 1 0
0 0 0 1


 , Bs

W =




χ
βǫ

0 0 0

0 − χ
βǫ

0 0

0 0 0 0
0 0 0 0


 , (14)

where

ν+ =
M2 − 1 + β2

ǫ

2β2
ǫ

, ν− =
M2 − 1 − β2

ǫ

2β2
ǫ

. (15)

Thus, the system can be written as four scalar equations of the form

W k
t + ~λk

s · ~∇sW
k + qk

s = 0 , k = 1, 2, 3, 4, (16)

where the advection velocities in streamwise coordinates are given by

~λ1
s =

(
χ
χ
βǫ

)

s

, ~λ2
s =

(
χ

− χ
βǫ

)

s

, ~λ3
s = ~λ4

s =

(
1
0

)

s

, (17)

and the coupling terms are

q1
s = χν−W 2

ξ , q2
s = χν−W 1

η , q3
s = q4

s = 0 . (18)

These indicate that the decomposition is optimal since the third and fourth
equations are always decoupled from the rest of the system, indicating
the invariance of entropy and enthalpy along the streamlines, while for
supersonic flow ν− = 0 and the system is completely decoupled. In subsonic
flow it is possible to consider the first and second equations as an elliptic
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subsystem which can be decomposed no further [1] but for the purposes of
this work they are considered independently, as follows.

Each scalar component is now treated separately. The fluctuations φk

are cell-based quantities which can be distributed to the nodes of the grid
to bring the system closer to equilibrium. The resulting contributions to
the nodes can be transformed into updates to the conservative variables
using the matrix

RU =
∂U

∂Q
P−1

∂Q

∂W
, (19)

the columns of which are the vectors which provide the mapping in (6) of
the characteristic system back on to the conservative system. RU is non-
singular, so its columns are linearly independent and this four-component
decomposition is linearity preserving, i.e. a zero flux balance implies a zero
contribution to each node, and should not destroy the higher order accuracy
of the scalar distribution schemes. Note that, though the decomposition is
itself continuous, the distribution is not since the acoustic subsystem will
be treated differently for supersonic and subsonic flows.

2.2. CONSERVATIVE LINEARISATION

The above decomposition is based on an analysis of a quasilinear form of
the Euler equations,

Ut + AUUx + BUUy = 0 , (20)

where AU = ∂F

∂U
and BU = ∂G

∂U
are the conservative flux Jacobian matrices.

In order to guarantee that any discretisation involving such a decomposition
will give rise to a conservative scheme, a conservative linearisation of this
system is necessary.

An appropriate and very neat linearisation may be obtained [10] by
assuming that Roe’s parameter vector variables,

Z =
√

ρ




1
u

v

H


 , (21)

where H = e+p
ρ

is the total enthalpy, vary linearly within each cell. Under

this assumption, each of the Jacobian matrices, ∂U

∂Z
, ∂F

∂Z
and ∂G

∂Z
, depends

linearly on the components of Z and, because of this and the linear variation
of Z, (4) can be integrated exactly using a one point quadrature, leading to
a discrete form of the flux balance which is equal to the exact flux balance.
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This ensures that, as long as the whole of each discrete flux balance is
distributed to the nodes at each time-step, the sum of these contributions
over the whole grid reduces to boundary contributions and the scheme is
conservative.

The result is a consistent approximation to the flux balance of the form

ΦU = −S△

(
F̂x + Ĝy

)

= −S△

(
AU (Ẑ)Ûx + BU (Ẑ)Ûy

)
, (22)

where the Jacobians are evaluated at the Roe-average state,

Ẑ =
Z1 + Z2 + Z3

3
, (23)

the mean of the values of Z at the vertices of the cell, and the approximation

to the gradient of the conservative variables, ~̂∇U, is evaluated consistently
from the discrete gradient of Z,

~̂∇Z =
1

2S△

3∑

j=1

Zj~nj , (24)

where ~nj is the inward pointing normal to the edge opposite vertex j, scaled
by the length of the edge. Importantly, the form of the linearisation implies
that the analysis of the continuous system in the previous section will also
hold at the discrete level without alteration, provided that all variables are
evaluated at the average state Ẑ and all discrete gradients are calculated

consistently from ~̂∇Z.

