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AbstractMultidimensional upwinding techniques [?, ?] have been developed withthe object of the solution of the Euler equations. However, they can equallywell be used to solve other hyperbolic systems of equations. Recently, themethod has been adapted for the solution of the shallow water equations [?],but due to the subtly di�erent nature of these equations the linearisationof the system used implied that the scheme was not quite conservative.This report describes a method by which the shallow water equation-s can be linearised in a truly conservative manner, enabling the use ofwave models and uctuation distribution schemes to give a conservativemultidimensional upwinding scheme for the shallow water equations.
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1 IntroductionThis report is intended as a supplement to reference [?] in which the multi-dimensional upwinding techniques developed by Roe, Deconinck and Rudgyardamongst others [?, ?, ?], mainly within the context of the Euler equations, wereextended to solve the two-dimensional shallow water equations on unstructuredtriangular grids. In that report two of the wave models developed for the Eulerequations, namely Roe's model D and Rudgyard's Mach angle splitting [?], wereadapted to decompose the shallow water equations into scalar components (ine�ect by removing the entropy wave from the decompositions for the Euler equa-tions). The scalar multidimensional PSI scheme [?] was then used to distributethe resulting scalar uctuations over the grid.The generalisation was deliberately kept as simple as possible. This had littlee�ect on the derivation of the new wave models and none on the scalar distributionschemes but, due to subtle di�erences between the systems of equations, theanalysis for the creation of a conservative linearisation [?] was no longer valid,and the method therefore lost its conservation property.In the next section, a simple method is described by which the multidimen-sional upwinding methods described in [?, ?] can be modi�ed to make them con-servative. It essentially follows the construction of a conservative linearisation,carried out in [?] for the Euler equations, but di�ers in that a source term is in-troduced in order to ensure that the integration is carried out exactly throughoutthe analysis and the `telescopic' property of the uxes, required for conservation,is satis�ed. Brief results, for a test case where the exact solution is known, arethen shown using a simple implementation of the conservative algorithm.
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2 A Conservative LinearisationThe shallow water equations without friction, like the Euler equations, constitutea nonlinear hyperbolic system of equations and can be written in the formut + Fx +Gy = 0; (2:1)where u = 0BB@ huhvh 1CCA ; F = 0BB@ uhu2h+ gh22uvh 1CCA ; G = 0BB@ vhuvhv2h+ gh22 1CCA : (2:2)Here h is the depth of the water, u and v are the x- and y-velocities respectivelyand g is the acceleration due to gravity.The object of this analysis is to write this hyperbolic system of equations inthe linearised form ut + ~Aux + ~Buy = 0; (2:3)where ~A and ~B are approximations to the ux JacobiansA = @F@u = 0BB@ 0 1 0�u2 + gh 2u 0�uv v u 1CCA ; B = @G@u = 0BB@ 0 0 1�uv v u�v2 + gh 0 2v 1CCA ; (2:4)in such a way that the resulting uctuation can be calculated, decomposed anddistributed in a conservative manner. That is to say, the approximation should beconsistent and the sum of the uctuations over the whole domain should reduceto contributions from the boundary only, the `telescopic' property.For the Euler equations, Roe et al [?] insisted that the approximate matrices,which are functions of the three sets of variables u1, u2, u3 (the conservativevariables evaluated at the vertices of the cell), satisfy the following three criteria,a two-dimensional version of Roe's Property U [?]:1. The linearisation is consistent, in the sense that~A(u;u;u) = A(u); ~B(u;u;u) = B(u): (2:5)2. For all angles �, the matrix ~A(u1;u2;u3) cos � + ~B(u1;u2;u3) sin � has realeigenvalues and a complete set of linearly independent eigenvectors.3. The identitiescFx � ~A(u1;u2;u3) cux; dGy � ~B(u1;u2;u3) cuy; (2:6)are satis�ed for any u1, u2, u3. cFx and dGy are the approximations to theux derivatives resulting from the linearisation.2



