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AbstractIn recent years upwind di�erencing has gained acceptance as a ro-bust and accurate technique for the numerical approximation of the one-dimensional shallow water equations. In two dimensions the bene�ts havebeen less marked due to the reliance of the methods on standard oper-ator splitting techniques. Two conservative genuinely multidimensionalupwind schemes are presented which have been adapted from ux balancedistribution methods recently proposed for the approximation of steadystate solutions of the Euler equations on unstructured triangular grids. Amethod for dealing with source terms, such as those introduced by mod-elling bed slope and friction, is also suggested and results are presented fortwo-dimensional steady state channel ows to illustrate the accuracy androbustness of the new algorithms.
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1 IntroductionIn recent years, many advances have been made in the numerical solution ofhyperbolic systems of conservation laws in one and more dimensions [14, 12, 1].Of particular interest has been the prediction of discontinuous solutions to theequations, which can occur when the system is nonlinear.In the case of the numerical solution of the shallow water equations traditionalmethods, such as those of Preissmann, Abbott [5] and McCormack [9] rely on cen-tral di�erencing and are well known to require special treatment before a realisticnumerical approximation of discontinuous ows can be obtained. More recently,the concept of upwinding has been adopted from the �eld of gas dynamics for themodelling of shallow water ows [11, 3]. This has proved to be highly successful,particularly in one dimension, in which high order upwind schemes have beenconstructed which capture discontinuities sharply and smoothly. This is achievedwithout the addition of arti�cial viscosity which is normally required to stabilisecentral di�erence schemes in the vicinity of high ow gradients. Furthermore, theupwind discretisation arises naturally from the physical interpretation of hyper-bolic systems of equations, also giving a framework in which boundary conditionscan be applied easily. The upwinding approach is therefore ideal for the modellingof transcritical and supercritical ows.The practical advantages of upwind schemes in higher dimensions are lessclear. Historically, they have been applied to the two-dimensional shallow waterequations via the use of standard operator splitting techniques, e.g. [3], whichby implication involves the application of one-dimensional methods to a multi-dimensional system of equations, albeit in two independent directions. Recently4



though, multidimensional upwind schemes have been developed for the numericalsolution of the Euler equations of gas dynamics [24, 18, 21, 16] which can equallywell be applied to the shallow water equations. These schemes are conservative,upwind, cell-vertex �nite volumemethods based on the concept of uctuation dis-tribution [20] and are applied on unstructured triangular grids. They di�er frommost standard �nite volume schemes in that the underlying representation of theow is not piecewise constant within each grid cell, as is usual, but continuouspiecewise linear with the unknowns stored at the nodes of the grid, more akin toa standard �nite element approximation. The resulting schemes are designed tomimic the evolution of the approximate solution within each triangular grid cell,whereas previous upwind methods concentrated on the Riemann problems aris-ing at the discontinuities in the approximation (e.g. at cell edges), an inherentlyone-dimensional process.Multidimensional upwind schemes are constructed from three distinct ele-ments: a consistent, conservative linearisation of the system of equations, thedecomposition of the resulting discrete system into simple (mainly scalar) com-ponents, and the subsequent evolution of the decomposed system using scalarand matrix uctuation distribution schemes. In this paper attention is focussedon the linearisation and decomposition stages of the algorithm, both of which d-i�er slightly from those devised for the Euler equations [18, 16]. The distributionof the components is also described but this step remains unchanged from thesolution of other systems and further details can be found in [8].Multidimensional upwind schemes for the solution of the shallow water equa-tions have already appeared in [10, 17] but those schemes were not conservative.5



In this paper a conservative formulation is presented, together with two alterna-tive decompositions of the system of shallow water equations and a method ofincorporating source terms such as those arising from the consideration of bedslope and friction. Results are presented to illustrate the quality of the numericalsolutions obtained for steady state problems.2 The Governing EquationsThe shallow water equations can be used to describe the motion of `shallow' free-surface ows subject to gravitational forces. The system can be obtained from thedepth-averaged Navier-Stokes equations and the resulting homogeneous systemrepresents the conservation of mass and momentum in the ow. The structure ofthe system is very similar to that of the Euler equations. The e�ects of bed slopeand friction on the ow are modelled by the inclusion of source terms on the righthand side of the system which modify the momentum conservation equations.In conservation form the unsteady shallow water equations [5], which are usedfor the construction of multidimensional upwind schemes even when steady statesolutions are sought, are given byUt + Fx +Gy = q ; (2:1)in which U = 0BBBBBBBB@ hhuhv 1CCCCCCCCA (2:2)6



are the conservative variables and the corresponding ux vectors areF = 0BBBBBBBB@ huhu2 + gh22huv 1CCCCCCCCA and G = 0BBBBBBBB@ hvhuvhv2 + gh22 1CCCCCCCCA : (2:3)The source terms can be writtenq = 0BBBBBBBB@ 0gh(sbx � sfx)gh(sby � sfy) 1CCCCCCCCA ; (2:4)where the bed slope terms are de�ned bysbx = �@z@x and sby = �@z@y ; (2:5)in which z is the height of the bed above some nominal zero level, and the frictionslopes are given by Manning's formula,sfx = n2upu2 + v2h 43 ; sfy = n2vpu2 + v2h 43 ; (2:6)in which n is Manning's roughness coe�cient.The quasilinear form of the system (2.1) will also be required later. This isgiven by the equations Ut +AUUx +BUUy = q ; (2:7)where the conservative ux Jacobians areAU = @F@U = 0BBBBBBBB@ 0 1 0�u2 + c2 2u 0�uv v u 1CCCCCCCCA (2:8)7



