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1. Introduction

In the field of computational hydraulics the modelling can be dominated
by the effects of source terms and in some cases, quantities which vary
spatially but independently of the flow variables. This paper is concerned
with the shallow water equations and how the additional terms should be
discretised, given that Roe’s scheme has been used to approximate the
flux terms, extending recent research by other authors (Glaister, 1992;
Vázquez-Cendón, 1999; Bermúdez and Vázquez, 1994). In each of these
papers the discrete form of the source terms has been deliberately con-
structed along similar lines to the numerical fluxes. This is done to ensure
that equilibria which occur in the mathematical model are retained by the
numerical model, and that in the absence of additional terms, the conserva-
tive fluxes are retrieved for accurate modelling of discontinuous solutions.
However, all previous work deals only with the first order scheme. In this
paper the extension of these ideas to higher order Total Variation Dimin-
ishing (TVD) versions of Roe’s scheme (using both flux limiting and slope
limiting techniques) is described. It is then possible to construct a source
term approximation which has each of the above properties on all types of
regular and irregular grids in any number of dimensions; see (Hubbard and
Garcia-Navarro, 1999) for details. Furthermore, following on from (Garcia-
Navarro and Vázquez-Cendón, 1997), a new formulation is presented for the
discretisation of the flux in the case where it depends on a spatially varying
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quantity which is independent of the solution. The one-dimensional shallow
water equations have been chosen to demonstrate the effectiveness of these
new techniques, by modelling the effects of a sloping bed and the inclusion
of breadth variation in open channel flows.

2. The General Discretisation

The one-dimensional equations representing a general system of conserva-
tion laws with source terms may be written

U t + F x = S , (1)

where U is the vector of conservative variables, F is the conservative flux
vector and S includes all of the source terms. The flux is assumed to de-
pend not only on the conservative variables but also another independent,
spatially varying quantity, denoted here by B(x), i.e. F = F (U,B(x)).

Using the standard (cell centre) finite volume approximation of the flux
terms in (1) with forward Euler time-stepping gives
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in which F ∗ represents a numerical flux evaluated at an interface between
cells and S∗ ≈

∫

S dx is a numerical source integral over the cell.
Roe’s scheme (Roe, 1981) is used here to discretise the flux derivatives,

with a minor modification to take into account the dependence of the flux
on B(x). This approximate Riemann solver splits the flux difference at an
interface into independent components, giving
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Ã∆U + Ṽ
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where Ṽ ≈ ∂F

∂B
∆B (so it reduces to the standard Roe flux difference split-

ting when B is constant). ∆F represents the jump in F across the edge of a
grid cell, R̃ is the matrix whose columns are the right eigenvectors r̃k of Ã,
the approximate flux Jacobian, Λ̃ is the diagonal matrix of eigenvalues λ̃k

of Ã, and the components of R̃−1 ∆U are the ‘strengths’ α̃k associated with
each component of the decomposition. Additionally, γ̃k, the coefficients of
the decomposition of the extra term, are the components of R̃−1Ṽ . The
final expression in (3) indicates how the flux difference is decomposed into
Nw characteristic components, Nw being the number of equations in the
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system (1). Throughout ·̃ denotes the evaluation of a quantity at its Roe-
average state (Roe, 1981), calculated specifically so that (3) is satisfied.

The numerical fluxes which are used in (2) are simply
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in the first order case, where |Λ̃| = diag(|λ̃k|) and sgn(I) = Λ̃−1|Λ̃|. When
a flux limited high resolution scheme is being used,
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in which, additionally, L = diag(1−L(rk)(1− |νk|)), where νk = λ̃k∆t/∆x
is the Courant number associated with the kth component of the decompo-

sition, L is a nonlinear flux limiter function, and rk = α̃upwind
k

/α̃local
k

. If the
high resolution scheme being used employs slope limiters then
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)

i+ 1

2

,

(6)
where the superscripts ·R and ·L represent evaluation on, respectively, the
right and left hand sides of the interface indicated by the associated sub-
script, so the averages (̃·) are now calculated from a linear reconstruction
of the solution.

