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Abstract. Optimal meshes and solutions for steady conservation laws and systems within a finite
volume fluctuation distribution framework are obtained by least squares methods incorporating mesh
movement. The problem of spurious modes is alleviated through adaptive mesh movement, the least
squares minimization giving an obvious way of determining the movement of the nodes and also
providing a link with equidistribution. The iterations are carried out locally node by node, which
yields good control of the moving mesh. For scalar equations an iteration which respects the flow of
information in the problem significantly accelerates the convergence.

The method is demonstrated on a scalar advection problem and a shallow water channel flow
problem. For discontinuous solutions we introduce a least squares shock fitting approach which
greatly improves the treatment of discontinuities at little extra expense by using degenerate triangles
and moving the nodes. Examples are shown for a discontinuous shallow water channel flow and a
shocked flow in gasdynamics governed by the compressible Euler equations.
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1. Introduction. Finite volume schemes of fluctuation distribution type for the
approximation of steady first order hyperbolic equations and systems are now well
established. In particular, the class of multidimensional upwind schemes on unstruc-
tured triangular meshes has been very successful [13]. The least squares methods of
finite volume type discussed in this paper also belong to this family, although their
properties differ.

Roe was the first to suggest the fluctuation-distribution framework for steady
first order hyperbolic PDEs and systems in multidimensions [10]. In this approach
a fluctuation (proportional to the PDE residual) is defined on each cell of the mesh
and distributed by signals to the nodes of the cell; i.e., weighted fractions of the
fluctuation are added to the solution values at the nodes of the cell. This distribution
is carried out for each cell, and the cumulative update at a node is the sum of the
weighted contributions from cells with that node as a target. To reach steady state
the procedure is repeated, updating the solution values until the total increments at
every node have become zero, at which point the process is said to have converged.

As pointed out in [11], a descent method applied to the least squares method
within a finite volume framework is also a fluctuation-distribution scheme. In the
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present paper this idea is developed further, using among other things the connec-
tion between least squares minimization and equidistribution [1], and in particular is
extended to nonlinear systems of PDEs.

For fluctuation distribution schemes in general, even though the total increments
at a node may have converged to zero, the individual cell residuals (or fluctuations)
need not have vanished but only their weighted sums, leading sometimes to an un-
satisfactory solution. One way to alleviate the difficulty is to increase the number of
degrees of freedom available by including the mesh locations as additional variables in
the least squares minimization and hence moving the mesh. As a consequence, when
the total increments at a node converge, the individual fluctuations in a cell are closer
to zero and yield a better approximation to the PDE and the solution. In the case
of scalar problems, spurious solutions may be eliminated altogether and the outcome
identified with an approximate method of characteristics.

Repositioning the nodes in this way leads to conservation and a measure of equidis-
tribution, the latter ensuring that convergence takes place uniformly with respect to
the mesh.

In this paper the method is applied to a scalar PDE problem and a shallow water
channel flow problem, both of whose solutions are smooth.

For problems with nonsmooth solutions, least squares methods are known to give
poor solutions close to discontinuities. Here we take a shock fitting approach and use
a least squares moving mesh method to improve the position of the shock. In recent
years a great deal of effort has been put into mesh refinement near shocks using mesh
subdivision, but substantial improvements in shock resolution can also be obtained
by making minor adjustments to the mesh. We introduce degenerate cells in the
vicinity of the shock and a least squares shock fitting procedure to adjust its position.
A multidimensional upwinding shock capturing scheme [13] is used to generate an
initial solution and a first approximation to the position of the shock. A least squares
shock fitting approach is then used to improve the position of the shock [4], [7]. This
is achieved by a least squares minimization of a measure of the jump condition over
nodal positions in degenerate cells. In the smooth regions on either side of the shock
the least squares method may then be expected to work well.

Results are shown for a scalar problem with a contact discontinuity, a shallow wa-
ter problem in a constricted channel with a hydraulic jump, and an Euler gasdynamics
problem with an exact solution, including a shock reflection.

The layout of the paper is as follows. In section 2 we give the definition of the
fluctuation and its functional form in certain cases. Section 3 describes fluctuation
distribution schemes and least squares methods (with descent) in a finite volume
framework. In section 4 we discuss the role of node movement in improving the accu-
racy of solutions and exploiting the link between least squares and equidistribution.
Details of the descent methods used for achieving least squares minima are described
in section 5, and an upwinding strategy is described in section 6. Results are shown in
section 7 for a scalar advection example and a problem involving a nonlinear system
of equations, the Shallow Water Equations.