and BU = @G@U = 0BBBBBBBB@ 0 0 1�uv v u�v2 + c2 0 2v 1CCCCCCCCA ; (2:9)in which c = pgh is the gravity wave speed or wave celerity. Further detailsabout the mathematical aspects of the shallow water equations can be found in[23].3 A Conservative LinearisationAn appropriate linearisation of the shallow water equations is required so that thedecomposition and distribution stages of the algorithm give rise to a conservativescheme. Many di�erent conservative linearisations have been constructed for theEuler equations, see for example [7, 2], but it is the most robust of these, based onRoe's one-dimensional linearisation using a set of parameter vector variables [19],which is generally used for practical calculations. This linearisation is adaptedhere to give an analogous discrete form of the shallow water equations.Consider the two-dimensional homogeneous system,Ut + Fx +Gy = 0 ; (3:1)in which the conservative variables U and uxes F, G are given by (2.2) and (2.3)respectively. For a given cell in a triangular discretisation of the computationaldomain the ux balance is de�ned by�U = � Z Z4 �Fx +Gy� dxdy= I@4(F ; G) � d~n ; (3.2)8



in which d~n represents the inward pointing normal to the cell boundary. Thenumerical approximation to �U is de�ned to be of the formd�U = �S4 �cFx + cGy�= �S4 �dAU cUx + dBU cUy� ; (3.3)where S4 is the cell area and b indicates a discretised quantity. The precisede�nition of the discrete form of the ux balance will be described below.Multidimensional upwind schemes update ow variables stored at the nodesof the grid via the distribution of the discrete form of the ux balance, d�U of(3.3), within each cell. Conservation requires that the overall contribution to thenodes depends only on boundary conditions, so for a linearisation such as thatrepresented by (3.3) to be conservative the sum over the whole ow domain of thed�U should reduce to boundary contributions alone. It follows immediately from(3.2) that a linearisation is conservative if d�U = �U for each grid cell, and theresulting scheme is conservative as long as the whole of each discrete ux balanceis distributed to the nodes of the grid.In keeping with the linearisation of the Euler equations, the discrete uxJacobians in (3.3) are sought in a form which allows d�U to be readily decomposedby the methods described in Section 4 below, i.e. the Jacobians are evaluatedconsistently from some cell-average state, Z say, so thatdAU =  @F@U!Z and dBU =  @G@U!Z : (3:4)The construction of a conservative linearisation of this form is aided considerably9



by assuming that the components of the parameter vectorZ = ph0BBBBBBBB@ 1uv 1CCCCCCCCA (3:5)vary linearly in space within each cell, cf. Roe's parameter vector for the Eulerequations [19]. A consequence is that ~rZ is locally constant and so the conser-vative ux balance can be written as�U = � Z Z4 �Fx +Gy� dxdy= � Z Z4 @F@Z dxdy!Zx �  Z Z4 @G@Z dxdy!Zy ; (3.6)in which @F@Z = 0BBBBBBBB@ phu ph 02g(ph)3 2phu 00 phv phu 1CCCCCCCCA (3:7)and @G@Z = 0BBBBBBBB@ phv 0 ph0 phv phu2g(ph)3 0 2phv 1CCCCCCCCA : (3:8)Note that only two entries in the above Jacobian matrices - the (2,1) entry in @F@Zand the (3,1) entry in @G@Z - are not linear in the components of the parametervector Z.In the case of the Euler equations it is possible to choose Z so that each entryin the corresponding Jacobian matrices is a linear function of its components[19]. Hence, the integrals in (3.6) can be evaluated exactly in terms of a singlecell-averaged value of Z and this leads to a conservative linearisation satisfying10



(3.4) [7]. The nonlinear terms in (3.7) and (3.8) mean that the linearisation ofthe shallow water equations cannot be constructed in precisely the same manner.In previous work [10, 17] non-conservative linearisations have been used, in whichthe ux balance (3.3) is evaluated consistently from an appropriate average state,but in the present work a conservative form is sought.A conservative linearisation of the shallow water equations is achieved byevaluating the integrals in (3.6) exactly. This does not immediately give rise tolinearised ux Jacobians of the form (3.4), so instead a component of (3.6) isisolated which does have this form and which therefore can be decomposed usingthe second stage of the algorithm, described in Section 4. Hence the numericalux balance (3.3) is split into two parts, taking the formd�U = � S4  @F@Z Zx + @G@Z Zy!| {z }(1) � S4 �SZ Zx +TZ Zy�| {z }(2) : (3:9)The overbar indicates the consistent evaluation of a quantity solely from thecell-average state given by Z = 13 3Xi=1 Zi ; (3:10)as well as the corresponding discrete gradient (evaluated under the assumptionof linearly varying Z) ~rZ = 12S4 3Xi=1 Zi ~ni ; (3:11)in which Zi are the values of the parameter vector variables at the vertices of thecell and ~ni is the inward pointing normal to the edge opposite vertex i scaled bythe length of that edge.The ux balance (3.9) can also be written simply in terms of the conservative11



variables since @U@Z = 0BBBBBBBB@ 2ph 0 0phu ph 0phv 0 ph 1CCCCCCCCA (3:12)is linear in the components of Z. It then follows that the discrete gradient of theconservative variables can be written~rU = 1S4 Z Z4 @U@Z ~rZ dxdy= @U@Z ~rZ (3.13)and that, from (3.9), the discrete conservative ux balance (3.3) is given byd�U = �S4  @F@U Ux + @G@U Uy!� S4 �SUUx +TUUy�= �U + qU (3.14)in which qU = �S4 �SUUx +TUUy� : (3:15)Thus, the two components of the ux balance (3.9) reveal themselves to be (1)�U evaluated at the cell-average state (3.10) and (2) a small `source' term qU.The source term arising from the linearisation above can be evaluated quicklysince the `Jacobians' are the simple sparse matricesSU = @Z@U SZ = g�ph 0BBBBBBBB@ 0 0 01 0 00 0 0 1CCCCCCCCA (3:16)and TU = @Z@U TZ = g�ph 0BBBBBBBB@ 0 0 00 0 01 0 0 1CCCCCCCCA ; (3:17)12



