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1 Introduction

Upwind methods are very popular in the modelling of advection dominated flows,
and in particular those which contain strong discontinuities. The essence of the
upwind method in 1D depends on the reduction of the problem to a set of sub-
problems that are (almost) independent. The best solution techniques for these
scalar subproblems can then be studied carefully and in detail[11]. These methods
are frequently used to solve systems of equations in higher dimensions.

One of the recent topics of CFD is accuracy enhancement in multidimensional
flow simulations. High resolution upwind schemes for 1D hyperbolic systems of
partial differential equations have reduced numerical errors and are successfully
used to sharply capture discontinuities. However, extensions of these methods
to multidimensional problems do not enhance resolution as much as expected
compared with the 1D case[23].

Initial attempts to extend 1D upwind techniques to higher dimensions were all
based on 1D upwind concepts applied within a dimensional splitting framework,
and modelling the flow by solving simple Riemann problems across cell interfaces.
This introduced an undesirable reliance on the computational mesh, and such
techniques were not capable of adequately resolving shocks or shears which were
not aligned with the grid[4].

Unstructured grids have many advantages for multidimensional flow analysis,
particularly their flexibility when constructing boundary fitted grids for complex
geometries and their general lack of preferential grid directions. Even so, locally,
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schemes based on structured and unstructured grids are the same when the nu-
merical flux normal to the cell face is only evaluated in the 1D manner. The result
is a solution algorithm which depends on geometrical variables which have little
or no relation to the relevant flow directions. Specifically, cell boundaries are used
to define a 1D direction along which the upwinding takes place. Consequently, the
choice of the grid has a disproportionate influence on the solution.

It was soon realised that it was necessary to incorporate genuinely multidi-
mensional physics into these algorithms. The first step was taken by Davis[1] who
suggested that the shock capturing capabilities of upwind methods could be im-
proved by rotating the Riemann problem to align it with the direction of physically
important flow gradients. They take into account variables like flow direction or
velocity gradient direction over a cell face as part of the discretization. This work
was extended by Levy et al.[12] and Tamura and Fujii[22], but these methods
commonly suffered problems with robustness.

An alternative method was developed independently by Rumsey et al.[20] and
Parpia and Michalek[16]. Common to these methods is the fact that the multidi-
mensional physics is added at the cell interfaces, thus retaining some 1D aspects.
Therefore new multidimensional upwind schemes for equations in more than one
space dimension are still being sought which don’t assume any one-dimensionality
along the grid lines or normal to the cell faces.

The methods discussed in this paper use a genuinely multidimensional phys-
ical model for the upwinding which does not fit in to the standard finite volume
approach where the representation of the unknowns is considered to be only piece-
wise continuous. In this respect the new schemes are much closer to finite element
methods based on linear elements, with which they share a continuous piecewise
linear representation over the cells. On the other hand, they share with upwind
methods the properties of asymmetric upwinded stencils and control of monotonic-
ity across discontinuities, and they can be considered as truly multidimensional
generalizations of the 1D TVD upwind methods.

The basis of one of the original groups of these multidimensional upwinding
techniques is the assumption that any observed gradients in the initial data at
the start of a time step are linked to the presence of simple waves in the flow.
Since an infinite number of simple wave patterns could be responsible for the same
observed gradients, it is necessary to hypothesize the number and nature of the
waves present: this is known as a wave model. It is important that the orientation
of the waves are not constrained by the directions of the grid. The next idea is
to update the solution in a way that acknowledges the direction of propagation of
each wave in the model.

The steps to follow for constructing a multidimensional upwind scheme of this
type for a non-linear system are the following:

• Construct a suitable scheme for the solution of the scalar advection equa-
tion. This involves the development of “fluctuation/residual distribution”
techniques in several dimensions. They use a continuous piecewise linear
data representation and involve the calculation of the fluctuation (or resid-
ual) within each cell and its distribution in an upwind manner to update the
flow variables at the vertices.
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• Identify the relevant propagation properties and directions within each cell.
This requires the development of a wave decomposition model which splits
the fluctuations into components, each of which corresponds to a simple
wave solution of the equations. The fluctuations due to each scalar wave
can then be distributed using an advection scheme from the first step above.
Roe developed a number of wave models based on simple waves[17, 18] and
Rudgyard, amongst others, independently constructed his own simple wave
models[19].