2.3. SCALAR FLUCTUATION DISTRIBUTION SCHEMES

Once the wave model has been used to decompose the system of equations
into scalar components (5), the behaviour of these components (if the source
terms are ignored for the moment) can be modelled by the scalar advection
equation,

ut + fx + gy = 0 or ut + ~λ · ~∇u = 0 , (25)

where ~λ = (∂f
∂u

, ∂g
∂u

)T defines the velocity of the advected variable u.
A scheme can be constructed for the solution of this equation by calcu-

lating the fluctuation,

φ = −
∫ ∫

△

~λ · ~∇u dx dy

= −S△
~̂λ · ~∇u , (26)
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within each cell and then distributing it to the nodes of the grid, giving rise
to a form of cell-vertex scheme. The integration, which can be done exactly
because u is assumed to be linear within the cell, introduces the factor of
S△, the area of the triangle, and a cell-averaged wave speed,

~̂λ =
1

S△

∫ ∫

△

~λ dx dy . (27)

For simplicity and compactness, a cell is allowed to contribute its fluctuation
only to its own vertices. Since summing the fluctuations over the whole
domain reduces to a sum of boundary contributions, a conservative scheme
is assured as long as the whole of each fluctuation is distributed.

If explicit forward Euler time-stepping is used, this leads to a scheme
of the form

un+1
i = un

i +
∆t

Si

∑

∪△i

α
j
iφj , (28)

where Si is the area of the median dual cell for node i (one third of the total

area of the triangles with a vertex at i), α
j
i is the distribution coefficient

which indicates the proportion of the fluctuation φj to be sent from cell j

to node i, and ∪△i represents the set of cells adjacent to node i. Since each
fluctuation is a linear function of the data, the scheme is of the form

un+1
i =

∑

k

ciku
n
k . (29)

If the coefficients cik are allowed to depend on the data, the scheme becomes
nonlinear and can be designed to satisfy the following four criteria:

− Upwind - the fluctuation within a cell is only sent to the downstream
vertices of that cell i.e. vertices opposite inflow edges for which ~λ·~n > 0,
where ~n is the inward pointing normal to the edge.

− Positive - the coefficients cik are positive, so the scheme cannot produce
new extrema in the solution at the new time-step, spurious oscillations
will not appear in the solution and the scheme is stable for an appro-
priate time-step restriction.

− Linearity preservation - no update is sent to the nodes when a cell
fluctuation is zero, so the scheme is second order accurate at the steady
state on a regular mesh with a uniform choice of diagonals.

− Continuity - the contributions to the nodes, α
j
iφj, depend continuously

on the data, avoiding limit cycling as convergence is approached.

A linear scheme cannot satisfy both the positivity and the linearity preser-
vation properties simultaneously.

In the search for a scheme which satisfies all of the above properties
it is initially advantageous to consider a linear, positive, upwind scheme,
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the N scheme. By the above definition of upwind, any triangle with only
one downstream vertex will send the whole of its fluctuation to that node.
Where it differs from other upwind schemes is in its treatment of cells with
two inflow sides. Taking a single cell in isolation, with vertices i, j, k, of
which i and j are downstream nodes, the N scheme can be written

Siu
n+1
i = Siu

n
i − ∆tki(u

n
i − un

k)

Sju
n+1
j = Sju

n
j − ∆tkj(u

n
j − un

k)

Sku
n+1
k = Sku

n
k , (30)

where ki,j = 1
2
~λ ·~ni,j and contributions from other triangles are suppressed.

By considering the complete nodal update (28), this scheme can be shown
to be positive for a restriction on the time-step at a node i, given by

∆t ≤ Si∑
∪△i

max(0, kj
i )

. (31)

A linearity preserving scheme (which also retains the upwind and con-
tinuity properties) can be obtained from a positive upwind scheme [11]
such as the N scheme by replacing the contributions, φi and φj, to the
downstream nodes in the two-target case by ‘limited’ contributions,

φ∗
i = φi − L(φi,−φj)

φ∗
j = φj − L(φj ,−φi) . (32)

where, in the case of the N scheme,

φi = −ki(u
n
i − un

k) , φj = −kj(u
n
j − un

k) . (33)

L(x, y) is any member of the family of symmetric limiter functions, although
the minmod limiter,

L(x, y) =
1

2
(1 + sgn(xy))

1

2
(sgn(x) + sgn(y)) min(|x|, |y|) , (34)

is the only one for which the ‘limited’ scheme remains positive. The result-
ing scheme, which is equivalent to the Positive Streamwise Invariant (PSI)
scheme [2], satisfies all of the desired properties and will be used here to
distribute all fluctuations without any associated source term.