The role of degenerate cells in generating discontinuous solutions is discussed in
section 8. Results for some discontinuous scalar problems and nonlinear systems are
shown in section 9 with conclusions in section 10.

2. Fluctuations. We consider the two-dimensional conservation law

div(f(u)) = 0(2.1)
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Fig. 1. A general triangular cell e.

with integral form

∮

Γ

f(u).n̂dΓ = 0,(2.2)

where n̂ is the inward normal to an arbitrary closed surface Γ in a domain Ω. The
boundary condition is an inflow condition over Γ1, the part of the surface for which
∂f
∂u

.n̂ ≥ 0.

Let the domain be divided into triangles Ωe, and let f be approximated by a
piecewise linear function F . Then we define the fluctuation in triangle Ωe to be

φe =

∮

Γe

F .n̂dΓ,(2.3)

where Γe is the perimeter of Ωe.

We also define the average residual

Re =
1

Se

∫

Ωe

divFdΩ =
1

Se

∮

Γe

F .n̂dΓ =
φe

Se

,(2.4)

where Se is the area of triangle e.

Since F is linear in the triangle we can use a trapezium rule quadrature to write
(2.3) as

φe =
1

2
{(F e1 + F e2).ne3 + (F e2 + F e3).ne1 + (F e3 + F e1).ne2)} ,(2.5)

where nei (i = 1, 2, 3) is the inward unit normal to the ith edge of triangle e (opposite
the vertex ei), as shown in Figure 1, multiplied by the length of that edge. It is easy
to verify that, for any triangle,

ne1 + ne2 + ne3 = 0,(2.6)

so the fluctuation (2.5) may be written as

φe = −
1

2
{F e1.ne1 + F e2.ne2 + F e3.ne3} ,(2.7)

or, since nei = (∆Yei,−∆Xei),

φe = −
1

2

3
∑

ei=1

(Fei∆Yei − Gei∆Xei) ,(2.8)
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where F = (F, G) and ∆e1X = Xe2 − Xe3 denotes the difference in X taken across
the side opposite node e1 in a counterclockwise sense (and similarly for ∆e2X and
∆e3X). A dual form of the fluctuation is obtained by rewriting (2.7) as

φe =
1

2

3
∑

ei=1

(Yei∆Fei − Xei∆Gei) .(2.9)

We aim to set the fluctuations φe to zero in order to satisfy (2.1).

In the case where f is of the form

f = a(x)u,(2.10)

where a(x) is a divergence-free velocity field, the PDE (2.1) reduces to the advection
equation

a(x).∇u = 0.(2.11)

Then the fluctuation may be written

φe = −
1

2

3
∑

ei=1

(aeiUei∆Yei − beiUei∆Xei) ,(2.12)

where a = (a, b) = (a(Xei, Yei), b(Xei, Yei)).

Now consider systems of nonlinear hyperbolic equations

divf(u) = 0 = A(u).∇u,(2.13)

where A is a vector of the Jacobian matrices (A, B)T . The integral form is

∮

Γ

f(u).n̂dΓ = 0,(2.14)

and the fluctuation (with f approximated by F) is

φe = −
1

2
(Fe1.ne1 + Fe2.ne2 + Fe3.ne3)(2.15)

= −
1

2

3
∑

ei=1

(Fei∆Yei − Gei∆Xei)(2.16)

with dual form

φe =
1

2

3
∑

ei=1

(Yei∆Fei − Xei∆Gei) .(2.17)

Two systems of interest are the Euler equations of gasdynamics and the Shallow Water
Equations.
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3. Fluctuation distribution schemes and least squares. In fluctuation dis-
tribution schemes we seek to set the fluctuations φe to zero via an iterative procedure
with an index n, say. In this procedure the φn

e , obtained by substituting an estimate
Un into the (F, G) in (2.8), are distributed to nodes of the mesh in order to give a
Un+1 for which the φn+1

e are smaller. At each stage of the iteration, for each triangle
Ωe, a weighted amount of φe is added to the values of the solution at the vertices of
the triangle. In the multidimensional upwind schemes [13], [8] the weights are chosen
so that the schemes are conservative, positive, and linearity preserving. Conservation
is ensured if the weights in each triangle sum to unity.