Initial calculations with the simple wave models confirmed an excellent capability
to capture oblique discontinuities, for which the multidimensional upwind method
was designed, but proved somewhat disappointing in the calculation of smooth
(subcritical) flows. This is because the wave models still employ unnecessary
dissipation[6].

Deconinck, Hirsch and Peuteman[2] concurrently devised their own alternative
strategy for decomposing the fluctuation. This was based on an attempt to find
an approximate diagonalization of the system of equations via an appropriate
similarity transformation. The original schemes lacked robustness but the idea
has subsequently been improved upon by applying the diagonalization technique
to a preconditioned set of equations. The correct choice of preconditioner leads to
a maximally decoupled system of equations and provides a very accurate method
for calculating steady state solutions to nonlinear systems of conservation laws[7,
14, 15].

Upwind finite volume schemes are improved by higher order interpolation,
where more than the direct neighbour points are used. This is not the case for
multidimensional upwind schemes, but accuracy remains a critical issue. Where
steady state solutions are of interest, an essential feature of a numerical scheme is
the convergence towards those steady states. Therefore, care has to be taken to
provide reasonable convergence properties for multidimensional upwind scheme, in
order for them to be competitive with other methods, and the issue of convergence
acceleration has been studied in some detail[7]. Unsteady problems have only re-
ally been studied in depth more recently, and then mainly in the scalar case[10, 8],
but evidence will be presented in this paper that even the schemes developed for
steady state problems provide a significant improvement in the modelling of non-
linear problems over comparable finite volume schemes. Even so, it has become
apparent that a rather fundamental distinction should be made between computa-
tional methods for steady and unsteady flows. The simple wave model approach is
discussed in some detail here, not because it gives the best steady state solutions,
but because it currently appears to be the most appropriate form of multidimen-
sional upwinding for application to time-dependent problems.

The issue of approximating source terms is also discussed briefly, and sugges-
tions made as to how they should be incorporated within the overall discretisation
in order to maintain the accuracy of the homogeneous scheme, something which
has so far proved to be simpler for the diagonalization approach.

3



2 Basic Scalar Technique

The technique for 2D problems assumes that the physical domain is discretized
using triangular cells (these methods are less naturally applied to quadrilaterals[7])
and a set of solution values is stored at the nodes of the mesh. For each cell T,
and for a linear scalar equation of the form

∂w

∂t
+ a · ∇w = 0, a = (ax, ay) (1)

where a is a constant vector, the fluctuation is defined as

φT =

∫

T

∂w

∂t
dS = −

∫

T

a · ∇wdS (2)

and the closely related quantity, the cell residual RT , as

RT = − 1

ST
φT =

1

ST

∫

T

a · ∇wdS = − 1

ST

∮

C

wa · n̂dC (3)

where C represents the cell boundary and n the inward normal to that boundary.
Note that the final expression in (3) is only valid if ∇ · a = 0. The fluctuation
contains information on the state of the cell and the distribution of this information
to the nodes must be done in a way which ensures conservation[5].

From the properties of the normals in the cell and the additional assumption
that the solution varies linearly within each element, it is possible to identify a
discrete approximation of ∇w[4],

∇wT =
1

2ST

3
∑

i=1

wini (4)

such that

RT =
1

ST

∫

T

a · ∇wdS =
1

ST
a · ∇wT

∫

T

dS = a · ∇wT . (5)

Equivalently,

φT = −
3
∑

i=1

wiki (6)

which introduces the quantities ki = 1

2
a · ni, containing information about the

direction of the advection speed relative to the cell edges. The ki can be used to
decide whether flow enters or leaves the triangle through a particular edge and, in
that sense, form a useful tool for imposing the upwind properties of the method.

Residuals and fluctuations are both cell-based quantities, and will be used to
update the nodal solution values. For this purpose we need to introduce quantities
known as distribution coefficients, Di

T . By using a simple forward Euler time

4



differencing the following procedure can now be defined to update the variables at
all the nodes in a single cell

S1w
n+1
1 = S1w

n
1 − ∆tST D1

T Rn
T (7)

S2w
n+1

2 = S2w
n
2 − ∆tST D2

T Rn
T

S3w
n+1
3 = S3w

n
3 − ∆tST D3

T Rn
T

where Si = 1

3

∑

Ti
ST is the area of the median dual cell around node i, one third

the total area of the triangles having i as vertex. Note that for simplicity a cell
residual only contributes to its own vertices, so the condition

∑3

i=1
Di

T = 1 ensures
conservation and consistency.