However, it is also implicit in the paper that all integrations carried out toevaluate these averages have to be done exactly, otherwise the `telescopic' prop-erty required for conservation is not satis�ed precisely. This fourth criterion canbe simply expressed by requiring thatX4 V4(cFx +dGy) = I@
(F;G) � d~n; (2:7)where V4 is the area of the cell, @
 is the outer boundary of the domain and~n is the inward pointing normal to the boundary. It was never necessary toimpose this condition explicitly in the treatment of the Euler equations becauseit is automatically satis�ed by the approximation, but the condition becomesimportant when the procedure for creating a conservative linearisation is followedfor the shallow water equations. In [?] an approximation was used which satis�edthe three criteria speci�ed above but used inexact integration and so was notconservative.As with the Euler equations, assuming linearity of the conservative variableswould involve the evaluation of unnecessarily complicated integrals before the lin-earised Jacobians could be constructed. Furthermore, the derivations of the wavemodels are based on the matrix A(u) cos � + B(u) sin �. This linearisation doesnot lead to an approximation to this matrix of the form A(u) cos � + B(u) sin �,where u is some average of the conserved variables, so it is not immediately ob-vious how the wave decomposition could be applied under these circumstances.Therefore, as in the case of the Euler equations, it is assumed that the parametervector, w = h 12 (1; u; v)T ; (2:8)is the quantity that varies linearly. However, the consequences of this assumptiondi�er slightly from those for the Euler equations because some of the componentsof u, F and G are polynomials in the components of w of order higher than two(although they are far simpler than those resulting from assuming linearity of theconservative variables).Multidimensional upwinding methods on triangular grids in two dimensionsrely on the evaluation within each triangular cell of the so-called uctuation� = Z Z4 ut dx dy= � Z Z4(Fx +Gy) dx dy= � Z Z4( ~Aux + ~Buy) dx dy; (2.9)its decomposition into scalar components and their distribution to the verticesof that cell. The rest of this section is concerned with the calculation of thisuctuation and follows closely that of Roe et al [?].3



De�ne now the Jacobian matrices,Q = @u@w = 0BB@ 2w1 0 0w2 w1 0w3 0 w1 1CCA ; (2:10)andR = @F@w = 0BB@ w2 w1 02gw13 2w2 00 w3 w2 1CCA ; S = @G@w = 0BB@ w3 0 w10 w3 w22gw13 0 2w3 1CCA ; (2:11)in terms of wi, the components of the parameter vector (2.8). Note here thatall the components of these matrices are linear functions of w except for a singlecubic term which appears in both R and S.Thus the uctuation can be written� = � Z Z4(Rwx + Swy) dx dy (2.12)= ��Z Z4R dxdy�wx � �Z Z4 S dx dy�wy; (2.13)since the gradients of the parameter vector variables are constant within eachcell.At this point the theory deviates slightly from that associated with the Eulerequations because the assumption of linear variation of w no longer implies thatZ Z4R dxdy = V4R(w); Z Z4 S dx dy = V4S(w); (2:14)where V4 is the area of the cell and w is the value of the parameter vector at thecentroid of the triangle.However, it is still possible to do the integration exactly, simply by using ahigher order quadrature for the two cubic terms. Note that this only involves theevaluation of one integral and so is not prohibitively expensive.Now, de�ning~R = 1V4 Z Z4R dxdy; ~S = 1V4 Z Z4 S dx dy; (2:15)leads to � = �V4( ~Rwx + ~Swy)= �V4(cFx +dGy): (2.16)In fact, ~R and ~S only di�er from R(w) and S(w) in one component each.All the elements of the matrix Q are linear in w so a similar argument to theone used with the Euler equations givescux = Q(w)wx; cuy = Q(w)wy: (2:17)4



Since Q is invertible the uctuation can now be written� = �V4( ~RQ�1(w)cux + ~SQ�1(w)cuy) (2:18)which gives expressions for the Jacobian matrices~A = ~RQ�1(w); ~B = ~SQ�1(w): (2:19)These approximations to A and B are consistent and satisfy the `telescopic' prop-erty when substituted back into the expression for the uctuation (2.9). Unfor-tunately, since the matrices are not in the form~A = A(w); ~B = B(w); (2:20)it is not immediatelypossible to decompose the uctuation into scalar componentsusing any of the wave models suggested in [?].To overcome this problem, writeR = R(w) + �R; S = S(w) + �S ; (2:21)where �R and �S are matrix residuals. Then~A = A(w) + �RQ�1(w); ~B = B(w) + �SQ�1(w); (2:22)and the uctuation can be written� = �V4(A(w)cux +B(w)cuy)� V4(�Rwx + �Swy): (2:23)It has been split into two parts. The �rst part is analogous to the uctuationresulting from the corresponding analysis for the Euler equations, and can bedecomposed and distributed using a wave model. The second can be consideredas a form of source term which must be treated separately. The exact form ofthis additional term is actually very simple since�R = 0BB@ 0 0 02g� 0 00 0 0 1CCA ; �S = 0BB@ 0 0 00 0 02g� 0 0 1CCA : (2:24)where � = 1V4 Z Z4 w31 dx dy � w13 (2:25)The scalar � represents the di�erence between integrating a cubic exactly (usingsay a four point quadrature rule) and integrating it approximately (using a onepoint quadrature rule). This term will usually be very small and could feasiblybe ignored were it not for the fact that it is multiplied by a solution gradient inthe expression for the uctuation (2.23).5