In the least squares descent method we seek to minimize either the L2 norm of
the average residual (see (2.4)) or the l2 norm of the vector of fluctuations, using
a gradient descent method. This l2 norm is useful since it is bounded even for the
degenerate triangles considered in section 7.

The square of the L2 norm of the average residual, from (2.4), is

F1 =
∑

e

∫

Ωe

R
2

edΩ =
∑

e

SeR
2

e =
∑

e

φ2
e

Se

,(3.1)

or, in the systems case,

F1 =
∑

e

φt
eφe

Se

(3.2)

(cf. [11]). For the l2 norm of the vector of fluctuations we have

F2 =
∑

e

φ2
e or F2 =

∑

e

φt
eφe(3.3)

in the systems case.
Using a gradient descent method to carry out the minimization, we find that each

step adds weighted amounts of the φe in each triangle to the values of the solution
at the vertices of the triangle and hence has the form of a fluctuation distribution
scheme. For example, in the F2 case, since the gradient of φ2

e with respect to the
nodal value Uj is

{

2
∂φe

∂Uj

}

φe(3.4)

a descent method will add a multiple of φe to Uj . The weight (in the curly bracket),
from (2.8), is

wje = 2
∂φe

∂Uj

= −
∂

∂Uj

3
∑

ei=1

{Fei∆Yei − Gei∆Xei}(3.5)

= −
dFje

dUje

∆Yje +
dGje

dUje

∆Xje(3.6)

= −a(Uje)∆Yje + b(Uje)∆Xje,(3.7)

where je is the node of triangle e corresponding to j and we have used

(a(U), b(U)) =

(

dF

dU
,
dG

dU

)

.(3.8)
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In the case of differentiation with respect to Xj , the gradient of φ2
e is

{

2
∂φe

∂Xj

}

φe(3.9)

and a descent method will add a multiple of φe to Xj . This time the vector weights,
using (2.17), are

wje = (0, 1)T ∆Fje + (−1, 0)T ∆Gje.(3.10)

For systems of equations the corresponding matrix weights corresponding to (3.7)
and (3.10) are

Wje = −A(Uje)∆Yje + B(Uje)∆Xje(3.11)

and

W je = (0, 1)T ∆Fje + (−1, 0)T ∆Gje.(3.12)

For the advection equation (2.10) we have from (2.12) the weights

wje = −a(Xje, Yje)∆Yje + b(Xje, Yje)∆Xje(3.13)

for U variations and, using a dual form of (2.12),

wje =
∂

∂Xj

3
∑

ei=1

−{∆(a(Xei, Yei)Uei)Yei + ∆(b(Xei, Yei)Uei)Xei}(3.14)

for the X variations.
Similar sets of weights may be found in the minimization of F1. In particular,

(3.9) generalizes to

∂

∂Xj

(

φ2
e

Se

)

=

{

2

Se

∂φe

∂Xj

−
φe

S2
e

∂Se

∂Xj

}

φe.(3.15)

4. Moving the nodes. There are two motivations for moving the nodes. The
first is the problem of spurious solutions. The number of equations given by (2.3) is
equal to the number of triangles in the mesh, but the number of unknowns is a multiple
of the number of nodes. In general these are different. If the number of equations
exceeds the number of unknowns it is impossible to satisfy all the equations. For
any iteration of fluctuation distribution type in which fluctuations are added to the
vertices of the mesh with weights, convergence of the nodal updates does not imply
that the fluctuations vanish. In particular, in the least squares descent approach the
norms (3.1), (3.3) are not necessarily driven down to zero. However, if we allow the
coordinates of the vertices to become additional unknowns of the problem, the number
of degrees of freedom is increased and the solution is improved.