There exist many criteria for the design of advection schemes according to the
choice of the distribution coefficients Di

T . Two properties are of prime interest,
positivity and linearity preservation:

• Positivity means that every solution value at the new time level can be
written as a convex combination of old solution values, and is related to the
1D property of monotonicity.

• Linearity preservation has to do with higher order accuracy. It requires that
the scheme preserves the exact steady state solution whenever this is a linear
function in space, and for an arbitrary triangulation of the domain. This is
closely related to the idea of second order accuracy in the context of finite
difference schemes, although it is an accuracy requirement on the steady state
space discretization only. Less accuracy is gained in the time-dependent case,
but it is still significant.

It can be proved that a linear scheme cannot be both positive and linearity
preserving[5], a result which is closely related to Godunov’s theorem on the in-
compatibility between second order accuracy and monotonicity preservation for
linear schemes in one dimension. Therefore, in order to have both of the above
properties, nonlinear schemes must be considered where the update coefficients
depend on the data. This leads to the generation of nonlinear schemes even for
linear equations. The most commonly used of these nonlinear schemes is the PSI
scheme[7] which is based on the linear, positive N scheme, and can be thought of
in one of two ways. In its original derivation, it is based on the combination of
optimal positive upwind (N) schemes based on two distinct advection velocities,
the usual one a, and its component in the direction of the local solution gradient,
(a · ∇̂w)∇̂w. More recently, it was written as the N scheme combined with a form
of cross-stream limiter[21].

The underlying advection schemes used for the shallow water equations are no
different to those used for the Euler equations so we will not go into further detail
about their particular construction and description. We refer the reader to the
very good reviews in [7] and [5].

2.1 Nonlinear equations

It should be noted that when the equation itself is nonlinear a suitable linearization
must be performed before the technique described above for a linear equation
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is applied. In simple cases an averaged advection speed which satisfies discrete
conservation can be found by assuming linear variation of the conserved quantities
w over the cell, leading to a constant gradient ∇w. However, a general nonlinear
2D system of conservation laws of the form

∂U

∂t
+ ∇ · F = 0, F = (f ,g) (8)

requires the construction of an appropriate discrete form of the system

∂U

∂t
+ (A,B) · ∇U = 0. (9)

In particular, a consistent approximation for the cell residual is sought

RT =
1

ST

∫

T

(A,B) · ∇UdS = (ÃT , B̃T ) · ∇UT (10)

where ÃT , B̃T are discrete averages of the Jacobian matrices, constructed from
the nodal values. Now, assuming linear variation of the conservative variables U

over each cell enables us to write

RT =
1

ST
∇UT ·

∫

T

(A,B) dS (11)

from which discrete cell gradients and cell Jacobians can be defined:

Ã =
1

ST

∫

T

AdS , B̃ =
1

ST

∫

T

BdS. (12)

Unfortunately, the exact evaluation of the above integrals is not practical either
for the Euler or for the shallow water equations. Roe et al.[3] suggested the
introduction of “parameter vector” variables for a simpler treatment of the former
system. The strategy followed for the shallow water equations is similar and makes
use of the set of primitive variables, but there is no set of variables which can quite
play the role of the parameter vector, as will be discussed in the following section.

3 The 2D Shallow Water System

In the conservative and homogeneous version of the shallow water system of equa-
tions with independent variables U = (h, hu, hv)

T
, where h, u and v are the depth

and x- and y-velocities respectively, the fluxes are

f =

(

hu, hu2 + g
h2

2
, huv

)T

, g =

(

hv, huv, hv2 + g
h2

2

)T

. (13)

and the residual is defined as (cf. Equation (10))

RT =
1

ST

∫

T

(fx + gy) dS = − 1

ST

∮

C

(f ,g) · n̂ dC. (14)
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We are seeking a conservative linearization of the Jacobians satisfying

RT = f̃x + g̃y = ÃŨx + B̃Ũy. (15)

In order to simplify the subsequent evaluation of the discrete flux Jacobians (cf.
Equation (12)) we can use the transformation matrix M = ∂U

∂V
to move from the

conserved variables U to the primitive variables V = (h, u, v)T . This requires the
definition of new Jacobian matrices, S and T, as