where � = 1S4 Z Z4 �ph�3 dxdy � �ph�3 : (3:18)These are derived from the di�erence between integrating (3.6) exactly and ap-proximating it using a one point quadrature rule. The size of the source qU istherefore negligible in smooth ow but may have an e�ect at discontinuities.In the following section the decomposition of �U in (3.14) is described. Sourceterms arising from both the linearisation and the consideration of bed slope andfriction are considered separately in Section 6.4 Two Optimal DecompositionsThe decomposition stage of the algorithm dictates how the �rst component ofthe ux balance, �U of (3.14), within each triangle of the grid is divided up intosimple elements. In one dimension a complete decoupling of the system into scalarcomponents is uniquely available through the transformation of the equations intocharacteristic variables, but in higher dimensions there are many possible waysto decompose the system.The most successful decompositions of the Euler equations utilise a precon-ditioned form of the equations. Two preconditioners have been developed in theliterature [18, 16], both of which are generalisations of the van Leer-Lee-Roe ma-trix of [25]. This was originally constructed to reduce the condition number ofthe system and accelerate convergence of the numerical algorithm to the steadystate but here it is used to facilitate the construction of an optimal decompositionof the system in the sense that the equations of the decomposition are maximal-13



ly decoupled. The corresponding analysis of the shallow water equations closelyfollows that of [18, 16, 25] and the resulting preconditioners are described here.For the sake of simplifying the algebra, the homogeneous part of the sys-tem (2.1) is considered in terms of the streamwise variables, � and �, and thesymmetrising variables Q, de�ned by@Q = 0BBBBBBBB@ ch @h@qq @� 1CCCCCCCCA ; (4:1)where q = pu2 + v2 is the speed of the ow and � = tan�1 � vu� its direction. Thesymmetrised form of the shallow water equations are now preconditioned by amatrix P, and the resulting system written in the formQt +P �ASQQ� +BSQQ�� = 0 ; (4:2)in which the new Jacobians are the simple symmetric matricesASQ = 0BBBBBBBB@ q c 0c q 00 0 q 1CCCCCCCCA and BSQ = 0BBBBBBBB@ 0 0 c0 0 0c 0 0 1CCCCCCCCA : (4:3)The superscript (and later subscript) S indicates that the streamwise coordinatesystem is being used.
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4.1 Decomposition 1 (HELW)Following the analysis of Mesaros and Roe for the Euler equations [16], the �rstpreconditioning matrix suggested here is given byP = 1q 0BBBBBBBB@ "F 2�� � "F�� 0� "F�� "�� + " 00 0 �� 1CCCCCCCCA ; (4:4)where F = qc is the local Froude number of the ow,� = qjF 2� 1j ; � = max(F; 1) (4:5)and " is a function of the Froude number such that "(0) = 12 and "(F ) = 1 forF � 1. These restrictions on " ensure that the decomposition is not sensitiveto the ow angle in the limit as F ! 0 [26] and that the transition of thepreconditioner through the transcritical region is smooth. Here, as in [26] " istaken to be the C1 function"(F ) = 8>>>>>>>><>>>>>>>>: 12 for F � 13�27F 3 + 812 F 2 � 18F + 3 for 13 < F < 231 for F � 23 (4:6)so that the �rst derivative also varies smoothly. The matrix P in (4.4) is, in fact,precisely that of [26] with the Mach number replaced by the Froude number andwithout the involvement of the entropy equation. The variable � has simply beenintroduced so that (4.4) is correct for both subcritical and supercritical ow.The preconditioned system (4.2) is decomposed by transforming it into a setof characteristic equations,Wt +ASWW� +BSWW� = 0 ; (4:7)15



where the characteristic variables W are de�ned by@Wsb = 0BBBBBBBB@ g�q @hq @�gc @h+ F @q 1CCCCCCCCA and @Wsp = 0BBBBBBBB@ g�c @h+ Fq @�g�c @h� Fq @�gc @h+ F @q 1CCCCCCCCA ; (4:8)for subcritical and supercritical ow respectively. The corresponding transforma-tion matrices are given by@Wsb@Q = 0BBBBBBBB@ �F 0 00 0 11 F 0 1CCCCCCCCA and @Wsp@Q = 0BBBBBBBB@ � 0 F� 0 �F1 F 0 1CCCCCCCCA (4:9)and their inverses, and the resulting characteristic ux Jacobian matrices can becalculated easily usingASW = @W@Q PASQ @Q@W and BSW = @W@QPBSQ @Q@W (4:10)for both subcritical and supercritical ows.Note that the choice of variables given by (4.8) changes across the transcriticalregion. When the ow is supercritical the steady equations are hyperbolic andthe choice of variables de�ned by @Wsp in (4.8) uniquely leads to the systembeing completely decoupled into scalar components. However, in the subcriticalcase only one equation can be decoupled, leaving a second component whichmanifests itself as a 2 � 2 elliptic subsystem, the form of which depends on thechoice of characteristic variables, de�ned here by @Wsb in (4.8). The shallowwater equations cannot be decoupled further in subcritical ow.The complete decoupling of the equations in supercritical ow allows the sys-16



tem (4.7) to be written in the form of three scalar advection equations, i.e.Wkt + ~�kS � ~rSWk = 0 ; k = 1; 2; 3; (4:11)in which the advection velocities in the streamwise coordinate system are~�1S = 0BBB@ �F1F 1CCCAS ; ~�2S = 0BBB@ �F� 1F 1CCCAS and ~�3S = 0BBB@ 10 1CCCAS : (4:12)Hence the �rst component of the ux balance in (3.14) takes the form�U = �S4 3Xk=1 �~�kS � ~rSWk� rkU ; (4:13)where every term on the right hand side of (4.13) is evaluated consistently fromthe cell-average state de�ned by (3.10) and (3.11), and rkU is the kth column ofthe matrix RU = @U@Q P�1 @Q@W : (4:14)This matrix transforms the components of the ux balance corresponding to thecharacteristic equations back into components of the conservative ux balance.Hence (4.13) represents a consistent decomposition of �U of (3.14), the compo-nents of which may each be distributed using a simple scalar scheme such as thatdescribed in Section 5.1 below.In the case of subcritical ow the choice of characteristic variables de�ned by@Wsb in (4.8) leads to Jacobian matrices in the system (4.7) given byASW = 0BBBBBBBB@ �"� 0 00 � 00 0 " 1CCCCCCCCA and BSW = 0BBBBBBBB@ 0 " 01 0 00 0 0 1CCCCCCCCA : (4:15)17



