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A multidimensional upwinding technique is applied to the simula-
tion of 2D shallow water ows. It is adapted from uctuation splitting methods
recently proposed for the solution of the Euler system of equations on unstruc-
tured triangular grids. The basis of the numerical method is stated and the
particular adaptation to the shallow water system is described. Numerical re-
sults of interest to hydraulic engineers are presented. Despite the complexities of
the scheme advantages related to the use of a discretisation based on triangles
would seem to make the schemes competitive with those currently in use.
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Abstract



In reading the literature of recent years on the latest advances in numerical meth-
ods for hyperbolic conservation laws, one might gain the impression that many
more people worked on problems involving the Euler equations than on problems
concerning the shallow water equations. In practice, though, this is not the situ-
ation, with many more engineers, physicists and mathematicians being involved
in solving problems of the latter kind on a day to day basis.

Classical methods and central di�erence schemes still dominate the
commercial software products for this market, with Preissmann's, Abbott's (see
[4] for example) and McCormack's [7] schemes the most commonly used. These
schemes are well known to require special treatment in many situations so that
the calculations may proceed.

Some years after their adoption for solving problems in gas dynam-
ics, upwind and TVD (Total Variation Diminishing) numerical schemes have been
successfully used for the solution of the shallow water equations, with similar ad-
vantages [8]. Their use is nevertheless only gradually gaining acceptance in this
sector.

Recently, in the context of gas dynamics, doubt has been expressed
as to whether the essentially 1D TVD schemes are the most suitable choice for
multi-dimensional calculations, and the search has been initiated for genuinely
multi-dimensional approaches. Most of these are based on piecewise constant
representations of the solution on triangular grids with a 1D upwinding of the
Riemann problem for each edge of the triangle. However, it has been claimed
that such an approach is weak when the solution is not constant along a triangle
edge, since it may misinterpret features which are not aligned with grid interfaces.

In a di�erent philosophy, instead of concentrating on �nite volumes
and the changes of the variables across the cell sides, Deconinck et al. [5] consider
solutions on triangular grids in which the unknowns are associated with the ver-
tices and updates to these nodal values are through the advection of linear wave
solutions. This avoids the problems of taking the normal to the cell interfaces as
a privileged direction.

Reference [5] is concerned with gas dynamics applications. In this
paper we consider the use of this technique for 2D shallow water ows and the
question of whether they may be of practical use. In the next sections, the ba-
sis of the numerical method is stated and the adaptation to the shallow water
system is described. The numerical treatment of the boundaries as well as the
inclusion of source terms in the governing equations are also discussed. Finally,
some numerical results are presented. Although this work is at an early stage,
our results indicate that the advantages may outweigh the disadvantages and that
these schemes may have a future for hydraulic engineering applications.
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1 Introduction
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For the numerical solution of the 2D linear scalar equation

+ = 0 = ( ) (2 1)

with constant , we assume the given physical domain to be discretised by trian-
gular cells and a set of initial values stored at the nodes of the mesh. For each
cell T, of area , a cell uctuation is de�ned as

� = (2 2)

and a cell residual as

=
1
� =

1
=

1
(2 3)

where C represents the cell boundary and is the inward unit normal to the cell
boundary. The cell uctuation or cell residual contains information on the state
of the cell to be transmitted to over a time step, so that the changes made to
the values of the 's at the nodes of triangle T will be proportional to � or .
The distribution of the information to the nodes should, if possible, be done in a
way which ensures conservation [15].

From the properties of the normals in the cell and the additional
assumption that the solution varies linearly within each element, it is possible
to identify a discrete approximation of , where is the normal to the edge
opposite node ,

=
1

2
(2 4)

such that
= (2 5)

or

� = (2 6)

with the introduction of the quantities

=
1

2
(2 7)

which contain information about the direction of advection relative to the cell.
They can be used to decide whether ow enters or leaves the triangle through a
particular edge and, in that sense, are a useful tool for the upwind properties of
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the technique.