S =
∂f

∂V
=

∂f

∂U

∂U

∂V
= AM , T =

∂g

∂V
=

∂g

∂U

∂U

∂V
= BM (16)

so that
fx + gy = fVVx + gVVy = SVx + TVy. (17)

Under the assumption that the variables V are linear over the cells T the gradients
∇V are constant, and this enables us to write the residual as

RT =
1

ST

∫

T

(S (V)Vx + T (V)Vy) dS (18)

=
1

ST

(
∫

T

S (V) dS

)

Vx +

(
∫

T

T (V) dS

)

Vy = S̃Vx + T̃Vy

with the definitions

S̃ =
1

ST

∫

T

S (V) dS , T̃ =
1

ST

∫

T

T (V) dS. (19)

We can evaluate S̃ and T̃ exactly, since S and T both vary quadratically with V

but, in order for the wave model to be employed, the approximate Jacobians are
required to take the form S̃ = S(Ṽ) and T̃ = T(Ṽ). Ṽ can be simply calculated
by averaging over the nodal values at the vertices of the triangle T but, unlike
with the Euler equations, this leaves a small correction term which must be added
for conservation[9] (and depends on the choice of independent variables V).

We can now reverse the transformation to define linearized derivatives of the
conservative variables,

Ũx = M(Ṽ)∇Vx , Ũy = M(Ṽ)∇Vy (20)

and rewrite

RT = R̃M−1(Ṽ)Ũx + S̃M−1(Ṽ)Ũy = ÃŨx + B̃Ũy (21)

where M = ∂U
∂V

, which allows the identification of Ã and B̃.
Having carried out this linearization, we have to compute the discrete residuals

RT (or fluctuations φT = −STRT ) and distribute them to the vertices of the cells
by means of an advection scheme (as discussed in Section 2). For this purpose
it is necessary to decompose the residual into simple pieces, for example scalar
components that can be explained as due to the passage of a simple wave. This
requires a description of the wave models.
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4 Simple Wave Models

Consider the linearized system of equations written in primitive variables

∂V

∂t
+ Ẽ

∂V

∂x
+ H̃

∂V

∂y
= 0. (22)

A simple wave solution can be found according to Roe[17, 18] in the form

V = V (ξ) with ξ = xnθ − λθt (23)

where nθ = (cos θ, sin θ) gives the direction of propagation and λθ the speed of
the particular wave. It is possible then to express the gradient of the independent
variables as a sum

∇V =

Nw
∑

k=1

αkrknk , nk = (cos θk, sin θk) (24)

in which Nw is the number of waves in the decomposition. Equivalently,

Vx =

Nw
∑

k=1

αkrk cos θk , Vy =

Nw
∑

k=1

αkrk sin θk. (25)

The vectors rk are right eigenvectors of the matrix M∗ = Ẽ cos θ + H̃ sin θ and
take one of three forms (representing two types of gravity wave and a shear wave):

rG1 =





1
g
c̃ cos θ
g
c̃ sin θ



 , rG2 =





1
− g

c̃ cos θ

− g
c̃ sin θ



 , rS =





0
− sin θ

cos θ



 , (26)

where c̃ is the velocity of small perturbations in still water, the equivalent of the
speed of sound in gas-dynamics, and is given by c̃ = (gh̃)1/2. The variables αk

represent weighting coefficients of the sum and θk are the propagation angles of
each wave.

The connection between the gradient of the primitive variables and that of the
averaged conservative variables (20) can be used to develop the latter as

Ũx =

Nw
∑

k=1

αkrk
c cos θk , Ũy =

Nw
∑

k=1

αkrk
c sin θk (27)

where now, rk
c represent the right eigenvectors of the matrix M∗ = Ã cos θ+B̃ sin θ

and can be calculated using the relationship rk
c = M(Ṽ)rk. It is worth noting

here that the two matrices M∗ and M∗

c share the same set of eigenvalues (or wave
speeds) λk given, for the three wave types, by

λG1 = ũ cos θ + ṽ sin θ + c̃ (28)

λG2 = ũ cos θ + ṽ sin θ − c̃

λS = ũ cos θ + ṽ sin θ.
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Note that by implication α, λ and r are all evaluated at the cell average state Ṽ

(see previous section). It now follows from (27) that the residual then can be split
into a sum of waves

RT = ÃŨx + B̃Ũy =

Nw
∑

k=1

αkλkrk
c (29)

so that it can be written in the form

RT =

Nw
∑

k=1

(λk · ∇wk) rk
c (30)

for appropriate choices of the wave velocities λk and “characteristic” gradient ∇w.
This is simply a sum of components of precisely the form seen in (5).

