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1 Introduction

Over the past ten years, multidimensional upwinding techniques have been de-
veloped with the intention of superceding traditional conservative upwind finite
volume methods which rely on the solution of one-dimensional Riemann prob-
lems. The new methods attempt a more genuinely multidimensional approach to
the solution of the Euler equations by considering a piecewise linear continuous
representation of the flow with the data stored at the nodes of the grid. The
schemes are then constructed from three separate components: a wave decom-
position model, a conservative linearisation and a scalar fluctuation distribution
scheme. A detailed description of these can be found in [1, 2] while some more
recent developments are presented in these proceedings [3].

The quality of the solution of a system of differential equations can be im-
proved by means of grid adaptation. For example, multidimensional upwind
schemes can capture shocks within two or three cells when they are aligned with
the grid and adaptation can be used to take advantage of this. On unstructured
grids this can be accomplished by refinement, which increases the density of the
nodes, and by edge swapping, which realigns the grid. However, both selective
refinement and edge alignment can, to a large extent, be achieved by a third op-
tion, grid movement, which has the added advantage of avoiding the expensive
process of changing the number of nodes or the connectivity of the grid.

In this paper a very simple and cheap algorithm for moving nodes is pre-
sented, which improves the accuracy of two-dimensional steady state solutions
of the Euler equations obtained using multidimensional upwinding methods on
unstructured triangular grids.

2 Multidimensional upwinding

2.1 Wave decomposition models

A wave decomposition model is a device used to split a system of equations
into scalar components (or waves). The two-dimensional Euler equations in
conservative form are written

ut + Fx + Gy = 0, (2.1)

where u is the vector of conservative variables and F, G are the corresponding
flux vectors. The wave model dictates how the flux balance within each triangle
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of the grid, namely

Φ = −

∫ ∫

△

(Fx + Gy) dx dy, (2.2)

is divided into simpler components. Each ‘wave’ is the solution of a scalar advec-
tion equation, so the flux balance can be written as a sum of scalar components,

Φ =

N
∑

k=1

φkrk, (2.3)

where φk is the fluctuation (or strength) of the kth wave and rk is the vector
which maps the contribution of this wave back to the conservative variables,
while N is the number of active waves in the decomposition.

Unlike in one dimension where a unique decomposition is available, many
different wave models have been proposed for the two-dimensional Euler equa-
tions [2]. These can be divided into groups: some decompose the flux balance
into contributions corresponding to simple wave solutions of the Euler equations,
while others use a transformation of the system of equations into ‘characteristic’
variables. More recently, wave models have been produced which are based on a
preconditioned form of the Euler equations [3]. However, the results presented in
this paper have been produced using Rudgyard’s Mach angle splitting [4]. This
is not ideal since it consists of more than four active waves. Therefore the prop-
erty of linearity preservation is lost and the method is not truly second order
accurate, but it has proved to be very robust on distorted grids.

2.2 Conservative linearisation

All of the above wave models are based on analysis of a quasilinear form of the
Euler equations,

ut + A(u)ux + B(u)uy = 0, (2.4)

where A(u) and B(u) are flux Jacobian matrices. In order to guarantee that
any discretisation involving such a decomposition will give rise to a conservative
scheme, a conservative linearisation is necessary.

An appropriate and very neat linearisation may be obtained [5] by assuming
that Roe’s parameter vector variables,

z = ρ1/2(1, u, v, H)T , (2.5)

vary linearly within each cell.