When the flow is subsonic, not all of the components of the decom-
position yield homogeneous advection equations and these are dealt with
differently. In this case the two characteristic equations making up the
acoustic subsystem are still solved with a scalar scheme, but one different
to the PSI scheme described above.
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The new scheme is derived by analogy with the finite element method
and from consideration of a weak form of the linear advection equation,
given by ∫ ∫

Ω

ω̃iut dx dy = −
∫ ∫

∪△i

ω̃i
~λ · ~∇u dx dy , (35)

where the approximation to u in terms of the linear basis functions ωi is

u(x, y) =
Nn∑

i=1

ui ωi(x, y) . (36)

Test functions ω̃i are chosen [2] which add both linear and nonlinear dissipa-
tion terms to the standard linear ‘tent’ function, used as the basis function.
When combined with mass-lumping and forward Euler time-stepping on
the left hand side of (35), the result is a fluctuation distribution scheme for
which the coefficients are given by

α
j
i =

1

3
+ τ1

ki

Sj
+ τ2

(ki)‖
Sj

, (37)

where

(ki)‖ =
1

2
~λ‖ · ~ni , (38)

and

τ1 = C1

h

|~λ|
, τ2 = C2

h

|~λ‖|
. (39)

C1 and C2 are both constants set to 0.5 [12], h is some measure of the size
of the discretisation, taken to be the length of the longest edge of the tri-
angle, and ~λ‖ is the gradient dependent advection velocity, the projection
of the advection velocity on to the solution gradient. This describes a non-
linear, mass-lumped, Streamline Upwind Petrov-Galerkin (SUPG) scheme,
formulated in terms of fluctuation distributions. It is linearity preserving
and continuous, but not generally positive nor, by the earlier definition,
truly upwind.

3. Grid adaptation

The adaptation algorithm presented in this paper is a very simple form
of node movement. It takes the form of an iteration where, at each step,
nodes are moved to a weighted average of the positions of the centroids
of the neighbouring triangles [13, 14]. The new nodal position can thus be
written in terms of the old positions as

~xn+1
i =

∑
∪△i

wj~x
n
j∑

∪△i
wj

, (40)
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where the ~xj are the positions of the centroids, wj are the cell weights
and the sums are over the cells adjacent to node i. The iteration (40)
with constant, non-negative weights can be shown to converge. Moreover,
provided that the weights themselves converge, convergence of the iteration
can be shown for variable weights.

In the solution of the Euler equations, the weights w have been chosen
to depend on local approximations to the first and second derivatives of the
density of the flow, in the form

w =
S△

SO

(
1 + α|~∇ρ|2 + β(~∇2ρ)2

) 1

2

, (41)

where α and β are arbitrary parameters, S△ is the current area of the
triangle and SO is the original area of that triangle. For the linear advection
equation ρ is replaced by u, the advected variable. The choice of α = 1 and
β = 0 in (41) gives a simple generalisation of the weights which lead to arc
length equidistribution in one dimension (assuming that the initial grid is
equispaced so that SO is constant throughout the domain).

Although there is no corresponding genuinely two-dimensional equidis-
tribution property, the algorithm will still tend to move nodes towards
regions where the weights are high. In the above case this means regions
of high first and/or second derivatives, such as those found at shocks, but
the weights can be modified so that nodes are attracted towards any de-
tectable feature of the flow. Also, since the weights depend on derivatives of
the flow, the degree of attraction to these features can be varied by scaling
the grid - the smaller the grid size, the stronger the effect of the adaptation.
In the present application, where the weights depend on a flow which will
ultimately be steady, the gradients, and hence the wi move towards steady
state values, and at the limit the grid can be interpreted as having a local
equidistribution property in the direction of the normal to ρ. The algorithm
can also be easily generalised to three dimensions.

In one dimension mesh tangling can be avoided by ensuring that the
chosen weights are always positive. In higher dimensions, though, particu-
larly on the highly distorted grids which become common once the mesh is
allowed to move, tangling occurs quite readily. Even with positive weights
in (40), it is possible for a node at the vertex of a triangle to be overtaken
by the opposite edge of that triangle, thus causing the cell to ‘flip’ and
acquire a negative area.

This can be avoided by artificially limiting the distance which a node
can move. A simple but rather restrictive limit is

(∆xi)max = min
∪△i

(
Sj

maxk=1,3 ljk

)
, (42)
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where Sj is the area of cell j and ljk is the length of edge k of cell j.
This expression is equivalent to half the smallest height of the surrounding
triangles. A second restriction is also imposed which places a lower limit
on the radius of the inscribed circle of each cell. This avoids extremely
distorted meshes and the possibility of a prohibitively small limit on the
time-step.