We next describe two of the most successful simple wave models proposed in
the literature as suitable to accomplish the above decomposition.

4.1 Roe’s wave models

The wave decomposition of the gradient of the primitive variables,

∇V =

Nw
∑

k=1

αkrknk, (31)

represents a system of six equations in the 2D shallow water case, where we have
two spatial derivatives for each of the three variables. Therefore, it allows for
six unknowns. These must correspond to coefficients or angles of propagation of
suitable choices of waves whose advection will represent the total fluctuation.

Following Roe’s suggested Model D for the treatment of the Euler equations[17],
a splitting can be made into four orthogonal acoustic waves, labelled by their
strengths (coefficients) and one angle θ which determines the four directions (α1, θ),
(α2, θ + π),

(

α3, θ + π
2

)

,
(

α4, θ + 3π
2

)

, along with one shear wave (β, φ) of strength
β at an angle φ. The six unknowns are taken to be α1, α2, α3, α4, β and θ. The
value of the angle φ is determined in terms of the solution as

φ = θ − π

4
sign (β) . (32)

Making use of the equivalents of the basic trigonometric functions to those of the
first quadrant of the unit radius circle, and after some algebraic manipulations,

β = vx − uy , tan 2θ =
uy + vx

ux − vy
(33)

and

α1 =
1

2

(

hx cos θ + hy sin θ +
c

g

(

ux cos2 θ − vy sin2 θ

cos 2θ
− 1

2
|β|
))

(34)
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α2 =
1

2

(

− (hx cos θ + hy sin θ) +
c

g

(

ux cos2 θ − vy sin2 θ

cos 2θ
− 1

2
|β|
))

α3 =
1

2

(

hy cos θ − hx sin θ +
c

g

(

vy cos2 θ − ux sin2 θ

cos 2θ
+

1

2
|β|
))

α4 =
1

2

(

− (hy cos θ − hx sin θ) +
c

g

(

vy cos2 θ − ux sin2 θ

cos 2θ
+

1

2
|β|
))

.

λ and ∇w are then constructed so that the advection velocities each take one of
the appropriate forms represented by

λG1 =

(

u + c cos θ

v + c sin θ

)

, λG2 =

(

u − c cos θ

v − c sin θ

)

, λS =

(

u

v

)

. (35)

The main problems with this model are that it has more than three waves and so
introduces unnecessary numerical dissipation, and the dependence of the propa-
gation directions on solution gradients hinders convergence to the steady state.

4.2 Rudgyard’s wave models

Rudgyard[19] based his wave models on the idea of obtaining the six waves by
choosing two, in principle, arbitrary propagation angles, θ1 and θ2, and performing
a decomposition of the gradient of the form

∇V =

3
∑

k=1

αk
θ1

rk
θ1

nθ1
+

3
∑

k=1

αk
θ2

rk
θ2

nθ2
(36)

which contains six free parameters, the six coefficients αk
θ . The vectors nθ =

(cos θ, sin θ) are again unit vectors in the direction θ, and rk
θ are the right eigen-

vectors of the matrix M∗, as defined in (26) (a full set of eigenvectors is used in
the decomposition for each of θ1 and θ2). In order to solve for the unknowns, use
is also made of the left eigenvectors of that matrix

lG1
θ =





1

2
c
2g cos θ
c
2g sin θ



 , lG2
θ =





1

2

− c
2g cos θ

− c
2g sin θ



 , lSθ =





0
− sin θ

cos θ



 (37)

and of the unit vector normal to nθ, sθ = (− sin θ, cos θ), leading to

αk
θ1

= −
sθ2

·
(

lkθ1
· ∇V

)

sin (θ2 − θ1)
, αk

θ2
=

sθ1
·
(

lkθ2
· ∇V

)

sin (θ2 − θ1)
. (38)

In this case the associated advection velocities in (30) are chosen so that, from
(38), ∇wk = lkθ · ∇V.