2.3 Scalar fluctuation distribution schemes

The wave model decomposes the system of equations into scalar components,
equation (2.3), the behaviour of which can be modelled by the scalar advection
equation,

ut + ~∇ · ~f = 0 or ut + ~λ · ~∇u = 0, (2.6)

where ~λ = ~fu defines the velocity of the advected variable u.
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Fluctuation distribution schemes can be constructed for the solution of this
equation. The fluctuation

φ = −

∫ ∫

△

~λ · ~∇u dx dy = −V△
~λ · ~∇u (2.7)

is calculated within each cell and then distributed to the nodes of the grid, giving
rise to a form of cell-vertex scheme. The integration, which can be done exactly
because u is assumed to be linear within the cell, introduces a factor of V△,

the area of the triangle, and a cell-averaged wave speed, ~λ. For simplicity and
compactness, a cell is allowed to contribute its fluctuation only to its own vertices.
Conservation is assured as long as the whole of the fluctuation is distributed.

If explicit forward Euler time-stepping is used, this leads to a scheme of the
form

un+1

i = un
i +

∆t

Vi

N
∑

j=1

αijφj , (2.8)

where Vi is the area of the median dual cell for node i, αij is the distribution
coefficient which indicates the proportion of the fluctuation φj to be sent from
cell j to node i, and the sum is over the cells adjacent to node i. Since each
fluctuation is a linear function of the data, the scheme is of the form

un+1

i =
∑

k

cikun
k . (2.9)

If the coefficients cik are now allowed to depend on the data, the scheme becomes
nonlinear and can be designed to satisfy the following four criteria:

• Upwind - the fluctuation within a cell is only sent to the downstream
vertices of that cell.

• Positive - the coefficients cik are positive, so the scheme cannot produce
new extrema in the solution at the new time-step, spurious oscillations
will not appear in the solution and the scheme is stable for an appropriate
time-step restriction.

• Linearity preservation - no update is sent to the nodes when a cell fluctua-
tion is zero, so the scheme is second order at the steady state on a regular
mesh with a uniform choice of diagonals.

• Continuity - the contributions to the nodes depend continuously on the
data, avoiding limit cycling as convergence is approached.

In this paper the PSI scheme [1], which satisfies all the above criteria, has been
used throughout.
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3 Grid adaptation

The adaptation algorithm used in this work is a very simple form of node move-
ment. It takes the form of an iteration where, at each step, nodes are moved to
a weighted average of the positions of the centroids of the neighbouring triangles
[6, 7]. The new nodal position can thus be written as

~xnew
n =

∑N
i=1

wi~xi
∑N

i=1
wi

(3.1)

where the ~xi are the positions of the centroids, wi are the cell weights and i runs
over the cells adjacent to node n.

The weights here are chosen to depend on local approximations to the first
and second derivatives of the density of the flow,

w = V△

(

1 + α|~∇ρ|2 + β(~∇2ρ)2
)1/2

, (3.2)

where α and β are arbitrary parameters and V△ is the area of the triangle.
The choice of α = 1 and β = 0 gives a simple generalisation of the weights
which lead to arc length equidistribution in one dimension. Although there is
no corresponding equidistribution property in two dimensions, the algorithm
will still tend to move nodes towards regions where the weights are high. In
the above case this means regions of high first and/or second derivatives, such
as those found at shocks, but the weights can be modified so that nodes are
attracted towards any detectable feature of the flow. The algorithm can also be
easily generalised to three dimensions.

In one dimension mesh tangling can be avoided by ensuring that the chosen
weights are always positive. In higher dimensions though, particularly on the
highly distorted grids which become common once the mesh is allowed to move,
tangling occurs quite readily. Even with positive weights in 3.1, it is possible for
a node at the vertex of a triangle to be overtaken by the opposite edge of that
triangle, thus causing the cell to ‘flip’ and acquire a negative area. This can be
avoided by artificially limiting the distance which a node can move. A simple
but rather restrictive limit is

(∆x)max = min
i

(

Ai

maxj=1,3 lij

)

(3.3)

where i indexes the cells surrounding the node, Ai is the area of cell i and lij is
the length of edge j of cell i. This expression is equivalent to half the smallest
height of the surrounding triangles. A second restriction is also imposed which
places a lower limit on the radius of the inscribed circle of each cell. This avoids
extremely distorted meshes and the possibility of a prohibitively small limit on
the time-step.