Following the work of (Glaister, 1992; Bermúdez and Vázquez, 1994;
Garcia-Navarro and Vázquez-Cendón, 1997), the approximate source term
integral associated with an edge of a cell is similarly projected on to the
eigenvectors of the flux Jacobian, so that in its linearised form it becomes

∫
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where β̃k, the coefficients of the decomposition, are the components of the
vector R̃−1S̃. S∗

i will be constructed out of contributions from both ends
of the cell, with consistency assured as long as the whole of each dual cell
integral (7) is distributed.

In order to obtain the discrete balance which is required between the flux
and source terms the numerical source term integral of (2) is approximated
by
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in which the edge contributions are given by
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It is now simple to make high resolution corrections to the numerical
source terms which will maintain the required balance. In the flux limiting
case this leads to replacing (9) with
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and a similar expression for S∗
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+. When slope limiters are applied an

appropriate correction to the numerical source within each cell is given by
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The first term on the right hand side is evaluated precisely as before, in
(8), except that the interface values are now those of the linear reconstruc-
tion of the solution within each cell. S̃ is simply the source term integral
approximated over the mesh cell and hence evaluated at the Roe-average of
the left and right states of the linear reconstruction of the solution within
that cell.

3. Shallow water flows

In one dimension, shallow water flow through a rectangular open channel
of varying breadth and bed slope is modelled by the equations

(
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which, when compared with (1) to find U , F and S, ultimately leads to
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In these equations d is the depth of the flow, z is the height of the bed
above a nominal zero level, b = b(x) is the channel breadth, u is the flow
velocity, and g is the acceleration due to gravity.



BALANCING SOURCE TERMS AND FLUX GRADIENTS 5

The characteristic decomposition (3) for the equations (12) and (13) is
completely defined by
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and it is easily shown that (3) is satisfied exactly when
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which reduce to standard Roe-averages for one-dimensional shallow water
flow in the absence of breadth variation (i.e. when bR = bL). The corre-
sponding decomposition of the source terms (7) then leads to

β̃1 =
1

4g
c̃3∆b − 1

2
b̃c̃∆z = −β̃2 . (16)

In order for (9) to maintain the correct balance when the flow is quiescent,
b̃ is constructed so that it satisfies

b̃∆z = ∆(bz) − z̃∆b where z̃ = K −
√

bRdR +
√

bLdL

√
bR +

√
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, (17)

K being the height of the still water surface above the nominal zero level.

4. Numerical results

The upwind source term discretisation described above maintains still wa-
ter to machine accuracy for an indefinite period for any test case geometry
for both first and higher order schemes (unlike most standard approxima-
tions) so no results of this type are presented here. Instead a ‘tidal’ flow is
modelled in a channel of varying breadth and depth, and compared with an
asymptotically exact solution, described fully in (Vázquez-Cendón, 1999).
The comparison is made between first order, slope limited and flux limited
schemes combined with pointwise and upwind source term discretisations:
in all high resolution cases the Minmod limiter has been applied. The ‘ex-
act’ and numerical solutions (all computed on the same regular 600 cell
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Figure 1. Water surface level and unit discharge for the tidal flow test case for first
order (top) and high resolution slope limited (centre) and flux limited (bottom) schemes.
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grid) to this problem when t = 10800 (‘high tide’) are compared in Figure
1. The agreement is very close, not only for the first order scheme, but also
for both of the higher order schemes when the upwind source discretisation
is used. However, as in the still water tests, the pointwise source discreti-
sation gives, at best, only a reasonable approximation to the depth, and a
very poor prediction of the flow velocity.

5. Conclusions

A new method has been presented for the discretisation of source terms
which provide a balance with flux derivatives in nonlinear systems of conser-
vation laws, extending the work of (Glaister, 1992; Bermúdez and Vázquez,
1994; Garcia-Navarro and Vázquez-Cendón, 1997) to high order TVD ver-
sions of Roe’s scheme, using both flux and slope limiters. A technique for
discretising fluxes which can vary independently of the flow variables is
also suggested. The methods have been shown to be effective in the mod-
elling of the one-dimensional shallow water equations (on the understanding
that the TVD condition which underlies the limiting procedures is derived
for homogeneous equations), and they also readily generalise for use on
arbitrary polygonal meshes in any number of dimensions (Hubbard and
Garcia-Navarro, 1999).
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