The best of the options proposed for Rudgyard’s wave models is the choice of
angles which satisfy the equation u · nθ − c = 0, that is, those angles that make
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the velocity of one of the gravity waves vanish. They do not depend on solution
gradients and can be expressed as

θ1 = arctan

(

v + u
√

F 2 − 1

u − v
√

F 2 − 1

)

, θ2 = arctan

(

v − u
√

F 2 − 1

u + v
√

F 2 − 1

)

, (39)

with F 2 = u2
+v2

c2 representing the Froude number (or the Mach number in the
gas dynamics problem). This technique gives very good results for supercritical
flows but is not directly applicable to the subcritical case. It can nevertheless
be adapted for subcritical flows by replacing F 2 − 1 with max

(

F 2 − 1, ǫ
)

. The
tolerance ǫ typically takes a value of 0.01. Results become increasingly poor as the
Froude number decreases and the effect of having more than three waves becomes
more significant.

5 Approximate Diagonalizations

In 1D shallow water flows it is possible to diagonalize the flux Jacobian, thus
splitting the problem into independent scalar subproblems. Unfortunately, in 2D
the matrices A and B cannot generally be diagonalized simultaneously (hence
the difficulty in constructing suitable wave models). Instead, an approximate
diagonalization can be constructed via a 3-parameter similarity transformation
[2], giving a system in ‘characteristic’ variables W,

Wt + AWWx + BW Wy = 0 , (40)

in which the 3 free parameters are chosen so that the new Jacobians AW and BW

are, in some sense, close to being diagonal. This is treated as a decoupled set of
inhomogeneous equations, each with a residual of the form

RT = λ · ∇w + q , (41)

(the distribution coefficients can be calculated as they would for the homogeneous
fluctuation but then used to distribute the complete RT ) and a conservative flux
balance,

RT =

Neq
∑

k=1

(λk · ∇wk + qk) rk
c , (42)

in which rk
c are the columns of the similarity transformation matrix ∂U

∂W
, and

Neq = 3 is the number of equations in the system.
These methods have an advantage over the existing simple wave models in hav-

ing the correct number of components for linearity preservation (Nw = Neq) but
the propagation directions, which depend on the parameters which define the simi-
larity transformation, are usually chosen to depend on solution gradients, creating
problems with convergence to a steady state. However, their main disadvantage is
the presence of the source terms qk which destroy positivity and hence robustness.

The effect of the source terms created by the characteristic decomposition can
be minimised by attempting to diagonalize a preconditioned form of the shallow
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water equations [15, 14]. The decomposed flux balance once more takes the form
(42), but now rk

c are the columns of the matrix ∂U
∂Q

P−1 ∂Q

∂W
, Q being an interme-

diate set of (symmetrizing) variables, introduced to simplify the algebra, and P

a preconditioning matrix. Careful choice of the preconditioner gives an optimal
decoupling of the system, complete in supercritical flow but unavoidably including
a coupled 2 × 2 elliptic subsystem for subcritical flow.

Briefly, these most recent decompositions are constructed by first transforming
the shallow water equations into symmetrizing variables,

∂Q =





√

g
d ∂d

∂q

q ∂θ



 , (43)

where q =
√

u2 + v2 is the flow speed and θ = tan−1
(

v
u

)

is the direction of the
flow. The system therefore becomes

Qt + AQQx + BQQy = 0 , (44)

in which the flux Jacobians are symmetric matrices given by

AQ =
∂Q

∂U
A

∂U

∂Q
, BQ =

∂Q

∂U
B

∂U

∂Q
. (45)

The equations (44) are simplified even further when they are written in terms of
the streamwise coordinates, ξ and η, which leads to

Qt + AS
QQξ + BS

QQη = 0 , (46)

where

AS
Q =

uAQ + vBQ

q
, BS

Q =
−vAQ + uBQ

q
. (47)

These equations are now preconditioned by an appropriate matrix P, giving

Qt + P
(

AS
QQξ + BS

QQη

)

= 0 , (48)

and this system is transformed into “characteristic” variables,

Wt + AS
W Wξ + BS

W Wη = 0 , (49)

which can be treated as (40), but where

AS
W =

∂W

∂Q
PAS

Q

∂Q

∂W
, BS

W =
∂W

∂Q
PBS

Q

∂Q

∂W
. (50)

For an appropriate choice of P the system (49) is either fully or partially diagonal-
ized depending on whether the flow is supercritical or subcritical. The hyperbolic
components are treated using the standard scalar schemes, but the subcritical
elliptic subsystem can usefully be distributed in a different manner: a system
Lax-Wendroff scheme has been shown to work well with this component[14].
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An example of a suitable preconditioner, based on that of Mesaros and Roe[14],
is given by[9]

P =
1

q







εF 2

βκ − εF
βκ 0

− εF
βκ

ε
βκ + ε 0

0 0 β
κ






, (51)

where
β =

√

|F 2 − 1| , κ = max(F, 1) , (52)

and ε = ε(F ) is a function which satisfies ε(0) = 1

2
and ε(F ) = 1 for F ≥ 1 (giving

the correct behaviour in the preconditioned system at stagnation and continuity
of the optimal decomposition through the critical point).