Hence the characteristic equations take the form of a single scalar advectionequation, which is precisely the same as the k = 3 equation de�ned by (4.11) and(4.12), together with a 2� 2 elliptic subsystem, so �U of (3.14) is written�U = �S4 � r1U; r2U � 2666640BBB@ �"� 00 � 1CCCA0BBB@ W1W2 1CCCA� + 0BBB@ 0 "1 0 1CCCA0BBB@ W1W2 1CCCA�377775�S4 �~�3S � ~rSW3� r3U ; (4.16)cf. the supercritical decomposition (4.13). The scalar component is treated as itwas in the supercritical case but the elliptic nature of the second term suggeststhat an alternative to the upwind distribution scheme of Section 5.1 should besought. Consequently the central distribution scheme proposed in [16], whichinvolves no further decomposition of the elliptic component, is used and this isdescribed in Section 5.2. Note though, that the choice results in a discontinuity inthe distribution at the transcritical line and a loss of positivity in the subcriticalregion, both of which are detrimental to the robustness of the scheme. Thisscheme will be denoted `HELW' due to the Hyperbolic/Elliptic nature of thesubcritical decomposition and the Lax-Wendro� style distribution of the resultingelliptic component.4.2 Decomposition 2 (HESUPG)Another preconditioner which leads to a maximal decoupling of the shallow waterequations corresponds to that developed by Paill�ere et al. for the Euler equations18



[18] and takes the form P = 1q 0BBBBBBBB@ �F 2��2 � �F��2 0� �F��2 ���2 + 1 00 0 � 1CCCCCCCCA ; (4:17)where �� = qmax ( �2; jF 2 � 1j ) ; � = ��max(F; 1) (4:18)and � is a nonzero constant which typically takes a value of 0.05. This matrixis again derived by following the analysis of the Euler equations [25], the resultbeing that the Mach number is replaced by the Froude number and the entropyequation disappears.The decoupling of the system proceeds as in the previous decomposition, lead-ing to a set of characteristic equations (4.7) in new variables W, now de�ned by@W = 0BBBBBBBB@ g��c @h+ Fq @�g��c @h� Fq @�gc @h+ F @q 1CCCCCCCCA ; (4:19)independent of the ow speed, cf. (4.8). The corresponding transformation matrixis given by @Wsp@Q in (4.9).The di�erence between the two decompositions lies in the treatment of thesystem for subcritical and transcritical ows (F 2 � 1 + �2). The decision to keepthe same characteristic variables in both subcritical and supercritical ow leadsto Jacobian matrices in the transformed system (4.7) which are given byASW = 0BBBBBBBB@ ��+ ��� 0��� ��+ 00 0 1 1CCCCCCCCA and BSW = 0BBBBBBBB@ ��� 0 00 � ��� 00 0 0 1CCCCCCCCA ; (4:20)19



where �+ = F 2 � 1 + ��22��2 and �� = F 2 � 1� ��22��2 : (4:21)It is easy to see that in the supercritical region �� = 0, the system is complete-ly decoupled, and the decomposition (and subsequent distribution) reduces toprecisely that given for supercritical ow in Section 4.1.In the subcritical case the system is again decomposed into a single, indepen-dent scalar component and a pair of coupled equations, but rather than regardingthe latter as a 2 � 2 subsystem it is instead treated as in [18], as two separatescalar equations with source terms. As a consequence, the decomposition of �Uof (3.14) takes the form�U = �S4 3Xk=1 �~�kS � ~rSWk + qkS� rkU ; (4:22)in which rkU is the kth column of the matrix RU (4.14), newly de�ned from the Pof (4.17) and the W of (4.19),~�1S = 0BBB@ ��+��� 1CCCAS ; ~�2S = 0BBB@ ��+� ��� 1CCCAS and ~�3S = 0BBB@ 10 1CCCAS ; (4:23)and q1S = ���W2� ; q2S = ���W1� and q3S = 0 : (4:24)The distribution of the decoupled component of this second decomposition isonce again carried out using the scalar upwind scheme of Section 5.1 below. Itis possible to use the same method for the coupled components, with an appro-priate modi�cation (described in Section 5.2) to ensure that the scheme remainslinearity preserving [18] in the presence of source terms. However positivity islost as a consequence, so when the Froude number is close to unity and the ad-vection velocities associated with each component of the nonlinear system are20



very closely aligned, the distribution provides very little cross-stream di�usionand as a result lacks robustness. The actual scalar scheme used here is the SUPGscheme suggested in [18] and described at the end of Section 5.2. As in Section4.1 the favoured distribution of the ux balance is discontinuous for transcriticalows. This approach will be denoted `HESUPG' due to the Hyperbolic/Ellipticsubcritical decomposition and the distribution of the elliptic component using anSUPG-type scheme.5 Flux Balance Distribution5.1 Distribution of Decoupled Scalar ComponentsEach homogeneous scalar component which results from the above decompositioncan be modelled by an advection equation,ut + fx + gy = 0 or ut + ~� � ~ru = 0 ; (5:1)where ~� = �@f@u ; @g@u�T de�nes the advection velocity.Multidimensional upwinding for the numerical solution of the scalar equation(5.1) involves the construction of a time-stepping scheme which calculates theuctuation, � = � Z Z4 ~� � ~ru dxdy= I@4 u~� � d~n ; (5.2)within each cell and updates the solution at each time level by adding fractionsof this quantity to the nodal values of u (see [8]). In (5.2) @4 is the boundary ofthe cell and d~n represents the inward pointing normal to the boundary. Steady21