Using this strategy, a displacement can be found for all nodes, including
boundary nodes, although the latter must be projected back on to the
nearest point on the boundary and ‘corner’ nodes forced to remain fixed.

Once all the displacements have been found, the nodal positions are
updated in a block. The solution is then obtained on the new grid using
linear interpolation of the solution on the previous grid.

4. Solution strategy

The method by which node movement is combined with multidimensional
upwinding to obtain steady state solutions to the two-dimensional Euler
equations can be expressed in three stages:

1) Run the time-stepping algorithm on an initial, fixed grid until the
solution appears steady (but long before convergence is achieved).

2) Run the time-stepping interspersed with the grid movement until the
grid has adapted to the steady solution. In this work, each time-step
is alternated with a single node movement iteration.

3) Fix the grid and run the time-stepping algorithm to convergence using
the solution from step 2) as initial conditions.

The grid movement in step 2) can be initiated when the RMS of the residual
over the grid drops below a certain level (typically a drop of 2 or 3 orders
of magnitude from the initial residual), in effect when the flow has stopped
changing.

It may well be possible that the combination of time-stepping and grid
movement in stage 2) would lead to a converged solution if allowed to run
indefinitely. However, it would be impractical to attempt this because the
convergence of the overall scheme, depending as it does on two separate
iterations, would be prohibitively slow. Also, this stage of the method is
not, as it stands, conservative due to the interpolation step of the grid
movement. However, since steady state solutions are sought, the grid can
be frozen after a fixed number of time-steps (typically 500 for the Euler
equations) after which the solution strategy returns solely to the conserva-
tive time-stepping scheme. Local time-stepping has been used throughout
to accelerate convergence, particularly on the more distorted meshes.
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5. Results

Adapted and unadapted steady state solutions will be presented here of
both the scalar advection equation and the Euler equations. The first test
case used is that of clockwise circular advection, ~λ = (y,−x)T of a square
wave profile within the domain (x, y) ∈ [−1, 1]× [0, 1]. The mesh used is an
isotropic triangulation alternating the direction of diagonals inserted into
a regular quadrilateral grid with 65 × 33 nodes and of the form shown in
Figure 1.

Figure 1. A section of the initial isotropic grid.

The boundary conditions for this test case are

u(x, 0) = 1 for − 0.65 ≤ x ≤ −0.35

u(x, 0) = 0 for − 1.0 ≤ x < −0.65, −0.35 < x ≤ 0.0

u(x, 1) = 0 for 0.0 ≤ x ≤ 1.0

u(0, y) = 0 for 0.0 ≤ y ≤ 1.0 .

On the rest of the boundary, where the flow is out of the domain, the
solution is given the value predicted by the updates from the interior and
initially the solution is set to zero in the whole of the domain’s interior.

The steady state solution of this problem obtained using the PSI scheme
(CFL = 0.8) is shown at the top of Figure 2. There are no spurious oscil-
lations since the scheme is positive, and the linearity preservation property
ensures that the discontinuities are captured reasonably sharply although
a certain amount of numerical diffusion is unavoidable. The rest of Fig-
ure 2 shows both the adapted solution and the grid on which it has been
obtained. As suggested in the previous section, the algorithm was run ini-
tially on the unadapted grid (for 200 iterations), then the grid movement
was interleaved with the time-stepping for a further 200 iterations, after
which the grid is fixed again and a converged solution obtained on the new
grid. The CFL number can be kept at 0.8 throughout this procedure and
the convergence of the algorithm on the adapted grid is not significantly
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Figure 2. Circular advection of a square profile: solution on initial grid (top), solution
on adapted grid with α = 1.0, β = 0.01 (middle); adapted grid (bottom).
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Figure 3. Circular advection of a triangular profile: solution on initial grid (top), solution
on adapted grid with α = 0.1, β = 1.0 (middle); adapted grid (bottom).
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Figure 4. Solution on the boundary y = 0 for the advection of the square wave (left)
and the triangular wave (right). Solid lines indicate the adapted solution, dotted lines
the unadapted solution.

slower than on the initial, regular grid. However, the solution has improved
enormously in quality; the discontinuities are captured extremely sharply
and their positions are mirrored by the clustering of nodes in the grid. The
grid movement parameters in (41) were chosen to be α = 1.0 and β = 0.01,
so emphasis was placed on adapting to the first derivative.