Using this strategy, a displacement can be found for all nodes, including
boundary nodes but the latter must be projected back on to the nearest point
on the boundary and ‘corner’ nodes forced to remain fixed.
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Once all the displacements have been found, the nodal positions are updated
in a block. The solution is then obtained on the new grid using linear interpola-
tion of the solution on the previous grid.

4 Solution strategy

The method by which node movement is combined with multidimensional up-
winding to obtain steady state solutions to the two-dimensional Euler equations
can be expressed in three stages:

1) Run the time-stepping algorithm on an initial, fixed grid until the solution
appears steady (but long before convergence is achieved).

2) Run the time-stepping interspersed with the grid movement until the grid
has adapted to the steady solution. In this work, each time-step is alter-
nated with a single node movement iteration.

3) Fix the grid and run the time-stepping algorithm to convergence using the
solution from step 2) as initial conditions.

The grid movement in step 2) can be initiated when the RMS of the resid-
ual over the grid drops below a certain level (typically a drop of 2 or 3 orders
of magnitude from the initial residual), effectively when the flow has stopped
changing.

It is unlikely that the combination of time-stepping and grid movement will
lead to a converged solution if allowed to run indefinitely, and it would be im-
practical to attempt this. Also, this stage of the method is not, as it stands,
conservative due to the interpolation step of the grid movement. However, since
steady state solutions are sought, the grid can be frozen after a fixed number
of time-steps (500 in this case) after which the solution strategy returns solely
to the conservative time-stepping scheme. Local time-stepping has been used
throughout to accelerate convergence, particularly on the more distorted meshes.

5 Results

Results are shown for the steady state solution to the Euler equations in a walled
channel of unit height and length three with a circular arc bump on the lower
surface which is 4% of the height of the channel. The flow is mainly supersonic
with M∞ = 1.4. Figure 1 shows the local Mach number contours of the converged
solution obtained on a fixed isotropic grid, created by dividing the domain into
64×32 evenly spaced quadrilaterals and then inserting diagonals which alternate
in direction from one cell to the next.

The adaptive algorithm is then used, with this as the initial grid, and the
resulting solution and grid are shown in Figures 2 and 3. This adapted converged
solution took only 30% more cpu time to produce than that on the fixed grid.
The weight parameters were chosen to be α = 1.0 and β = 0.01 so the emphasis
has been placed on adapting to the gradient of the density rather than the second
derivative.
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Figure 1. Local Mach number contours on the fixed isotropic grid, with

Mmin = 0.9467, Mmax = 1.6719

Figure 2. Local Mach number contours on the adapted grid, with Mmin = 0.8413,

Mmax = 1.6681



M.E.Hubbard & M.J.Baines 7

There is a marked improvement in the capturing of all the shocks, and the
solution just behind the shock reflection on the upper wall where the minimum
of the local Mach number occurs is much better. This was not the case when
the second derivative was missing from the weights. It is only where the shocks
interact in a more complicated manner, just behind the bump, and nodes ‘lock’
that the improvement is less significant. It is obvious that some form of mesh
refinement is needed to improve the solution further.

6 Conclusions

A very simple and cheap node movement algorithm has been used in conjunction
with multidimensional upwind schemes to improve the accuracy of steady state
solutions to the two-dimensional Euler equations. The strategy has proved to be
robust, and converged solutions have been obtained on all but the most highly
distorted grids for a very small increase in the overall cost.

Even so, for some flows node movement is not enough and some form of grid
refinement is necessary to obtain highly accurate solutions. This is particularly
true where node locking prevents nodes from moving in the desired direction.
The best choices for the values of α and β, and the actual variable used to
monitor the adaptation, are also unclear, and may vary depending on the flow.
Finally, no measure of grid quality has been used here and indeed it is not clear
what should be used since the improved solutions are obtained on grids which
are much poorer in quality by any of the conventional criteria.
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