state solutions of (5.1) are calculated by repeating this update iteratively in orderto approximate the solution in the limit as t!1.The vector ~� in (5.2) may not be constant, in which case a conservativelinearisation of the scalar advection equation (5.1) can often be constructed bytreating it as a special case of the system linearisation discussed in Section 3 [8].A conservative linearisation of this form can be constructed if a variable, z say,can be de�ned so that when z varies linearly in space the derivatives @u@z , @f@z and@g@z can all be integrated exactly over any triangle by quadrature.Assuming such a z exists and does vary linearly in space within each cell, thediscrete uctuation in a cell can be writtenb� = �S4 b~� �d~ru ; (5:3)cf. the discrete ux balance in (3.3) and the decomposition of (4.13). The discretegradient is de�ned to be d~ru = 1S4 Z Z4 @u@z dxdy ~rz ; (5:4)where ~rz is evaluated exactly as in (3.11), so that the linearised advection velocityb~� is de�ned by b~� = R R4 @ ~f@z dxdyR R4 @u@z dxdy ; (5:5)in which ~f = (f; g)T. The most important consequence of choosing z to have theabove properties is that d~ru and b~� can be calculated exactly, so b� = � and thelinearisation is conservative.The distribution of the discrete uctuation of (5.3) to the grid nodes combinedwith an explicit forward Euler discretisation of the time derivative in (5.1) leads22



to a nodal update of the formun+1i = uni + �tSi X[4i �ji�j ; (5:6)where Si is the area of the median dual cell for node i (one third of the totalarea of the triangles with a vertex at i), �ji is the distribution coe�cient whichindicates the proportion of the uctuation �j to be sent from cell j to node i, and[4i represents the set of cells with vertices at node i. It can be seen from thesecond expression for � in (5.2) that the sum of the uctuations over the whole ofthe grid reduces through internal cancellation to boundary contributions alone.Therefore a nodal update of the form (5.6) leads to a conservative scheme as longas the whole of each uctuation is distributed to the grid nodes, i.e.Xi �ji = 1 8j : (5:7)For the sake of simplicity and compactness, a cell is only allowed to contributea proportion of its uctuation to its own vertices. The distribution coe�cients�ji are chosen so that the resulting scheme has the following four properties:� Upwindedness - the uctuation within a cell is only sent to the downstreamvertices of that cell, i.e. vertices opposite inow edges for which b~� � ~n > 0,where ~n is the inward pointing normal to the edge.� Positivity - every nodal value of u at the new time level in (5.6) is a con-vex combination of nodal values of u at the old time level, so the schemecannot produce new extrema in the solution at the new time-step, spuriousoscillations do not appear in the solution and the scheme is stable for anappropriate time-step restriction.23



� Linearity preservation - the exact steady state solution is preserved whenthis varies linearly in space, so no update is sent to the nodes when a celluctuation is zero and the scheme is second order accurate at the steadystate on a regular mesh with a uniform choice of diagonals [8].� Continuity - the contributions to the nodes, �ji�j (5.6), depend continu-ously on the data, avoiding limit cycling as convergence is approached andimproving the robustness of the scheme.Linearity preservation should also be satis�ed by the decomposition, so that noupdate is sent to the vertices of a cell when its ux balance is zero and the higherorder accuracy possessed by the linearity preserving scalar scheme is retained bythe overall algorithm. The property is obviously satis�ed by the two decompo-sitions described here because the columns of the matrix RU (4.14) are linearlyindependent.A simple distribution scheme with all of the above properties is the so-calledPSI scheme [8]. It is most easily described by considering a single triangularcell in isolation. If, according to the linearised advection velocity, b~� of (5.5), thetriangle has a single downstream vertex, at node i say, then that node receivesthe whole uctuation, so un+1i = uni + �tSi b� ; (5:8)while the values of u at the other two vertices remain unchanged. In the caseof a triangle with two downstream vertices, at nodes i and j for example, theuctuation is divided between these two nodes. The update due to this cell's24



uctuation can therefore be writtenun+1i = uni + �tSi ��i ;un+1j = unj + �tSj ��j ; (5.9)where ��i + ��j = b� for conservation. In the PSI scheme [22]��i = �i � L(�i;��j)��j = �j � L(�j;��i) ; (5.10)where �i = �12 b~� � ~ni (uni � unk) ; �j = �12 b~� � ~nj (unj � unk) ; (5:11)and L denotes the minmod limiter function,L(x; y) = 12(1 + sgn(xy)) 12(sgn(x) + sgn(y)) min(jxj; jyj) : (5:12)The PSI scheme is positive for a restriction on the time-step at a node i given by�t � SiP[4i max(0; 12 b~�j � ~nji ) ; (5:13)and is used in the overall algorithm for the distribution of the homogeneous scalarcomponents which arise from the decompositions of Section 4.5.2 Distribution of Coupled Components/SubsystemsThe elliptic nature of the 2 � 2 subsystem which results from the decomposi-tion of the shallow water equations in subcritical ow suggests that an upwinddistribution strategy is less appropriate than for the scalar components. Twoschemes are described here for the distribution of this component, one for eachdecomposition, following the di�erent distributions suggested for the correspond-ing decompositions of the Euler equations [16, 18].25



In the �rst decomposition (HELW) the two coupled equations are modelledby the system ut +Aux +Buy = 0 ; (5:14)in which A and B are de�ned explicitly byA = 0BBB@ �"� 00 � 1CCCA and B = 0BBB@ 0 "1 0 1CCCA ; (5:15)and @u = 0BBB@ g�q @hq @� 1CCCA : (5:16)Under the linearisation of Section 3 the component of �U (4.16) correspondingto equation (5.14) takes the form� = �S4 �Aux +Buy� : (5:17)This quantity is distributed in a similar manner to the uctuation in (5.2), thedi�erence being that the distribution coe�cients�ji now take the form of matriceswhich, in order to ensure conservation, must satisfyXi �ji = Id 8j ; (5:18)where d is the dimension of the subsystem (5.14).In [16] a Lax-Wendro� type scheme (which is linearity preserving and contin-uous but not positive) is suggested for the distribution of �. The coe�cients ofthe scheme are written�ji = 13 Id + �t4S4j �Anix +Bniy� ; (5:19)where ~ni = (nix ; niy)T is the scaled inward pointing normal to edge i of thetriangle. This scheme is used here in the distribution of the elliptic subsystemwhich arises from the HELW decomposition in subcritical ow.26