Figure 3 shows the steady state solution on both unadapted and adapted
grids for a second circular advection test case, this time involving a trian-
gular profile. The initial and boundary conditions are the same as before
except that

u(x, 0) = 1.0 − |x + 0.5|
0.15

for − 0.65 ≤ x ≤ −0.35 . (43)

This time α = 0.1 and β = 1.0 were chosen to give a greater significance to
the second derivative, but the improvement in the quality of the solution
is again remarkable.

Figure 4 shows the profiles of the adapted (solid line) and unadapted
(dotted line) solutions on the boundary y = 0 for both test cases. When
x ≤ 0 this is an inflow boundary so the solution is exact, or as near as the
grid will allow. The solution at outflow (x > 0) shows the improvement
obtained by adapting the grid, and in both cases the shape and height of
the solution has been maintained through its rotation.

However, it is necessary to be careful when choosing α and β. If β = 0.0,
i.e. no second derivative contribution, the triangular profile becomes highly
distorted as it rotates around the origin, Figure 5, and has almost become a
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Figure 5. Circular advection of a triangular profile: solution on adapted grid with
α = 1.0, β = 0.0 (top); adapted grid (bottom).

square wave at outflow. This is because the flow varies linearly in the regions
of high first derivative and can be modelled accurately using a coarse mesh,
but changes rapidly at the base and peak of the triangle where the second
derivative is high but the gradient is not. In fact, any solution in which
capturing maxima or minima is important requires some contribution to the
weights from the second derivative. Experience has shown that taking α =
1.0 and β = 0.1 is a reasonably safe first choice for the weight parameters.

The first test case used for the Euler equations is that of flow through a
walled channel of unit height with a circular arc bump on the lower surface
which is 4% of the height of the channel. The freestream Mach number is
M∞ = 1.4. The time-stepping algorithm used decomposes the equations
using the ‘preconditioned’ model described earlier and the PSI scheme on
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Figure 6. Inviscid flow through a channel of unit width with a 4% circular arc bump
of unit length, M∞ = 1.4: local Mach number contours of unadapted solution (top),
adapted solution (middle); adapted grid (bottom).
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Figure 7. Initial grid for NACA0012 aerofoil.

the scalar components in all situations except for the acoustic subsystem in
subsonic flow which is treated as two scalar equations and solved using the
SUPG scheme. As a result, the CFL number used for these calculations is
only 0.2. The boundaries are treated using a very simple characteristic-type
boundary condition.

Figure 6 shows the local Mach number contours of the steady state
solution obtained on a fixed isotropic grid, similar to that used for the
scalar advection test cases, with 2145 nodes and 4096 cells. The adaptive
algorithm is then used, with 5000 iterations being completed on this initial
grid, 500 more being interleaved with the grid movement (α = 1.0, β = 0.1)
and then running to convergence on the adapted grid. The new grid and the
solution obtained on it are both shown at the bottom of Figure 6 and again
the improvement is marked, particularly in the capturing of the shocks.
More surprisingly, perhaps, the oscillations which occur behind the shock
reflection on the upper wall due to the non-positivity of the scheme in this
small region of subsonic flow, are smoothed out by the adaptation. It is
only where the shocks interact in a more complicated manner and nodes
‘lock’ that the improvement is less significant. Node locking can occur for
two reasons, either because they are constrained to remain close to fixed
objects such as boundaries or because they have an equal desire to move
in more than one direction, e.g. within the triangle of shocks just behind
the bump, and in either case some form of mesh refinement is needed if the
solution is to be further improved.

Finally, two sets of results are given for inviscid flow around a NACA0012
aerofoil for which the initial grid is shown in Figure 7. No vorticity correc-
tion is included in the treatment of the far-field boundary so it has been
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Figure 8. Inviscid flow over a NACA0012 aerofoil, M∞ = 0.85, α = 1.0◦: local Mach
number contours of unadapted solution, cl = 0.367, cd = 0.050 (top left), adapted solu-
tion, cl = 0.360, cd = 0.049 (top right); adapted grid (bottom right); comparison of cp

on aerofoil surface, unadapted - dotted line, adapted - solid line (bottom left).

placed at 30 chords distance from the aerofoil to reduce its effect on the
solution.

The two standard test cases presented are

i) M∞ = 0.85, α = 1.0◦.

ii) M∞ = 0.8, α = 1.25◦.

