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Abstract

A multidimensional upwinding technique is applied to the simulation of 2D shallow water flows.
It is adapted from fluctuation splitting methods recently proposed for the solution of the Euler
system of equations on unstructured triangular grids. The basis of the numerical method is
stated and the particular adaptation to the shallow water system is described. A test case of
interest to hydraulic engineers is presented.

1. INTRODUCTION
Classical methods and central difference schemes still dominate the software products for the
shallow water equations, with Preissmann’s, Abbott’s (see [3] for example) and McCormack’s
[6] schemes the most commonly used. Some years after their adoption for solving problems in
gas dynamics, upwind and TVD (Total Variation Diminishing) numerical schemes have been
successfully used for the solution of the shallow water equations, with similar advantages [7].
Their use is nevertheless only gradually gaining acceptance in this sector.
In a philosophy different from concentrating on finite volumes and the changes of the variables
across the cell sides, Deconinck et al. [4] consider solutions on triangular grids in which the
unknowns are associated with the vertices and updates to these nodal values are through the
advection of linear wave solutions. This avoids the problems of taking the normal to the cell
interfaces as a privileged direction.
In this paper we consider the use of this technique for 2D shallow water flows and the question
of whether they may be of practical use. In the next sections, the basis of the numerical method
is stated and the adaptation to the shallow water system is described. Finally, some numerical
results are presented. Although this work is at an early stage, our results indicate that the ad-
vantages may outweigh the disadvantages and that these schemes may have a future for hydraulic
engineering applications.

2. BASIC TECHNIQUE FOR SYSTEMS OF EQUATIONS
If the equation to be solved is non-linear, a suitable linearization must be performed before the
existing techniques for linear equations are applied. An averaged advection speed which satisfies
discrete conservation can be found by assuming linear variation of the conserved quantities w

over the cell and therefore constant gradient ∇w. Since the advection schemes used for the
shallow water equations are no different for those used for the Euler equations we will not go
into further detail about their particular construction and description. We refer the reader to
the very good reviews in [9] and [14].
The application of multi-dimensional upwinding to a general non-linear 2D system of conservation
laws

∂w

∂t
+ ∇.(F(w)) = 0 , F = (f , g)
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requires a discrete form of the linearization

∂w

∂t
+ (A, B)∇(w) = 0.

Where, in particular, a consistent approximation for the cell residual is sought

RT = (Ā, B̄)T · ∇wT (1)

where ĀT , B̄T are discrete equivalents of the cell averaged Jacobian matrices, calculated using
the nodal values. The important assumption of linear variation of w on each cell, enables to
write

RT =
1

ST

∫
T
(A, B) · ∇wdS =

1

ST

∇wT

∫
T
(A, B)dS

where discrete cell gradients and cell Jacobians can be defined

∇wT =
1

ST

3∑
i=1

wini , Ā =
1

ST

∫
T

AdS , B̄ =
1

ST

∫
T

BdS

Unfortunately, the exact evaluation of the above integrals is not practical either for the Euler
or for the shallow water equations. Roe [12] suggested the introduction of a parameter set of
variables for a simpler treatment of the former system. The strategy we have followed for the
shallow water equations makes use of the set of primitive variables and is described in the next
section.

3. THE 2D SHALLOW WATER SYSTEM
In the conservative formulation of the system of equations, with U = (h , uh , vh)T , where h, u

and v are the depth and x and y velocities respectively, the fluctuation is defined as

ΦT =
∫

T
UtdS = −

∫
T
(Ex + Fy)dS.

We are seeking a conservative discrete approximation of the Jacobians like in eq.(1) satisfying

ΦT ≈ −ST (Ēx + F̄y) = −ST (ĀŪx + B̄Ūy).

We can use the transformation matrix M between the conserved variables U and the primitive
variables V = (h , u , v)T to define new matrices R and S,

R =
∂E

∂V
=

∂E

∂U

∂U

∂V
= AM , S =

∂F

∂V
=

∂F

∂U

∂U

∂V
= BM

so that:
Ex + Fy = EV Vx + FV Vy = RVx + SVy.

Then, provided that the variables V are linear over the cells T, the gradients, Vx and Vy, are
constant, and this enables us to write the fluctuation as

ΦT = −(
∫

T
(R(V)Vx + S(V)Vy)dS = −ST [R̄Vx + S̄Vy]

with the definitions:

R̄ =
1

ST

∫
T

R(V)dS , S̄ =
1

ST

∫
T

S(V)dS. (2)
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We now replace R̄, S̄ by R̄ = R(V̄), S̄ = S(V̄), where the averaged variables are simply cal-
culated summing over the nodal values at the vertices of the triangle T. Note that with this
definition of R̄, S̄ we are only approximating equation (2), unlike in the Euler equations where
an exact representation of the integral is obtained because in this case R is linear in V.
It is easy to identify Ēx = R̄Vx and F̄y = S̄Vy, and we can use the change of variables to rewrite
the fluctuation in terms of suitable averages of the conserved variables [8].
The next thing to do is to compute the fluctuations and distribute them to the vertices of every
cell by means of an advection scheme. For that purpose it is necessary to work out the gradi-
ents ∇V = (Vx,Vy) within each triangle, and decompose the residual into parts that can be
explained as due to the passage of a wave. The latter step will require a description of wave
models.

