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1 Introduction to Angiogenesis

It is a well known fact that tumours can grow to approximately 1-2mm3

before their metabolic demands are impeded due to the diffusion limit of
oxygen and nutrients. In order to grow beyond this size, the tumour switches
to an angiogenic phenotype and induces the sprouting of new blood vessels
from the surrounding stroma. Angiogenesis is a highly controlled process,
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normally regulated by a fine balance of pro- and anti-angiogenic factors and
the switch to a pro-angiogenic state is a prerequisite for further outgrowth
of the tumour [5]. In addition to sprouting capillaries, neovasculature can
also arise in tumours through other mechanisms including intussusceptive
angiogenesis, [2], the recruitment of endothelial progenitor cells, [13], vessel
co-option [16] and vasculogenic mimicry [7].

Sprouting angiogenesis [15] is the most widely studied mechanism for neo-
vascular growth from the mathematical point of view and the one to which we
shall apply the unifying ideas presented in this paper. The additional mech-
anisms mentioned above depend in a fundamental way on those exploited
in sprouting angiogenesis and it is suggested that the modelling ideas used
in this paper are amenable to these wider aspects of tumour angiogenesis.
Angiogenesis also arises in many physiological situations including embryonic
development, wound healing and reproduction [9]. It also plays a basic role
in certain pathologies such as diabetes, rheumatoid arthritis, cardiovascular
ischemic complications and cancer [8]. In cancer, sprouting angiogenesis is
not only important in primary tumours, it is also involved in metastasis for-
mation and subsequent growth. Hence, the modelling ideas presented here
are applicable to a wide range of pathological conditions.

Angiogenesis involves a series of orchestrated steps, reviewed in [25, 21]. A
pro-angiogenic signal, such as Vascular Endothelial Growth Factor (VEGF),
activates the normally quiescent endothelial cells, which results in a number
of biochemical/cellular responses [6]. One response is the secretion of acti-
vated proteases, which locally degrade the extracellular matrix and basement
membrane. This allows the endothelial cells to invade the surrounding ma-
trix and subsequently proliferate and migrate, usually moving by chemotaxis
towards the source of the growth factor, as shown in Figure 1.

Further exposure to pro-angiogenic signalling leads to differentiation and
polarization of the migrating endothelial cells, which subsequently form a
tubule with a lumen. In order to form a functional vessel, a loop has to form:
the tips of two adjacent tubules coalesce to form an anastomosis through
which blood can begin to flow. The stabilization of these new, immature
blood vessels is achieved by the recruitment of mural cells, pericytes and the
generation of extracellular matrix, see Figure 2.

Tumour angiogenesis occurs by the same mechanisms, with many tumour
cells themselves secreting the pro-angiogenic factor (usually VEGF) needed
to induce new vessel growth [12]. The architecture of tumour vessels is often
leaky [10], caused by fewer EC-EC contacts, resulting in different transport
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properties for the movement of fluid and proteins from blood to the tumour
tissue. These differences can be subsequently modelled in modifications of
the premise.

Figure 1: Endothelial cell migration towards a tumour source of VEGF and
the formation of a neovascular network leading to metastasis.

Mathematical modelling of sprouting angiogenesis has been under inten-
sive investigation over the past two decades and has been approached from
several points of view. Among the earliest modelling ideas was that used
by Stokes and Lauffenberger [28] who formulated the movement of endothe-
lial cells in terms of stochastic differential equations. Simulations carried
out in [28] corresponded very well with the neovascular structures observed
in in vitro experiments. However the models did not include some of the
important players in angiogenesis; particularly the role of fibronectin degra-
dation and haptotaxis. Somewhat later Chaplain and Stuart [4] and An-
derson and Chaplain [3] used the idea of conservation of mass to derive a
nonlinear partial differential equation governing the evolution of endothelial
cell density. This model included chemotaxis of VEGF and haptotaxis of
fibronectin. Simulations of vascular networks were carried out by using a
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Figure 2: The recruitment of mural cells and pericytes leading to stabilisation
of immature blood vessels and formation of anastomosis.
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numerical discretisation of the PDE resulting in a pseudo master equation
from which certain terms were considered to be akin to transition probabil-
ity functions. The resulting networks generated by this approach correlated
well with in vitro experimental observations. In [18, 19] Levine et al. were
the first to develop an individual cell-based model formulated in terms of
the theory of reinforced random walks. This model is expressed in terms
of a master equation and identifies certain transition probability functions
which can depend on a variety of growth promoters and growth inhibitors
including VEGF, fibronectin and proteolytic enzymes. Simulations with this
model give excellent agreement with results of in vitro experiments.

In view of the relative merits of each of the above mathematical mod-
elling approaches to sprouting angiogenesis it is of considerable interest to
investigate an underlying theme which unifies these modelling techniques.
In this paper we demonstrate that a basic formulation in terms of stochastic
differential equations provides such a unification. Furthermore the ideas ex-
pressed here can be used to analyse and validate models of intussusceptive
angiogenesis, vessel co-option, vasculogenic mimicry and lymphangiogenesis.