Residuals and uctuations are cell-based quantities which are going
to be used for the updating of the nodal values. For this purpose we introduce
distribution coe�cients, , de�ning the weightings of the residual to the nodes
in a cell. For conservation and consistency they must satisfy

= 1

in every cell, see [5] for example. Then, a �rst order explicit time-stepping pro-
cedure at the nodes can be de�ned as

=
�

(2 8)

where the sum is over all the cells meeting at node , and where = .
In order to focus on the individual cell treatment, the advection scheme can be
expressed, on each triangle, as

= �

= �

= �

(2.9)

where only the inuence from the individual triangle has been included.

There exist many criteria for the design of advection schemes, de-
pending on the choice of the distribution coe�cients. Two properties are of inter-
est, positivity and linearity preservation of the scheme. The former is related to
the 1D property of monotonicity whilst the second has to do with the accuracy of
the method. Unfortunately, their simultaneous requirement is incompatible with
the linearity of a scheme. This leads to the generation of non-linear advection
schemes, even for linear equations. These schemes are based on the construction
of advection speed vectors in the direction of the local gradient, de�ned as

=

with

= and =

This makes the coe�cients of (2.7) dependent on the solution, enabling the
simultaneous satisfaction of the two desired properties. Note that the use of the
frontal speed does not alter the cell residual, since

=

4
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If the equation to be solved is non-linear, a suitable linearization
must be performed before the techniques described for the linear equation are
applied. Given the non-linear equation

+ ( ) = 0 = ( )

where
= ( )

the uctuation is de�ned as

� =

An averaged advection speed which satis�es discrete conservation can now be
found by assuming linear variation of over the cell and therefore constant gra-
dient . In that case

= ( + ) = ( + )

= + = (� + � )

where

� =
1

� =
1

and

� = � =
1

2
� �

with
� = (� � )

Since the advection schemes used for the shallow water equations are no di�erent
for those used for the Euler equations we will not go into further detail about
their particular construction and description. We refer the reader to the very
good reviews in [10] and [15].

The application of multi-dimensional upwinding to a general non-linear 2D sys-
tem of conservation laws

+ ( ( )) = 0 = ( )

requires a discrete form, for the conserved variables , of the linearization

+ ( ) ( ) = 0
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Where, in particular, a consistent approximation for the cell residual is sought

= ( � �) (2 10)

where � � are discrete equivalents of the cell averaged Jacobian matrices, cal-
culated using the nodal values. The assumption of linear variation of on each
cell, enables us to write

=
1

( )

=
1

( ) (2.11)

where discrete cell gradients and cell Jacobians can be de�ned in the same form
as for the scalar case

=
1

� =
1

� =
1

Unfortunately, the exact evaluation of the above integrals is not practical either
for the Euler or for the shallow water equations. Roe [13] suggested the introduc-
tion of a parameter set of variables for a simpler treatment of the former system.
The strategy we have followed for the shallow water equations makes use of the
set of primitive variables and is described in the next section.

We begin this section by writing the homogeneous version of the system of equa-
tions in terms of the conserved variables,

= ( ) (3 1)

where and are the depth and and velocities respectively, that is,

+ + = 0 (3 2)

where the uxes are,
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It can be rewritten in terms of the same variables but in a non-conservative form
as,

+ + = 0 (3 3)

in which the two Jacobian matrices are

= =
0 1 0
+ 2 0 = =

0 0 1

+ 0 2

As mentioned earlier, it will be useful later on in the paper to express the equa-
tions in terms of the primitive variables

= ( ) (3 4)

in a non-conservative way, as follows,

+ + = 0 (3 5)

where the new matrices and are,

=
0
0

0 0
=

0
0 0

0

It is worth noting that the transformation matrix, , has the form

= =
1 0 0

0
0

In the conservative formulation, the uctuation is de�ned as

� = = ( + ) (3 6)

We can use the relation between the two sets of variables to de�ne new matrices
and ,

= = =

= = =
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so that:
+ = + = +

Provided that the variables are linear over the cells T, the gradients, and
, are constant, and this enables us to write the uctuation as