These preconditioned wave models have proved to be the best of the current
decompositions for the modelling of steady state problems but, in contrast to
the simple wave models, seem unlikely to provide a simple extension to unsteady
problems (not least because they have a singularity at stagnation points which can
only be treated in the steady case).

6 Source terms

The modelling of shallow water flows commonly requires the inclusion of source
terms, and hence the approximation of inhomogeneous equations of the form

∂U

∂t
+ ∇ ·F = S. (53)

For example, taking
S = (0,−ghzx,−ghzy)

T (54)

allows the modelling of flow over a varying bed topography, defined by the gradient
of the bed height, ∇z.

In principle it is simple to incorporate source terms within the structure of
multidimensional upwind schemes by decomposing them in the same manner as
the flux terms [9]. For the approximate diagonalization approach this results in a
slightly different residual to (42), namely

RT =

Neq
∑

k=1

(λk · ∇wk + qk − sk
W ) rk

c , (55)

where sk
W are the components of SW = ∂W

∂U
S (or, when a preconditioner is in-

cluded, SW = ∂W
∂Q

P∂Q

∂U
S). Each component of (55) is distributed using the coef-

ficients calculated for the homogeneous equations. When simple wave models are
used the correct treatment is not so obvious, since the components of the decom-
position are not independent, and this represents a subject for further research.
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7 Numerical results

The first test case presented here is that of flow through a symmetric constricted
open channel of length 4, whose breadth is given by

B(x) =

{

1.0 − (1.0 − Bmin) cos2(π(x − 2.0)) for |x − 2.0| ≤ 0.5
1.0 otherwise ,

(56)

where Bmin = 0.92 is the minimum channel breadth and x is the distance into the
channel (so the throat is positioned at the midpoint of the constriction, x = 2.0).
The 2114 node, 4054 cell grid on which the numerical results have been obtained
is shown in Fig. 1 along with three steady state solutions distinguished by their
freestream Froude numbers: (i) F∞ = 0.5, completely subcritical and hence sym-
metric about the throat of the channel, (ii) F∞ = 0.71, transcritical with a sta-
tionary hydraulic jump in the constriction downstream of the throat, and (iii)
F∞ = 2.0, completely supercritical, with a criss-cross pattern of undular jumps
downstream of the throat. Simple characteristic boundary conditions are applied
in each case. The solutions have been obtained using the hyperbolic/elliptic de-
composition described in Section 5, applying the PSI scheme to each of the de-
coupled scalar components and a system Lax-Wendroff scheme to the subcritical
elliptic subsystem. The results illustrate that the scheme can accurately model
each of these different types of steady state flow.

It is interesting here to also present one preliminary result to illustrate the
improvement which incorporating source terms within the decomposition makes
over standard pointwise approximations. A straight open channel with a sinusoidal
bump on its bed is used as the test case with a subcritical steady state flow over it,
for which the discharge should be constant throughout the domain. Fig. 2 shows
that the decomposed source term maintains this constant quantity at the level
predicted by the exact solution whereas the pointwise evaluation shows significant
errors.

Results from experimental test cases are presented, proposed by Prof. Zech
(Civil Engineering Dept., UCL Belgium) from the Working Group on Dam Break
Flow Modelling in which the authors are involved. Experimental and numerical
results will be compared in these two time-dependent test cases. The treatment
of the solution at the boundaries has been kept as close as possible to the theory
of the characteristics in 2D. In all cases, the number of physical conditions to be
imposed has been determined by this theory.