The second approach (HESUPG) equates the coupled subsystem with a pairof scalar advection equations with source terms of the formut + ~� � ~ru = q ; (5:20)in which u, ~� and q are de�ned by the �rst two entries in (4.19), (4.23) and (4.24)respectively. In [18] the quantityc�q = �S4 (b~� �d~ru� bq) ; (5:21)is distributed for each of the two equations using a scheme which is equivalent toa mass-lumped streamline upwind Petrov-Galerkin (SUPG) �nite element schemewith additional arti�cial viscosity [4].The distribution coe�cients for this linearity preserving and continuous butnon-positive scheme are given by�ji = 13 + � ~� � ~ni2S4j + � ~ru � ~ni2S4j ; (5:22)in which � = C1 hj~�j ; � = C2 h sgn( b�)j~ruj+ h : (5:23)The constants C1 and C2 are both taken to be 0:5 [13], h is a typical local lengthscale, e.g. the length of the longest edge of the cell, and b� is de�ned in (5.3). Thisscheme is used here for the distribution of the coupled equations which resultfrom the subcritical HESUPG decomposition.6 Source TermsSource terms appear in the linearised shallow water equations both as a resultof modelling bed slope and friction (2.1) and from the linearisation (3.14), and27



these terms must be included in the updating of the solution.The simplest method of treating the momentum sources, q in (2.1), is tocalculate them pointwise at each node and then add them to the conservativevariables once the ux balance distribution has been completed, soUn+1i = Uni + �Ui +�t qi ; (6:1)in which �Uni is the update indicated by the distribution of the decomposed uxbalance. However, it is more appropriate to the schemes presented here for all ofthe sources to be incorporated within the ux balance distribution itself. This isthe obvious way to treat the linearisation source terms since they are inherentlycell-based quantities.One way of achieving this is to include the source terms within the decompo-sition, so the characteristic equations of (4.7) becomeWt +ASWW� +BSWW� = R�1U qtot ; (6:2)where qtot is the sum of the momentumand linearisation source terms consistentlyevaluated from the cell-average state Z. The two types of source term can beconsidered separately but are combined here for simplicity.The e�ect of qtot on the ux balance distribution can be illustrated simply byconsidering a scalar component of the decomposition. A characteristic equationtaken from (4.11) now has the formWkt + ~�kS � ~rSWk = qkW ; (6:3)where qkW is the kth component of the vector R�1U qtot, and the quantity which isdistributed to the nodes of the grid is nowc�q = �S4 �~�kS � ~rSWk � qkW� : (6:4)28



A positive distribution scheme does not remain positive under this modi�cationbut the linearity preservation property is retained by calculating the distributioncoe�cients precisely as in the homogeneous case but then using them to distributethe quantity c�q. The modi�ed updates are then transformed into increments ofthe conservative variables using the matrixRU (4.14) as before. The source termswhich now appear in the elliptic subsystem can also be treated in this mannerfor both the matrix and scalar distributions.A third method of treating the source term qtot is to distribute it separatelyfrom �U, and the simplest way to do this is via a symmetric distribution in whichone third of qtot within a cell is sent to each of its vertices. All three ways ofincorporating the source terms are considered in the following section.7 ResultsBoth algorithms described in the previous sections (HELW and HESUPG) havebeen used to solve numerically a wide variety of steady state test cases for the two-dimensional shallow water equations. In all cases the linearisation source termsare distributed separately from the rest of the ux balance by a simple centralscheme since this strategy proves to be more robust than an upwind distributionand there is negligible di�erence between the results. The momentum sources,when they appear, are distributed in an upwind manner as part of the ux balancefor the purposes of accuracy, except when robustness becomes an issue in whichcase they are considered separately and evaluated on a pointwise basis.The boundary conditions are applied very simply by referring to the theory ofcharacteristics. This determines the number and form of the physical conditions29



which should be imposed at a chosen point on the boundary. One condition mustbe applied for each positive eigenvalue of the matrixCU = AU nx +BU ny ; (7:1)where ~n = (nx; ny)T is the inward pointing normal to the boundary of the com-putational domain. In the case of the shallow water equations these eigenvaluesare given by�1 = ~u � ~n ; �2 = ~u � ~n+ c and �3 = ~u � ~n� c : (7:2)Thus, when the component of the ow normal to the boundary is supercriticaleither the whole solution is speci�ed (at inow) or none of it (outow). Forsubcritical inow two conditions are speci�ed (total head and tangential velocitycomponent) while for subcritical outow a single piece of information, the depthof the ow, is set to a prespeci�ed freestream value. At a solid wall only �2 ispositive and this is accommodated by setting the normal velocity component tozero.7.1 Oblique Hydraulic JumpFew standard steady state test cases exist for the homogeneous two-dimensionalshallow water equations, but there are some simple problems for which exactsolutions have been calculated. One such example [3] is supercritical ow througha frictionless channel with a at bed containing a wedge inclined at an angle �to the direction of the ow at which an oblique hydraulic jump is induced bythe interaction of the ow with the front of the wedge. The angle � which this30