� = ( ( ( ) + ( ) )

= ( ( ( ) ) ( ( ( ) )

= [ � + � ] (3.7)

with the de�nitions:

� =
1

( ) � =
1

( ) (3 8)

We now replace �, � by

� = ( � ) � = ( � ) (3 9)

where the averaged variables are simply

� =

�

�
�

=
1

3

+ +
+ +
+ +

(3 10)

summing over the nodal values at the vertices of the triangle T. Note that with
this de�nition of �, � we are only approximating equation (3.8), unlike in the
Euler equations where an exact representation of the integral is obtained because
in this case is linear in .

We are seeking a conservative discrete approximation of the Jaco-
bians satisfying

(� ) (� + � ) = ( � � + � � ) (3 11)

From (3.7) it is easy to identify

� = �

� = � (3.12)

Moreover, we can use the change of variables to de�ne

� = = ( ) = ( �)

8

R S :

R S dS

R dS S dS

S R S

R
S

R dS ; S
S

S dS: :

R S

R R ; S S :

h
u
v

h h h
u u u
v v v

:

R S

R

S S A B : :

R

S :

S dS M dS S M

�

� �
�

� � �

E F E V F V V V

V V
V

V V V V

V V V V

V V

V V

V V

V

V

E F U U

E V

F V

U U V V V V

Z
Z Z

Z Z

0
B@

1
CA

0
B@

1
CA

Z Z



1

1 1

1

� � �

1

� � �

x x

x x

y y

T x y T

x y T

V V V

V V V

T

x y

� �

� �

�

�

� �

�

�

so that

� = ( �) (3.13)

= ( �) � (3.14)

with similar expressions for � and . This can be used to rewrite the uctua-
tion in terms of suitable averages of the conserved variables,

(� ) [ � ( �) � + � ( �) � ]

= [ � � + � � ] (3.15)

which allows the identi�cation of � and �.

� = ( � ) ( �) = = = (� )

� = ( � ) ( �) = = = (� ) (3.16)

The next thing we have to do is to compute the residuals or the uctuations
and distribute them to the vertices of every cell by means of an advection scheme.
Recalling that at the beginning of the time step we have the values of the con-
served variables at the vertices of the triangular mesh, the steps to follow are:
to compute the primitive variables from the known , work out the gradients

= ( ) within each triangle, and decompose the residual into parts that
can be explained as due to the passage of a wave. The latter step will require a
description of wave models.

Consider the linearized system of equations written in primitive variables

+ � + � = 0 (4 1)

A simple wave solution can be found, as in Roe [11,12], in the form

= ( ) with =

where = ( ) gives the direction of propagation and the speed of
the wave. If we note that

=
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=

it follows from (4.1) that

+ ( � + � ) = 0

which means that are the right eigenvectors of the matrix

= � + � (4 2)

and the corresponding eigenvalues.

It is then possible to express the gradient as the sum

= (4 3)

that is,

=

=

The vectors are the right eigenvectors of the matrix :

=
1

=
1

=
0

(4 4)

The variables represent weighting coe�cients of the sum and are the di�er-
ent angles of each wave. The celerity, , is the equivalent of the speed of sound
in gas-dynamics and is the velocity of small perturbations in still water, given by
= .

The connection expressed in (3.13) between the gradient of the
primitive variables and that of the averaged conservative variables can be used
to develop the latter as

� =

� =

where now, represent the right eigenvectors of the matrix

= � + �
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and can be worked out through = ( � ) . It is worth noting here that the
two matrices and share the unique set of eigenvalues, ,

= � + � +

= � + �

= � + � (4.5)

The residual then can be split into a sum of waves

= � � + � �

= � + �

= [ � + � ]

= (4.6)

We next describe two of the several wave models proposed in the literature to
accomplish the above decomposition.