For scalar problems the number of unknowns then exceeds the number of equa-
tions and there are infinitely many solutions which make the norms zero. A unique
solution is obtained if the number of unknowns is equal to the number of equations,
and this may be achieved in a scalar problem by including just one coordinate per
node in the list of unknowns. The fluctuations may then be driven to zero by a
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fluctuation-distribution scheme. The result is an approximate method of characteris-
tics, as in Example 1 below. The accuracy of the approximate solution depends only
on the coarseness and/or connectivity of the mesh. For a system of two equations in
two dimensions, the number of unknowns is equal to the number of equations when
the nodes are allowed to move in both directions, and this has been studied in [11].
For systems such as the Shallow Water or the Euler Equations of gasdynamics the
number of equations is always less than or equal to the number of unknowns, but the
inclusion of nodal variables significantly increases the number of degrees of freedom.

The second motivation comes from a link with equidistribution. As in [1], the
identity

(

∑

e

Se

)(

∑

e

SeR̄
2
e

)

=

(

∑

e

φe

)2

+
∑

e1>e2

Se1
Se2

(

R̄e1
− R̄e2

)2
(4.1)

shows that, if the total area of the domain
∑

e Se is fixed, then driving the norm F1

(which from (3.1) equals
∑

e SeR̄
2
e) down to zero forces both terms on the right-hand

side of (4.1) to zero, resulting in both global conservation and residual “equidistribu-
tion.” The first follows because of the cancellation property

φ =
∑

e

φe =
1

2

∑

e

3
∑

ei=1

(−Fei∆Yei + Gei∆Xei)(4.2)

=
1

2

∑

b

(−Fb∆Yb + Gb∆Xb) ,(4.3)

so that the total φ over the domain is equal to a sum over boundary values b only.
Hence the first term on the right-hand side of (4.1) is a measure of global conservation,
while the second term is a measure of equidistribution of the average residual Re.

In a similar way the identity

(

∑

e

1

)(

∑

e

φ2
e

)

=

(

∑

e

φe

)2

+
∑

e1>e2

(φe1
− φe2

)
2

(4.4)

(see [1]) ensures that, provided that the number of triangles
∑

e 1 remains fixed, the
act of driving the norm

∑

e φ2
e down to zero also forces global conservation and a

measure of equidistribution of the fluctuations φe to go to zero. These statements
generalize immediately to systems of equations.

The global conservation term (4.3) is evidently unaffected by any adjustment to
the values at the interior nodes. Therefore a reduction in the sum of squares term on
the left-hand side of (4.1) or (4.4) due to such adjustments simply serves to improve
the quality of the equidistribution.

We shall discuss the use of least squares descent methods as fluctuation distribu-
tion schemes in this context. Unlike multidimensional upwinding [2], such an approach
has the advantage of a norm to minimize which can readily be used to generate the
movement of the mesh as well as inducing global conservation and equidistribution in
the sense described above.

5. The descent methods. We give now the details of the minimization of
F2 with respect to the nodal values Uj and coordinates Xj , using a gradient descent
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method. The steepest descent method generates contributions from the set of triangles
je surrounding node j, to be added to the values of Uj and Xj , of the form

δUj = −τ2

∑

je

{

2
∂φje

∂Uj

}

φje, δXj = −σ2

∑

je

{

2
∂φje

∂Xj

}

φje(5.1)

(see (3.4) and (3.9)), where τ2 and σ2 are suitably chosen relaxation factors, and
the negative sign ensures that we go down the gradient. The relaxation parameters
control the step taken in the descent direction and are generally chosen via a line
search or a local quadratic model. Sometimes, however, it is necessary to take an
empirical approach to the choices of these factors.

In this paper we use a splitting technique, first minimizing F2 with respect to Uj

with Xj held constant and then minimizing F2 with respect to Xj with Uj held con-
stant. (It is possible, though unlikely, that the constrained nature of the minimization
may lead to a saddle point.)

Consequently, for the minimization over U we may construct a quadratic model
in which the relaxation parameter is

(

∂2F2

∂U2
j

)−1

=

(

∂2

∂U2
j

∑

je

φ2
je

)−1

(5.2)

=

(

∂2

∂U2
j

∑

je

∑

ei

1

4
nT

ei F eiF
T
ei nei

)−1

(5.3)

by (2.7). Let us now linearize F ei as aeiUei so that the relaxation factor becomes

(

∂2

∂U2
j

∑

je

∑

ei

1

4
nT

ei aeiU
2
eia

T
ei nei

)−1

(5.4)

=

(

∑

je

1

4
nT

je aje aT
je nje

)−1

.(5.5)