If the source term were completely ignored, the approximation would still sat-isfy the three criteria of the two-dimensional version of Property U, but becausethe integration is inexact the scheme is no longer conservative, even though theerror is likely to be very small. This is e�ectively the simpli�cation which wasmade when the concepts of multidimensional upwinding were originally trans-ferred from the Euler equations to the shallow water equations in [?]. In fact, in[?] it was assumed that the primitive variables varied linearly. This assumptionis equally valid and the preceding analysis can still be carried out, resulting in adi�erent and slightly more complicated source term.All that remains is the decomposition and distribution of the uctuationwhich, with the aid of a wave model, can be written� = � Z Z4(Fx +Gy) dx dy = NeXk=1 �krk + �; (2:26)where Ne is the number of e�ective waves, �k is the uctuation of the kth wave, rkis the vector corresponding to the projection of �k on to the conservative variablesand � is the `source' term in (2.23). It must be remembered that average valuesof the primitive variables q and their gradients, which are used to calculate allother cell-averaged quantities necessary for the decomposition [?], such as theconservative variables and the ux balance, must be computed exactly from theparameter vector variables, givingq = 0BB@ w12w2=w1w3=w1 1CCA ; d~rq = 0BB@ 2w1~rw1(w1~rw2 �w2~rw1)=w12(w1~rw3 �w3~rw1)=w12 1CCA : (2:27)If linearity of the primitive variables is assumed, as it was in [?], then thesequantities must be calculated directly.The results in this report were obtained using the `Froude angle splitting' wavemodel [?] and the PSI scalar distribution scheme [?], while the source term wasdistributed very simply, sending one third to each of the vertices of the triangularcell.
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3 ResultsBrief results are presented here for a single test case, that of an oblique hydraulicjump, induced by means of the interaction between a supercritical ow and a wallat an angle � = 8:95� to the ow. The initial conditions (and the upstream con-ditions) were h = 1m, u = 8:57ms�1 and v = 0ms�1, i.e. a uniform supercriticalow with Froude number, Fr = 2:74. The boundary conditions are precisely thesame as those used in [?].The exact solution downstream of the jump can be calculated analyticallyfor problems of this type [?]. In this case, the predicted values are h = 1:5mand j~uj = 7:9556ms�1 with Fr = 2:075, and the jump is at an angle of 30�to the boundary walls at inow. Figure 3.1 shows the contours of h obtainedusing the conservative numerical scheme described in this report on a regular2400 element triangular grid. The result is virtually indistinguishable from thatobtained using the previous, non-conservative scheme [?]. The discontinuity iscaptured sharply and is at the correct angle, and the discontinuous water surface isdevoid of oscillations. The solution obtained behind the jump agrees closely withthe analytic prediction: h = 1:4993m and j~uj = 7:9527ms�1, giving Fr = 2:075,which is an improvement on the non-conservative scheme. Unfortunately thesolution has not converged to machine accuracy, but this may well be due to therather crude treatment of the source terms, and could be recti�ed by using a moresophisticated means of distribution.
Figure 3.1: Contours of water height h.7



4 ConclusionsIn this report, a method has been described by which the concepts of multidi-mensional upwinding can be used in the solution of the shallow water equationswhilst retaining conservation - a property not satis�ed by the �rst algorithmsdevised [?, ?]. The resulting scheme has been tested on one test case and givesgood results in comparison with the exact analytic solution.It is suggested that in future, the `source' terms should be distributed ina more sophisticated manner than has been used here. This may well help toreduce the magnitude of the residuals when the numerical solutions have reacheda steady state, improving the convergence properties of the scheme.
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