The wave decomposition of the gradient of the primitive variables, namely,

= (4 7)

represents a system of 6 equations in the shallow water case, where we have
two spatial derivatives for each of the three variables. Therefore, it allows for
6 unknowns. These must correspond to either the coe�cients or angles of a
propagation of suitable choices of waves whose advection will represent the total
uctuation.

Following Roe's suggestions for the treatment of the Euler equa-
tions [11], the splitting can be made into four orthogonal acoustic waves, labelled
by their strengths (coe�cients) and one angle which determines the four direc-
tions, de�ned by

( ) ( + ) ( +
2
) ( +

3

2
)

as well as one shear wave ( ) of strength at an angle . The six unknowns
are then and . The value of the angle , in Roe's model D, can
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be de�ned in terms of the solution as

=
4

( )

Making use of the equivalences of the basic trigonometric functions to those of the
�rst quadrant of the unit radius circle, the system (4.7) can be explicitly written
as follows:

= +

= +

= [ + + + ]

= [ + ]

= [ + ] +

= [ + + + ] + (4.8)

The solution of the above algebraic system is easily found giving, for the coe�-
cient of the shear wave,

= ( ) = (4 9)

The identities

( ) = 2

2 = 2

are helpful in combining the derivatives as

+ = [ ( + ) + ] 2

= [ ( + ) + ] 2

so that

2 =
+

(4 10)

Further manipulations of the derivatives lead us to

= [ ( + ) +
1

2
] 2
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hence, to the values

=
1

2
[ + + (

2

1

2
)] (4.11)

=
1

2
[ ( + ) + (

2

1

2
)] (4.12)

A similar procedure gives

=
1

2
[ + (

2
+
1

2
)] (4.13)

=
1

2
[ ( ) + (

2
+
1

2
)] (4.14)

These are mainly based on the idea of obtaining the six waves by choosing two,
in principle, arbitrary propagation angles, and , and performing a decompo-
sition of the gradient,

= + (4 15)

which contains six free parameters, the six coe�cients. The vectors =
( ) are again the unit vectors in the directions , and are the right
eigenvectors of the matrix for each value of . In order to solve for the un-
knowns, use is also made of the left eigenvectors of that matrix

= = =
0

(4 16)

and of the unit vector normal to

= ( )

Multiplication of (4.16) on the left by and the left projection over gives

( ) = ( ) (4 17)

where the property = and the orthogonality between vectors and
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have been used.

From (4.17), we obtain,

=
( )

( )
(4 18)

In case the above notation may be rather obscure, the vector products contained
can be developed as

=
1

( )
( )

1

2

+ +

+ +

In that way, the six unknowns of the problem are given by

=
( )

( )
=

( )

( )
(4 19)

As an illustration, in the particular case of choosing as propagation angles,
= 0 = 2,

=
1

2
( + )

=
1

2
( )

=

=
1

2
( + )

=
1

2
( )

=

One of the options proposed within Rudgyard's wave models is the particular
choice of the angles that satisfy the equation

= 0 (4 20)

that is, those angles that make the velocity of one of the acoustic waves vanish.
They are obtained from algebraic manipulation of (4.20) and can be expressed as

=
+ ( 1)

( 1)

=
( 1)

+ ( 1)
(4.21)
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with = representing the Froude number in this case. This technique
gives very good results in gasdynamics problems for supersonic ows but is not
directly applicable to the subsonic case. It can nevertheless be adapted for sub-
sonic (subcritical in our case) ows by replacing 1 with max( 1 ),
the tolerance taking a typical value of 0 1.

The treatment of the solution at the points on the boundaries of the domain has
been kept as close as possible to the theory of characteristics in 2D. In all cases,
the number of physical conditions to be imposed has been determined by this
theory. This number is de�ned [6] by the signs of the eigenvalues of the matrix

= + (5 1)

where the boundary normal vector is the unit vector pointing into the domain.
The eigenvalues are associated with the celerities of the waves. Hence, when
is positive, the information travels along the normal, into the domain. When it
is negative, the information goes against the normal, that is out of the domain.
The subcritical cases are the most illustrative, having, at a subcritical inlet for
instance, 0 and , so that,