For the X minimization of F2 the functional is already quadratic, giving the
relaxation factor

(

∂2F2

∂X2
j

)−1

=

(

∂2

∂X2
j

∑

je

∑

ei

1

4
FT

ei nei nT
ei F ei

)−1

(5.6)

which is

=

(

−
∑

je

(

FT
je1F je1 + FT

je2F je2

)

)−1

(5.7)

for each coordinate, where je1, je2 are the vertices of the triangle je other than j.
Alternatively, a line search may be carried out on each Xj .
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For the advection equation (2.10) a quadratic model may be obtained by freezing
the advection speed in calculating the second derivative in the quadratic model (see
(2.12)).

For the minimization of F1, rather than F2, we obtain an approximate quadratic
model simply by inserting the factor S−1

je between the aje’s or Aje’s.
These choices generalize to systems of equations where (5.5) becomes

(

∑

je

1

4
nT

je Aje AT
jenje

)−1

,(5.8)

where A = (A, B), and where F has been linearized as AU.
The iterations are carried out by continually sweeping through the nodes of the

mesh in a local manner. The identities (4.1) or (4.4) also hold on each patch of
triangles surrounding a node, showing that least squares minimization leads to local
conservation over the boundary of the patch and equidistribution over the triangles
of the patch.

The sweeps through the nodes of the mesh may be carried out either in a Jacobi or
a Gauss–Seidel manner. The local approach is helpful in controlling the mesh quality.

6. Upwinding. Generally, the rate of convergence is slow or very slow. However,
we can show that in the scalar case convergence can be accelerated significantly by
an awareness of the origin of the problem. One consequence of minimizing the least
squares norm of the residual or the fluctuation of the equation a.∇u = 0 is that
the original equation is embedded in the second order degenerate elliptic equation
−a.∇(a.∇u) = 0 (see e.g. [9]). The correct solution is picked out from the larger
set of solutions by the outflow condition, which is the original differential equation
a.∇u = 0 applied at the outflow boundary. Indeed we may write the second order
equation as the system

a.∇u = v(6.1)

with U given on Γ2 and

−a.∇v = 0(6.2)

with V given on Γ1. The first of these is the solution of the original PDE with a
source term v, which is the solution of the second equation. For the second equation
the analytic solution is v = 0, but numerically a nonzero v will be generated building
up from the outflow (the characteristics run backwards in (6.2)), forcing a nonzero
source term in (6.1).

As befits an elliptic solver, the least squares descent method updates are dis-
tributed to all the nodes in a triangle, but it may be argued that, because of the
hyperbolic nature of the original equation, the updates should exhibit an upwind
bias, as in the case of multidimensional upwinding, and the nonzero v solution should
be suppressed.

One way of achieving the upwind bias (see [3], [7]) is to carry out the minimization
of the functional within each cell over only downwind nodal values. Furthermore, we
allow temporary discontinuities in U at each node by letting the solution have one
value associated with cells upwind of the node but another with downwind cells.
The updates resulting from this minimization still reduce the functional but at the
expense of making U discontinuous. However, we may follow this minimization step
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angle=270,figure=CGRD1.eps,width=10pc figure=C3d1.eps,width=13pc

Fig. 2. Initial grid and solution for Example 1.

angle=270,figure=CGRD2.eps,width=10pc figure=C3d2.eps,width=13pc

Fig. 3. Final grid and solution for Example 1.

by a second projection step which resets the upwind values of U so as to restore
the continuity of U . This is not a descent step and may increase the fluctuation.
Nevertheless, we may iterate on the two steps, seeking convergence. If convergence is
attained the discontinuities have tended to zero, and we have a continuous U which
also minimizes the functional since its gradient is zero. Since the minimization is
constrained, a higher value of the functional may result (the two projections cancelling
each other out), but further improvement may be found at this point by switching to
the full least squares iteration.

By a similar argument on the dual form (2.9) of the fluctuation, the X contribu-
tions should also be upwinded (although the boundary conditions differ from those
on v).

Not surprisingly we find that convergence is much faster, not only for the U

variations but also for the X variations. The algorithm has a strong upwind bias
which reflects the nature of the original problem and its dependence on characteristics.
In fact the two steps taken together are equivalent to simply suppressing the upwind
updates in the least squares descent method. With an appropriate scaling the U step
is simply the Low Diffusion Scheme A (LDA) scheme of multidimensional upwinding
[13].