4. WAVE MODELS
Considering the linearized system of equations written in primitive variables

∂V

∂t
+ Ḡ

∂V

∂x
+ H̄

∂V

∂y
= 0.

A simple wave solution can be found, as in Roe [11,12].
It is then possible to express the gradient as the sum

∇V =
n∑

k=1

αkrknk

that is,

Vx =
n∑

k=1

αkrkcosθk , Vy =
n∑

k=1

αkrksinθk.

The vectors rk are the right eigenvectors of the matrix M∗ = Ḡcosθ + H̄sinθ. The variables
αk represent weighting coefficients of the sum and θk are the different angles of each wave. The
celerity, c, is the equivalent of the speed of sound in gas-dynamics and is the velocity of small
perturbations in still water, given by c =

√
gh.

The connection between the gradient of the primitive variables and that of the averaged conser-
vative variables can be used to develop the latter as

Ūx =
n∑

k=1

αkrk
ccosθ

k , Ūy =
n∑

k=1

αkrk
csinθk

where now, rk
c represent the right eigenvectors of the matrix M∗

c = Ācosθ + B̄sinθ, and can
be worked out through rk

c = M(V̄)rk. The two matrices M∗ and M∗

c share the unique set of
eigenvalues, λk. The residual then can be split into a sum of waves

RT = ĀŪx + B̄Ūy =
n∑

k=1

αkλkrk
c .

The wave decomposition of the gradients represents a system of 6 equations in the shallow water
case, where we have two spatial derivatives for each of the three variables. Therefore, it allows
for 6 unknowns. These must correspond to either the coefficients or angles of a propagation of
suitable choices of waves whose advection will represent the total fluctuation. Following Roe’s
suggestions for the treatment of the Euler equations [11], the splitting can be made into four
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orthogonal acoustic waves, labelled by their strengths (coefficients) and one angle θ which deter-
mines the four directions as well as one shear wave of strength β at an angle φ.

Rudgyard’s wave models are mainly based on the idea of obtaining the six waves by choosing
two propagation angles, θ1 and θ2, and performing a decomposition of the gradient,

∇V =
3∑

k=1

αk
θ1
rk

θ1
nθ1 +

3∑
k=1

αk
θ2

rk
θ2
nθ2

which contains six free parameters, the six α coefficients. The vectors nθ = (cosθ, sinθ) are again
the unit vectors in the directions θ, and rk

θ are the right eigenvectors of the matrix M∗ for each
value of θ.

5. NUMERICAL RESULTS
The treatment of the solution at the points on the boundaries of the domain has been kept as close
as possible to the theory of characteristics in 2D. For the interior points we used the non-linear
PSI advection algorithm [10] but obtained very similar results with the other advection schemes.
As for the wave model, the calculations correspond to Rudgyard’s decomposition having been
found more robust, in general, than the one corresponding to Roe’s model D.
The selected example is an excellent test case for a multidimensional shock capturing algorithm.
It consists of a series of discontinuities produced when a supercritical flow in a rectangular chan-
nel meets a sharp constriction in the cross section. A first shock wave is formed in front of the
contraction. It bends towards the downstream direction and is reflected several times on the walls
of the narrower part of the channel A 2016 element triangular mesh was used to reproduce the
flow in a 3m long and 1m wide rectangular channel with a 20By the time reached in the results
shown (approx.3.7s), the flow is steady. As can be seen in the upper part of Fig. 1, the scheme
is able to capture all the oblique hydraulic jumps and a discontinuous water surface devoid of
oscillations is obtained. Similar accuracy is achieved on a cuadrilateral grid with the TVD in
finite volume method reported in [1]. Better resolution is obtained as the grid is refined. This
can be seen in the lower part of Fig.1, where a 8064 elements grid was used. A strategy of cell
movement proposed by Baines [5] can be exploited for the unstructured grid in order to improve
the results. The possibility of using an algorithm capable of making the cells migrate towards
the regions of steeper gradients allows the reduction of the total number of cells. A preliminary,
but encouraging, result can be found in [9].

6. CONCLUSIONS
Two dimensional wave decomposition and multi-dimensional upwinding seem a promising method
of solution for the 2D shallow water equations. Two wave models have been adapted to render
the technique suited to hydraulic problems with shocks. As with the 1D TVD schemes, our
experience with using the multi-dimensional upwind approach for the shallow water equations
has closely followed that of the researchers solving the Euler equations (with both the advection
schemes and wave models) showing the same properties as for that system of equations.
Although the procedure is more complicated and costly than present day generalizations of 1D
upwinding techniques it is based on a triangular discretization and, by taking advantage of the
triangles, the disadvantages can be overcome making the schemes very competitive, and the
future for them then looks much more promising. They can clearly be applied to arbitrary ge-
ometries, a great advantage for hydraulic engineers working on practical problems, and there is
a wide variety of possibilities concerning grid movement and adaption.
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Figure 1: Map of isolines for the steady state solution. Coarse grid.

Figure 2: Map of isolines for the steady state solution. Finer grid
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