= 0

= + 0

= 0

This means that there are two waves from outside and therefore, two bound-
ary conditions have to be imposed. The wave from inside produces a numerical
boundary condition. In an analogous manner, the case of a subcritical outlet
requires only one imposed external boundary condition. The information that
travels from inside the domain is determined by the compatibility relations which
can be written for arbitrary propagation directions from the 2D theory of charac-
teristics. These have been simpli�ed by assuming that the derivatives along the
direction tangential to the boundary are negligible. In the case of a material wall
boundary, a zero normal velocity is imposed and the depth as well as tangential
velocity are calculated from the compatibility conditions.

For the interior points we used the non-linear PSI advection algo-
rithm [10] for all the test cases following but obtained very similar results with
the other advection schemes. As for the wave model, the calculations correspond
to Rudgyard's decomposition having been found more robust, in general, than
the one corresponding to Roe's model D.
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With numerical schemes it is highly desirable to be able to check their predic-
tions against suitable test problems, preferably ones for which an exact solution
is available. Such is the case for the example below, computed by a �nite volume
method by Alcrudo and Garcia-Navarro [1], in which an oblique hydraulic jump
is induced by means of the interaction between a supercritical ow and a wall at
an angle . The equation for the angle formed by the shock wave, is de�ned by

=
1

2
( + 1) (5 2)

A 2400 element triangular mesh was used to reproduce the discontinuous ow in
a case where = 8 95 . The initial conditions were = 1 = 8 57 and
= 0 , that is, a uniform supercritical ow with = 2 74. Supercritical ow

boundary conditions were applied both upstream and downstream. This means
that all the variables were speci�ed in the former and all of them updated from
interior points in the latter.

The exact solution corresponding to the upstream ow and geome-
try imposed was calculated. The predicted values were = 1.5m, = 7.9556,

= 2.075 for the downstream variables and = 30 for the angle of the jump
connecting them to the given upstream conditions. As can be seen in Fig. 1, the
agreement of the numerical results with the correct solution was very good. The
angle formed by the well de�ned oblique hydraulic jump is closely reproduced as
well as the values of the ow variables on both sides of it ( = 1.5049m, =
7.9419, = 2.068) and a discontinuous water surface devoid of oscillations is
obtained.

The same degree of accuracy is achieved on the mesh with both
uctuation splitting and the TVD in �nite volume method reported in [1], but at
a higher computational cost in the case of the former technique (a factor of about
�ve). A strategy of cell movement proposed by Baines [5] can be nevertheless
exploited for the unstructured grid in order to overcome this di�culty. The
possibility of using an algorithm capable of making the cells migrate towards the
regions of steeper gradients allows the reduction of the total number of cells. A
preliminary, but encouraging, result is displayed in Figs. 2-4. Fig.2 shows the 96
element grid that has been automatically rearranged according to the evolution
towards the steady state of the ow, Fig.3. The accuracy of the result displayed
in Fig.4 is superior and the computational time has been reduced to half of that
used by the TVD method.

In order to test the performance of the multi-dimensional upwinding when in-
cluding source terms in the system of equations, a simulation of a dambreak wave
in a 2D laboratory experiment, as reported in [3], is presented. At the same time,

16

�

sin�
Fr

h

h

h

h
: :

� : h m; u : m=s
v m=s Fr :

h u
Fr �

h u
Fr

j j

j j

5.1 Oblique hydraulic jump

5.2 Unsteady ow in a converging-diverging sloping chan-

nel

s



0

2

0

x

x

and unlike in the case of the Euler equations, most practical problems involving
the shallow water equations are time-dependent, so this problem also tests the
temporal accuracy of the method. The treatment of the source terms was done
simply by calculation of the functions at the vertices of every cell, including these
values in the updating at every time level, that is, in a pointwise manner.