We now give results for two problems in which these techniques are used.

7. Numerical results for continuous solutions.

Example 1. We first consider the scalar two-dimensional advection equation,
considered in [11],

a(x).∇u = 0,(7.1)

where a(x) = (y,−x) in a rectangle −1 ≤ x ≤ 1, 0 ≤ y ≤ 1, which generates a
semicircular hump swept out by the initial data, here chosen to be

U =

{

1,

0
−0.6 ≤ x ≤ −0.5,

otherwise.
(7.2)

Results are shown in Figures 2 and 3 on a fixed and moving mesh, respectively. Fastest
convergence occurs when the sweeping is upwinded, taking into account the hyperbolic
nature of the equation.

As expected, the solution on a fixed mesh is poor. On the other hand, when
the mesh takes part in the minimization the norm F1 is driven down to machine
accuracy. The redistribution effected by the least squares minimization forces global
conservation and equidistributes φ amongst the triangles [1], leading to more uniform
convergence. The cell edges have approximately aligned with characteristics in regions
of nonzero φ, allowing a highly accurate solution to be obtained.

The left-hand graph in Figure 4 shows the convergence of the solution updating
procedure using
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figure=cacfcons1.ps,height=50mm,width=50mm figure=cacfcon2.ps,height=50mm,width=50mm

Fig. 4. Comparisons of convergence histories.

(a) steepest descent globally with τ1 = 0.5;
(b) optimal local updates (quadratic model);
(c) optimal local updates over downwind cells only.

Convergence is improved in (b) and (c). Even though (c) is not monotonic it converges
very quickly, albeit to a higher value, due to the minimization being constrained.

The convergence rates obtained when the nodes are allowed to move are shown
in Figure 4 (right). Once again we start from the converged solution on the fixed grid
and use

(a) steepest descent globally with τ1 = 0.5 and σ1 = 0.01;
(b) Hessian local updates;
(c) Hessian local updates over downwind cells only.
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angle=270,figure=sub1in4g.eps,width=14pc angle=270,figure=sub1in4.eps,width=14pc

angle=270,figure=swmv1.eps,width=14pc angle=270,figure=swmv2.eps,width=14pc

Fig. 5. Initial grid and solution for Example 2.

figure=swmv3.ps,height=55mm

Fig. 6. Convergence histories with and without mesh movement.

A small amount of mesh smoothing was included in (b) and (c). In particular,
(b) became stuck in a local minimum if more iterations were used. Node locking was
a problem with the full least squares approach: node removal or steepest descent up-
dates could be used to alleviate this problem but when tried these still took over 1000
iterations, so they were not competitive when compared to the upwinding approach,
which yielded the best result.

Example 2. We now consider the system of equations (2.13) corresponding to a
form of the homogeneous Shallow Water Equations written in conserved variables (see
[5], [6]).

We shall consider a smooth subcritical constricted channel flow governed by these
equations. The computational domain represents a channel of length 3 meters and
width 1 meter with a 5% bump in the middle third. The freestream Froude number is
defined to be F∞ = 0.25, and the freestream depth is h∞ = 1m. The resulting flow is
entirely subcritical and symmetric about the center of the constriction (the narrowest
point in the channel).

The fixed mesh is shown at the top of Figure 5 and the least squares descent
solution (depth contours) on the mesh beneath it. This is also the initial mesh for the
iteration when the mesh is moved. The other pictures in the figure show the adapted
mesh and solution on this mesh.

Figure 6 shows convergence histories for this problem with and without mesh
movement. An improved minimum is achieved by incorporating mesh movement in the
minimization process. However, F1 is not dramatically decreased in this subcritical
problem because there are no particularly sharp features in the flow which can be
improved upon by the use of mesh movement.

8. Use of degenerate triangles. In the presence of shocks or contact disconti-
nuities least squares methods give inaccurate solutions which are unacceptable. One
way to combat this problem is to divide the region into a number of domains and
introduce degenerate triangles at the interface, as suggested in [12]. We may then use
a least squares method with moving nodes to adjust the position of the discontinuity,
as in shock fitting methods.