4.1 Test1: L-shaped channel

The flow domain, depicted in Fig. 3, consists of a square reservoir that initially
contains a wall to separate it from the L-shaped channel. The initial conditions
are zero flow with 0.2m depth to the left and 0.01m depth to the right of the
wall. All boundaries are solid non-slip walls except the outlet which is considered
free. The Manning coefficient is 0.0095 and the bed slope is zero. The number
of elements used in the mesh is 2954. Comparisons of the time evolution of the
depth of water predicted by experiment and numerics once the wall is removed

14



Figure 1: The grid and contours of depth for solutions of the subcritical (top), tran-
scritical (middle) and supercritical (bottom) symmetric constricted open channel
test cases.
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Figure 2: Solutions for the symmetric open channel with varying bed.

(using the ....... scheme) are made at the points P1, P2, P3, P4, P5 and P6, and
are shown in Fig. 7. They indicate that the multidimensional upwind schemes do
provide an accurate numerical model of the flow.

a)

Figure 3: Geometry for the L-shaped channel test.

4.3 Test2: Comparison with upwind finite volume scheme results

Results will now be presented which are obtained with first order upwind finite
volume and multidimensional upwind (WHICH ONE??) approximations on the
same unstructured Delaunay triangular mesh for a second experimental test case,
also proposed by Prof. Zech.

The test to be studied combines a square shaped upstream reservoir and a
channel with a 45◦ bend (see Fig. 5). The channel is made of 4.25m and 4.15m
long and 0.495m wide rectilinear reaches connected at a 45◦ angle by an element.
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a)

Figure 4: Time evolution of the depth of water at points P1 to P6 for Test1.

There is no slope in the channel. A gate (which is opened at t = 0) connects
the channel to a 2.44m × 2.39m reservoir. The initial conditions are water at
rest with the free surface 25cm above the bed level in the upstream reservoir and
1cm water depth in the channel. All boundaries are solid walls except the outlet
which is considered free. The Manning coefficient is nb = 0.0095 for the bed and
nw = 0.0195 for the walls. The number of elements used in the mesh is 15397.

The flow will be essentially two-dimensional in the reservoir and at the angle
between the two straight reaches of the channel. Two features of the resulting
dam break flow are of special interest: the damping effect of the corner, and the
upstream moving hydraulic jump which is formed by reflection at the corner.

Nine gauging points were used in the laboratory to measure water level in
time. Their locations are shown in Fig. 5. The measurements at these stations are
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a)

Figure 5: Plane view of the Test2 channel with gauging points.

compared with the numerical results and displayed in Figs. 6 and 7. Fig. 8 shows
snapshots of the free surface at time 18s.

In general, the figures indicate good performance of both numerical schemes.
The arrival times of the main shock fronts is better captured by the standard
upwind method. Some differences are noticeable in P2, P3 and P4 in terms of
the reflected shock front celerity, which may be attributed to the treatment of the
boundary conditions. However, the great improvement shown by the multidimen-
sional upwinding is only really visible in the free surface plots, in which it is clear
that it models the shock structure far better. This indicates that perhaps measure-
ments along the walls of the channel should be taken into account to demonstrate
which approximation is better. Up to now, only data in the central axis have been
measured.

8 Conclusions

Two-dimensional wave decomposition and multidimensional upwinding seem a
promising method of solution for the 2D shallow water equations. A number
of schemes have been adapted to render the technique suited to hydraulic prob-
lems with shocks. As with the 1D TVD schemes, our experience with using the
multidimensional upwind approach for the shallow water equations has closely fol-
lowed that of the researchers solving the Euler equations (with both the advection
schemes and the wave models), showing the same properties as for that system of
equations.

The procedure is more complicated and costly than the most efficient present
day generalizations of 1D upwind finite volume techniques. However, it is based on
a triangular discretization and, by taking advantage of the triangles, the disadvan-
tages can be overcome, making the schemes very competitive. The future for these
schemes then looks much more promising, since they can clearly be applied to ar-
bitrary geometries, a great advantage for hydraulic engineers working on practical
problems, particularly as there is a wide variety of possibilities concerning grid
movement and adaptation [7, 1].
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(a) (b) (c) (d)

Figure 6: Water depth history at points a) P1, b) P2, c) P3 and d) P4 for Test2.

Future work is envisaged to find better ways to deal with the source terms
present in the shallow water equations when applied to realistic problems, while
there is still much work to be done in the development of more efficient and
accurate schemes in unsteady cases, possibly following recent work on the scalar
schemes[10, 13] but definitely requiring a more detailed study of possible wave
models for time-dependent problems.
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