The channel is 21m long and 1.4m wide at it widest part. It has
a uniform bottom slope along the direction of the main ow. The rough-
ness of the surface (smooth steel-glass) is represented by a Manning's coe�cient
=0.012. Measured data of the water levels as a function of time were available

at �ve positions along the centreline of the ume. The points of measurement
are shown in Fig. 5

A dam is placed in the constriction, at = 8.5m from the ori-
gin, where the width is 0.6m. The discontinuous initial conditions consist of a
horizontal surface level on the upstream side, with a depth of 0.3m just behind
the dam, and a uniform water depth downstream. All velocities are initially set
equal to zero. The lateral and upstream boundaries are treated as closed walls.
The downstream side was treated as a supercritical boundary in the sense of not
applying any particular external boundary condition but calculating the values
of the variables from the normal updating at the vertices.

The validation of the method was done on a 672 element triangular
grid. The case of dambreak ood wave propagation over an initial water depth

=0.053m and zero bottom slope is displayed in Figs. 6-9. The results from the
calculation are plotted as a solid line and the circles represent the measured data.
The solid lines follow closely the experimental results. Apart from downstream
boundary e�ects, the wave front celerity and intensity are well reproduced by the
model, as indicated by the rising parts of the curve in Figs. 8 and 9. The good
agreement deteriorates, however, when the moving reected wave is met. The
use of a boundary condition di�erent from the weir-type is responsible for this
circumstance which is independent of the scheme used in the interior and also
happens with other numerical solutions, as reported in [9].

Dry bed initial conditions downstream of the dam corresponding
to a bottom slope = 0.01 were also tried. The set of results is plotted in Figs.
10-13. The overall quality of the results is as good as those obtained with a high
order �nite volume method [3], [9].

Two dimensional wave decomposition and multi-dimensional upwinding seem a
promising method of solution for the 2D shallow water equations. Two wave
models have been adapted to render the technique suited to hydraulic prob-
lems with shocks. As with the 1D TVD schemes, our experience with using the
multi-dimensional upwind approach for the shallow water equations has closely
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followed that of the researchers solving the Euler equations (with both the advec-
tion schemes and wave models) showing the same properties as for that system
of equations.

Although the procedure is more complicated and costly than present
day generalizations of 1D upwinding techniques it is based on a triangular dis-
cretization and, by taking advantage of the triangles, the disadvantages can be
overcome making the schemes very competitive, and the future for them then
looks much more promising. They can clearly be applied to arbitrary geome-
tries, a great advantage for hydraulic engineers working on practical problems,
and there is a wide variety of possibilities concerning grid movement and adaption.

We would like to thank Dr. Mike Baines for many useful and interesting discus-
sions during the course of this work.
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Figure 1: Map of level lines from the numerical result obtained in the 2400
elements grid

Figure 2: 96 elements initial grid used for the oblique jump test case.
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Figure 3: Above: 96 elements distorted grid used for the oblique jump test case

Figure 4: Map of level lines from the numerical result obtained in the 96 elements
distorted grid
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Figure 5: Unsteady ow through a converging diverging channel. Geometry and
points of measurement
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Figure 6: Test case =0.0, =0.3m, =0.053m. Continuous line: Predicted
values. Circles: Measured values. Section 2

Figure 7: Test case =0.0, =0.3m, =0.053m. Continuous line: Predicted
values. Circles: Measured values. Section 3
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Figure 8: Test case =0.0, =0.3m, =0.053m. Continuous line: Predicted
values. Circles: Measured values. Section 5

Figure 9: Test case =0.0, =0.3m, =0.053m. Continuous line: Predicted
values. Circles: Measured values. Section 6
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Figure 10: Test case =0.01, =0.3m, =0.0m. Continuous line: Predicted
values. Circles: Measured values. Section 2

Figure 11: Test case =0.01, =0.3m, =0.0m. Continuous line: Predicted
values. Circles: Measured values. Section 3
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Figure 12: Test case =0.01, =0.3m, =0.0m. Continuous line: Predicted
values. Circles: Measured values. Section 5

Figure 13: Test case =0.01, =0.3m, =0.0m. Continuous line: Predicted
values. Circles: Measured values. Section 6
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