Consider again consider the scalar problem (2.1) as a PDE generating a shock or
contact discontinuity. We first obtain an initial approximate solution U to this equa-
tion by the use of a multidimensional upwinding shock capturing scheme. An initial
discontinuous solution may then be constructed by introducing degenerate (vertical)
triangles in the regions identified as shocks, using a shock identification technique.
In the results shown below this step was carried out manually, but the degenerate
triangles can be added automatically using techniques that exist in the shock fitting
literature (see for example [16], [15]). The corners of the degenerate triangles are
designated as shocked nodes, and these form an internal boundary, on either side
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of which the least squares method may be applied in two smooth regions where it
is known to perform well. The position of the discontinuity can then be improved
by minimizing a least squares shock monitor based either on the fluctuation in the
degenerate cells or on the jump condition.

Then consider the jump condition at a shock associated with the conservation
law (2.1),

f(uL).nL + f(uR).nR = 0,(8.1)

where f(uL) and f(uR) are the fluxes to the left and right of a discontinuous edge.
We obtain an improved location of the discontinuity in the discretized problem by

minimizing an L2 measure of the residual of the jump condition with respect to node
positions, using a piecewise linear approximation F to f . Thus consider minimization
of the norm

F3 =
∑

Q∈Ω

∫

ΓQ

(F (UL).nL + F (UR).nR)2dΓ(8.2)

to update the position of the discontinuity where ΓQ is the edge connecting nodes i

and j in Figure 7, and F (UL), F (UR) are the values of F at the left and right states.
We could have used an approximation based on degenerate triangles rather than

quadrilaterals (see [4]). When updating the nodal positions XiL
and XiR

we require
that they have the same update (so that the cell remains degenerate). The update
comes from minimization with respect to their common position vector.

Consider the fluctuations φd1 and φd2 in the degenerate triangles d1 and d2 on
the edge containing nodes i and j in Figure 8.

From (2.7) these are

φd1
= −

1

2
[F i] .niL

, φd2
= −

1

2

[

F j

]

.njR
,(8.3)

where the square bracket denotes the jump across the discontinuity. The contributions
from two edges vanish in each case due to the degeneracy of the triangles.

Then

φ2
d1

+ φ2
d2

=
1

4

{

(

[F i].niL

)2
+
(

[F j ].njL

)2
}

,(8.4)

and so we can also use

F4 =
∑

e∈ΩD

φ2
e(8.5)

to improve the position of the shock, where ΩD is the set of degenerate triangles.
(Note that F4 is bounded because φe in (2.3) is always bounded, even at shocks

angle=270,figure=NEW2.eps,width=12pc

Fig. 7. Cells on either side of a discontinuous edge.

angle=270,figure=NEW3.eps,width=10pc angle=270,figure=NEW4.eps,width=10pc

Fig. 8. Degenerate quadrilaterals Q and triangles d1, d2.
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angle=270,figure=CONGRD1.eps,width=7pcfigure=Cs1a.eps,width=13pc

Fig. 9. Fixed mesh and solution for Example 3.

angle=270,figure=CONGRD2.eps,width=7pcfigure=Con3d2.eps,width=13pc

Fig. 10. Moved mesh and solution for Example 3.
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Fig. 11. Convergence histories.

where U is discontinuous. On the other hand, the average residual, given by (2.4), is
not bounded since Se = 0 at shocks.)

A descent least squares method can then be used on F3 or F4 to move the shocked
nodes into a more accurate position, keeping the uL and uR values fixed. The pro-
cedure may be interleaved with a descent least squares method on F1 or F2 for the
smooth solution on either side.

We now give some numerical results using this technique.

9. Numerical results for discontinuous solutions. We now show results
from three problems which exhibit discontinuities, one scalar and the others for dif-
ferent nonlinear systems.

Example 3. The first of these problems is the advection of a contact discontinuity.
We consider circular advection as in Example 1 but with initial data

U =

{

1,

−1,

x ≤ −0.5,

x ≥ −0.5
(9.1)

on the inflow side. This represents the circular advection of a contact discontinuity.
Degenerate triangles are inserted vertically to connect the triangles on either side

of the discontinuity. The solution updates come from a least squares descent method
taken over nondegenerate elements. (The least squares updates to the solution come
from nondegenerate elements.) The shock node adaptation is by the mimimization of
F4 (see (8.5)). Results are shown in Figures 9 and 10 for a fixed mesh and a moving
mesh using degenerate triangles. Convergence histories are shown in Figure 11. The
contact discontinuity has been accurately located through the use of the degenerate
elements.