*Figure 7.1: The grid (left) and local Froude number contours (right) for theoblique hydraulic jump test case. The asterisk indicates the point at which owvalues have been sampled.discontinuity makes with the direction of the freestream ow is de�ned bysin � = 1Fuvuut hd2hu  hdhu + 1! ; (7:3)where the subscripts u and d indicate values upstream and downstream of thejump, respectively.In the case chosen here, the slope of the wedge is taken to be � = 8:95� andits leading edge is positioned 1m in to a 4m � 3m rectangular domain. Theupstream ow conditions are given as hu = 1m, uu = 8:57ms�1 and vu = 0ms�1(so Fu = 2:74).The resulting ow is purely supercritical and is divided into two regions by ahydraulic jump. Upstream of the discontinuity the initial (freestream) conditionsprevail at the steady state, while on the downstream side the exact solution isgiven by hd = 1:5m and j~udj = 7:9556ms�1, so Fd = 2:074. The jump itself is atan angle � = 30� to the inlet ow.The computation has been carried out on the 1175 node, 2231 cell grid shownin Figure 7.1 with the upper and lower boundaries both being treated as solid31
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Figure 7.2: Convergence history for the oblique hydraulic jump test case.walls. This �gure also shows the local Froude number contours of the steadystate solution calculated for this test case (both the HELW and the HESUPGschemes are the same for supercritical ow). The hydraulic jump can be seen tobe captured sharply at the correct angle and a discontinuous water surface devoidof oscillations is obtained. The values of the ow variables downstream of thejump (sampled on the outow boundary at the point indicated by the asterisk inFigure 7.1) are hd = 1:5001m and j~udj = 7:9506ms�1 (Fd = 2:073), very close tothe exact values.The convergence history for this calculation pictured in Figure 7.2 shows thatthe numerical solution converges rapidly to machine precision. The monitor usedis the root mean square of the nodal updates to the conservation of mass equation,given by RMS = vuuut PNni=1 �hn+1i �hnihni �CFL Nn : (7:4)Only local time-stepping is used here to accelerate convergence. In [18] it wasshown that the use of implicit and characteristic time-stepping techniques wouldboth signi�cantly reduce the cost of reaching the steady state in the case of the32



Euler equations. Neither technique is used here but it is expected that both couldbe used to similar advantage.Note that a CFL number of 0:7 has been used here but in the subsequenttest cases, all of which have regions of subcritical ow, the CFL number is takento be 0:2 which proved to be the highest value which could be taken which wasstable for all of these cases. This seems to be because of the discontinuity in thedistribution at the critical line and the nonorthogonality of the eigenvectors ofthe preconditioned system at low Froude numbers (described in more detail in[6]).7.2 Symmetric Constricted Channel FlowsThe domain for these test cases represents a channel of length 4 metres and width1 metre with bumps of the same shape and size in the centre of either wall ofthe channel. The bumps are one metre in length and are de�ned such that thebreadth of the channel is given byB = B0 � 2Bh cos2  �(x� xc)xl ! for jx� xcj � xl2 ; (7:5)where B0 = 1m is the breadth of the straight channel, Bh is the height of eachbump, xc = 2m is the position of the centre of the constriction and xl = 1m is itslength. In this particular case Bh is taken to be 0:04m. The grid on which theresults have been obtained consists of 2114 nodes and 4054 cells and is shown inFigure 7.3.For the �rst constricted channel test case the freestream Froude number isspeci�ed to be F1 = 0:5 while the depth is set at h1 = 1m and the ow isperpendicular to the boundary at the inlet. The resulting steady state solution33



Figure 7.3: The grid for the symmetric constricted channel ow test cases.

Figure 7.4: The local Froude number contours for the symmetric constrictedchannel ow test case with F1 = 0:5 using the HELW (top), HESUPG (middle)and Lax-Wendro� (bottom) schemes. 34



is completely subcritical and therefore symmetric about the centre of the con-striction (the narrowest point of the channel) since the friction and bed slope areboth taken to be zero.It can be seen from Figure 7.4 that the numerical solutions obtained usingthe multidimensional upwind schemes di�er little from the result produced bya Lax-Wendro� distribution scheme applied to the complete system without de-composition, also shown in the �gure. The results from the HESUPG schemeshow a very slight asymmetry, indicating that the HELW scheme is the more ac-curate of the two for this type of ow. This is probably because a Lax-Wendro�scheme is used to distribute the 2� 2 elliptic subsystem which arises in subcrit-ical ow rather than the more di�usive SUPG scheme. The advantages of theupwind schemes over Lax-Wendro� become clear when discontinuous ows areconsidered.The freestream Froude number is now increased to F1 = 0:71 to producea steady transcritical ow which includes a hydraulic jump downstream of thenarrowest point of the channel. All other parameters remain the same. Thepictures of the local Froude number contours, shown in Figure 7.5, indicate thatthe discontinuity is captured very sharply by both upwind schemes, within twoor three cells right across the channel. The jump is sharper and slightly furtherdownstream when the HELW scheme is used, further evidence of its less di�usivenature, but this is at the expense of small oscillations on the downstream side ofthe jump.An increase in the di�usive component of the distribution coe�cients (5.19) for35



Figure 7.5: Local Froude number contours for the constricted channel ow withF1 = 0:71 for the HELW (top) and HESUPG (bottom) schemes.
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Figure 7.6: Comparison of the breadth-averaged local Froude number for theconstricted channel ow test case with F1 = 0:71.36