Figures 8 and 9 show the local Mach number contours of the solutions
obtained on the fixed and moved grids, together with the adapted grid and
a graph comparing the pressure coefficient cp on the surface of the aerofoil
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Figure 9. Inviscid flow over a NACA0012 aerofoil, M∞ = 0.8, α = 1.25◦: local Mach
number contours of unadapted solution, cl = 0.339, cd = 0.015 (top left), adapted solu-
tion, cl = 0.346, cd = 0.016 (top right); adapted grid (bottom right); comparison of cp

on aerofoil surface, unadapted - dotted line, adapted - solid line (bottom left).

on each grid. The solution algorithm was precisely that used to solve the
channel flow, and the results again show how the capturing of shocks can
be improved by the intelligent use of grid movement. It can also be seen
that the oscillations behind the shocks have been reduced by moving the
grid. In both cases the lift coefficient cl is right in the middle of the range
of values obtained from reference solutions using other codes [15], while
the drag coefficients cd are slightly lower. These are changed slightly by
the adaptation but it is impossible to tell whether the new values are more
accurate. Even so, the shocks have a significant effect on the lift and drag
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so the improvement in their capturing and the reduction in the oscillations
behind them implies that cl and cd are likely to be more accurate on the
adapted grids. In all of the above test cases, multidimensional has proved to
be very robust even on highly distorted grids and, typically, the improved
results obtained by using the adaptive algorithm take only 50% longer to
produce than those on the fixed, regular grid.

6. Conclusions

Multidimensional upwinding techniques have been used to produce accurate
steady state solutions to both the linear advection equation and the Euler
equations in two dimensions in triangular grids, and a very simple and cheap
node movement algorithm has been used to greatly improve the quality of
these solutions. The strategy has proved to be robust, and steady state
solutions have been obtained on all but the most highly distorted grids for
a very small increase in the overall cost.

Even so, for many flows node movement is not enough to accurately
model every feature and some form of grid refinement is necessary to ob-
tain highly accurate solutions. This is particularly true where node locking
prevents nodes from moving in the desired direction, a problem which can
also be alleviated somewhat by the use of edge swapping. The best choices
for the values of α and β, and the actual variable used to monitor the adap-
tation, are also unclear, and may vary depending on the flow. Finally, no
measure of grid quality has been used here and indeed it is not clear what
should be used since the improved solutions are obtained on grids which
are much poorer in quality by any of the conventional criteria.
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de Bruxelles, 1995.

4. P.L.Roe. Discrete models for the numerical analysis of time-dependent multidimen-
sional gas dynamics. In J. Comp. Phys., 63:458-476, 1986.



22 M.J. BAINES AND M.E. HUBBARD

5. M.A.Rudgyard. Multidimensional wave decompositions for the Euler equations. In
VKI LS 1993-04, Computational Fluid Dynamics, 1993.

6. H.Deconinck, C.Hirsch and J.Peuteman. Characteristic decomposition methods for
the multidimensional Euler equations. In Lecture Notes in Physics, 264:216-221,
1986.

7. H.Deconinck and H.Paillère. Multidimensional upwinding: preparing the future of
computational methods for compressible flows? In Proceedings of the 5th ICFD
Conference, 1995.

8. L.M.Mesaros and P.L.Roe. Multidimensional fluctuation splitting schemes based on
decomposition methods. AIAA Paper 95-1699, 1995.

9. B.van Leer, W.-T.Lee and P.L.Roe. Characteristic time-stepping or local precondi-
tioning of the Euler equations. AIAA Paper 91-1552-CP, 1991.

10. H.Deconinck, P.L.Roe and R.Struijs. A multi-dimensional generalization of Roe’s
flux difference splitter for the Euler equations. Journal of Computers and Fluids,
22:215-222, 1993.

11. D.Sidilkover and P.L.Roe. Unification of some advection schemes in two dimensions.
ICASE Report, submitted to Math. Comp., 1995.

12. C.Johnson. Finite elements for flow problems. In Unstructured grid methods for
advection dominated flows, AGARD-R-787, 1992.

13. G.Erlebacher and P.R.Eiseman. Adaptive triangular mesh generation. AIAA Jour-
nal, 25:1356-1364, 1987.

14. M.E.Hubbard and M.J.Baines. Multidimensional upwinding and grid adaptation.
In Proceedings of the 5th ICFD Conference, 1995.

15. H.Viviand. AGARD Report, AGARD-AR-211, 1985.