Example 4. Consider again the Shallow Water Equations system of Example 2.
The problem which interests us here is that of a transcritical constricted channel
flow which exhibits a hydraulic jump in the constriction. The computational domain
represents a channel of length 3 meters and width 1 meter with a 10% bump in
the middle third. The freestream Froude number is defined to be F∞ = 0.55, the
freestream depth is h∞ = 1m, and the freestream velocity is given by (u∞, v∞) =
(1.72, 0).

An initial solution for the least squares shock fitting approach is found by the
elliptic-hyperbolic Lax–Wendroff multidimensional upwinding scheme of Mesaros and
Roe; see [8]. This time we seek to locate the hydraulic jump by adding degenerate
quadrilaterals at the approximate position of the shock and seeking the best position of
the shocked nodes. This is again achieved by using a least squares descent method on
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angle=270,figure=aswslgrd1.eps,width=14pc angle=270,figure=aswslol1.eps,width=14pc
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Fig. 12. Results for Example 4.
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Fig. 13. Results for Example 5.

figure=er3dnew.eps,width=21pc

Fig. 14. Solution (density) in 3D.

F4 with degenerate triangles to improve the position of the shock. Virtually identical
results are obtained using F3 with quadrilaterals.

Results are shown in Figure 12, which shows the meshes and solution depth
contours obtained. A bow-shaped hydraulic jump which is strongest at the boundaries
is predicted, which agrees with solutions obtained using a shock capturing solution
on a very fine mesh. Here it is achieved at little cost. Note not only the better shock
resolution but also the much cleaner post-shock solution.

Example 5. Finally we consider the system (2.13) again but this time correspond-
ing to the Euler equations of gasdynamics written in conserved variables [5].

This example is chosen to exhibit the shock fitting capabilities of the method for
a purely supersonic flow which has an exact solution [17]. The computational domain
is of length 3 meters and width 1 meter. Supersonic inflow boundary conditions, given
by

U(0, y) = (1.0, 2.9, 0, 5.99073)t,

U(x, 1) = (1.69997, 4.45280,−0.86073, 9.87007)t,(9.2)

are imposed on the left and upper boundaries, respectively. At the right-hand bound-
ary supersonic outflow conditions are applied, while the lower boundary is treated as
a solid wall.

The boundary conditions are chosen so that the shock enters the top left-hand
corner at an angle of 29o to the horizontal and is reflected by a flat plate on the lower
boundary. The flow in regions away from shocks is constant. The same strategy is
employed as in the previous example, including the same shock capturing scheme, with
the results shown in Figure 13, where the density contours are plotted. The predicted
shock comes in from the top left hand at an angle of 29.2o to the horizontal, and the
solution is virtually constant apart from the discontinuities, in close agreement with
the analytic solution (see Figure 14).

The angle made by the reflected shock with the horizontal is also in line with the
theory. (See [14], which gives the angle as 23.3◦.)

10. Conclusion. In this paper we have considered the approximate solution
of steady first order PDEs by a least squares finite volume fluctuation distribution
scheme with mesh movement. On fixed meshes, by the nature of the fluctuation
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distribution technique, the fluctuations on triangular meshes are not driven to zero.
The solution may be improved by introducing extra degrees of freedom by adding node
locations to the list of unknowns and moving the mesh. As a result, for scalar problems
the fluctuations are driven down to zero (to machine accuracy), while for systems of
equations the errors are much reduced. The descent least squares procedure with
mesh movement also induces global conservation and equidistributes the fluctuation
amongst the triangles, thus proceeding down to the steady limit in a uniform way.

For scalar problems convergence can be greatly accelerated by carrying out the
iterations in an upwind manner.

For problems with discontinuities the descent least squares method does not give
good solutions, but the mesh movement technique enables improvement of the location
of the discontinuity in a manner akin to shock fitting. By minimizing a measure of
the jump condition an approximate position of the shock can be maneuvered into an
accurate position. This allows the descent least squares method to be used on either
side of the shock to gain a good approximation of the smooth regions of the flow.
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