the subcritical elliptic subsystem would reduce the oscillations, but not withoutsmearing the discontinuity as well. Although the HESUPG scheme, with itsgreater inherent numerical di�usion, does this automatically, neither treatmentis ideal and the modelling of transcritical ows requires further consideration.The results shown in Figure 7.6 illustrate the e�ect of the linearisation sourceterms on the solution. The values of the breadth-averaged local Froude numberare plotted along the length of the channel for the HELW scheme. The small os-cillations downstream of the jump are rendered almost invisible by the averagingprocedure and the solutions are very close to those produced by the HESUPGscheme (not plotted here) although the latter predicts the one-dimensional dis-continuity to be very slightly further upstream.The numerical results shown are for a conservative and a non-conservativeformulation in which the linearisation sources are simply ignored. Close inspec-tion reveals that the discontinuity is predicted to be about half a cell's widthfurther downstream by the non-conservative scheme. On a grid in which thecell edges are aligned with the discontinuity the discrepancy in jump positionbetween the conservative and non-conservative schemes can be as much as onecell. The non-conservative formulation predicts the jump to be further awayfrom the exact position predicted by one-dimensional theory for an open channelof varying width, the third solution shown in Figure 7.6. Thus it is important toenforce conservation for precise positioning of the discontinuity even though anadequate solution may be obtained in this case without conservation. Note alsothat the averaged conservative numerical approximation passes from subcriticalto supercritical ow at the centre of the channel (its narrowest point) as it should37
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Figure 7.7: Convergence history for the symmetric constricted channel ow testcase with F1 = 0:5.do. Figure 7.7 shows the convergence histories for the subcritical solutions pre-sented in this section. It can be seen that in the subcritical case, although conver-gence is still slow without the use of acceleration techniques, both upwind schemes(particularly HELW) converge much faster than the Lax-Wendro� scheme. In thetranscritical case convergence is generally very slow and in some cases machineaccuracy is not achieved.7.3 Sloping Channel Flows with FrictionAlthough essentially one-dimensional this test case can be used to validate thetreatment of the momentum source terms on the two-dimensional triangular grid.It is one of a family of exact steady state solutions of the one-dimensional shallowwater equations with bed slope and friction included which has recently beenconstructed for straight open channels [15].The particular case chosen here is of ow in a rectangular channel, 1000mlong and 10m wide. Manning's roughness coe�cient is taken to be 0.02 and the38



0 200 400 600 800 1000

x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

F

Exact

HELW

HESUPG

Figure 7.8: Comparison of the breadth-averaged local Froude number for thequasi-one-dimensional rectangular channel test case.bed slope is given in terms of a hypothetical depth function ~h bysbx =  1� 4g~h3! d~hdx + 0:16(2~h + 10) 43(10~h) 43 and sby = 0 ; (7:6)where~h = 8>>>>>>>><>>>>>>>>: �4g� 13 � 910 � 16 exp �� x250�� for 0 � x � 500�4g� 13 �1 +P3k=1 ak exp ��20k� x1000 � 12��+ 45 exp � x1000 � 1��for 500 < x � 1000 ; (7:7)in which a1 = �0:348427, a2 = 0:552264 and a3 = �0:555580. The depth ofthe steady state solution is given by h � ~h and the discharge is taken to be20m3s�1. The resulting ow is supercritical at inow and subcritical at outowwith a discontinuity half way along the channel, at x = 500m.The two-dimensional solutions have been obtained on a 1004 node, 1500 cellgrid in which all of the triangles have an aspect ratio of approximately one, and39



the breadth-averaged local Froude number predicted by the two upwind schemesis shown in Figure 7.8, together with the exact solution. The three solutions arealmost indistinguishable and even the HELW scheme exhibits no small oscillationson the subcritical side of the jump.Both sets of results presented have been obtained using an upwind distributionof momentum sources evaluated on a cell by cell basis. Close examination of thesolutions reveals that this method of treating these source terms leads to thebest approximation of the exact solution, although the di�erences would not bevisible in the �gure. It should be noted though that convergence to the steadystate is slightly better if the sources are incorporated at the nodal update stage,indicating greater robustness. In actual fact none of the schemes converge tomachine accuracy in this transcritical case so no convergence histories are shown.7.4 Spillway FlowThe �nal problem represents shallow water ow in a spillway and provides agenuinely two-dimensional test case. The ow is through a channel 10m widewith a right angled bend half way along its length. The inner and outer cornersof the bend are taken to be arcs of concentric circles with radii 10m and 20mrespectively, and there is 30m of straight channel both upstream and downstreamof the bend. The ow is supercritical at both inow and outow and the inowconditions are such that h = 1m, u = 0ms�1 and v = �5ms�1. The slope ofthe channel is of magnitude 1 in 5 along the straight sections and varies linearlyacross the channel around the bend from 1 in 5 on the outer curve to 2 in 5 onthe inner curve. Manning's roughness coe�cient for the ow takes the value of40



Figure 7.9: The grid (top) and local Froude number contours (bottom) for thespillway test case. 41
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Figure 7.10: Convergence history for the spillway test case.0.012.The calculation has been carried out using the HESUPG scheme on the gridshown in Figure 7.9 (which is made up of 3310 nodes and 6294 cells) abovethe local Froude number contours of the resulting steady state solution. Onthe evidence of the previous test case, the momentum sources were calculatedon a nodal basis and incorporated in the update after the distribution step formaximum robustness.The hydraulic jumps in the solution are captured very sharply, across a max-imum of two cells, and without spurious oscillations, despite the extreme natureof the ow in the region of the corner. Overall, the scheme appears to predictqualitatively correct ow features. The ow is completely supercritical so theHELW scheme gives precisely the same solution. Figure 7.10 shows that in thispurely supercritical case the convergence to the steady state is again rapid.
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8 ConclusionsTwo alternative genuinely multidimensional upwind schemes have been presentedfor the numerical solution of the two-dimensional shallow water equations onunstructured triangular grids. Techniques which were originally developed forthe solution of the Euler equations have been adapted for the approximation ofthe shallow water equations and a conservative formulation of the algorithm hasbeen presented. A method of treating general source terms, appropriate for usewith multidimensional upwinding, has also been suggested.Both schemes presented here have been shown to produce high quality resultsfor both subcritical and supercritical steady state ows and have the ability tocapture discontinuities very sharply. Of the two, the HELW scheme is the lessdi�usive and as a result, slightly less robust. It produces sharper jumps andmore accurate subcritical approximations, but at the expense of small oscilla-tions downstream of transcritical discontinuities. These could be smoothed byadjusting the Lax-Wendro� distribution appropriately, with a consequent smear-ing of the discontinuity, but both schemes require further study to improve themodelling of the transition between supercritical and subcritical ows.The treatment of the momentum sources also merits attention since it is stillunclear which is the best method to use for their distribution. The most robusttreatment proved to be to consider the sources on a nodal basis but distributingcell-averaged source terms in an upwind manner appears to be more accurate.It is clear though that the linearisation sources are necessary for the precisepositioning of the hydraulic jumps although in many cases adequate numericalsolutions can be obtained using a non-conservative formulation.43
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