The plan of this paper is as follows; in section 2 we introduce the fun-
damental stochastic differential equation and draw out its connection with
the Fokker-Planck equation. We then review, in this setting, the pioneer-
ing work of Stokes and Lauffenberger [28]. Section 3 is concerned with the
master equation and its connection to the Fokker-Planck equation. This
leads naturally to the cell-based models of Levine et al. [18, 19]. In section
4 we consider the formulation of cell density models based on the conserva-
tion of mass hypothesis. These models are essentially expressed in terms of
Fokker-Planck equations which in turn are intimately related to the stochas-
tic differential equation. Section 5 describes angiogenesis modelling directly
from the stochastic differential equation and illustrates the ideas with some
preliminary stochastic simulations. The paper concludes in section 6 with an
indication of future research together with some open problems.

2 Multivariable Stochastic Differential Equa-

tions and the Fokker-Planck Equation

Let x(t) be an n-dimensional vector representing the co-ordinates of the
position of a particular endothelial cell at time t. We begin by supposing
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that x is governed by a system of stochastic differential equations of the
form

dx = A(x, t)dt+ B(x, t)dW(t), (2.1)

where A(x, t) is an n× 1 vector drift coefficient, B(x, t) is an n× n matrix
of diffusion coefficients and dW(t) is an n-variable Wiener process.

Equation (2.1) is a very general form of a stochastic differential system.
In the context of angiogenesis the drift coefficient A(x, t) is to be thought of
as the taxis, including chemotaxis as well as haptotaxis, of an EC in response
to growth factors, growth inhibitors as well as anti-angiogenic therapies. The
diffusion coefficient B(x, t) can also be quite general and as well as possibly
dependent on growth factors and growth inhibitors can also be modelled to
account for heterogeneity of the substrate tissue.

To describe the Wiener process we limit the discussion to the one-variable
case. To begin with we introduce the idea of a conditional probability density
function;

Definition 1
The quantity p(x, t|x0, t0) is called the conditional probability density

function and is the probability of being in state x at time t after previously
being in state x0 at time t0.

For the purposes of the theory developed here we assume random Brow-
nian motion, in which case p(x, t|x0, t0) represents a Gaussian. That is

p(x, t|x0, t0) = [2π(t− t0)]−1/2exp[−(x− x0)
2/2(t− t0)],

The Wiener process is then Gaussian with mean value

〈W (t)〉 ≡
∫ ∞
−∞

xp(x, t|x0, t0)dx = x0 (2.2)

and variance
〈[W (t)− x0]

2〉 = t− t0. (2.3)

For the multivariate Wiener process we define

W(t) = [W1(t),W2(t), . . . ,Wn(t)] . (2.4)

It is common practice to refer to W (t) as white noise.
Remark 1 In the formulation of the theory the definition of x can be

extended to include growth factors and growth inhibitors.
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Remark 2 The formulation of angiogenesis through the stochastic differ-
ential equation (2.1) is the key modelling tool used by Stokes and Lauffen-
berger [28, 29] discussed below.

It is a remarkable fact that there is a direct equivalence between the
stochastic equation (2.1) and a Fokker-Planck equation governing the proba-
bility density p(x, t|x0, t0) associated with the stochastic process. To see this
we again consider the one variable case and make use of the Itô calculus and
in particular Itô’s formula [11]. Suppose x(t) is governed by the stochastic
differential equation;

dx(t) = a[x(t), t]dt+ b[x(t), t]dW (t), (2.5)

then using Itô’s formula [11], p95, we have

〈df [x(t)]〉/dt = 〈df [x(t)]

dt
〉 =

d

dt
〈f [x(t)]〉

= 〈a[x(t), t]∂xf +
1

2
b[x(t)]2∂2

xf〉 .

If x(t) has a conditional probability density p(x, t|x0, t0) then

d

dt
〈df [x(t)]〉 =

∫
dxf(x)∂tp(x, t|x0, t0),

=

∫
dx[a(x, t)∂xf +

1

2
b(x, t)2∂2

xf ]p(x, t|x0, t0).

After an integration by parts we get∫
dxf(x)∂tp =

∫
dxf(x){−∂x[a(x, t)p] +

1

2
∂2
x[b(x, t)

2p]}

and since f(x) is arbitrary we obtain

∂tp = −∂x[a(x, t)p] +
1

2
∂2
x[b(x, t)

2p], (2.6)

which is a Fokker-Planck equation for p(x, t|x0, t0).
If we argue in the same way for the stochastic differential equation system

(2.1) we obtain the equation

∂tp = −
∑
i

∂i [Ai(x, t)p] +
1

2

∑
i,j

∂i∂j{
[
B(x, t)BT (x, t)

]
ij
p}, (2.7)
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where T denotes transpose. Equation (2.7) is the Fokker-Planck equivalent
of the stochastic system (2.1).

We now relate the equations (2.1) and (2.7) to the modelling ideas of
Stokes and Lauffenberger [28]. There, the principal modelling components
are, the tip velocity, v, position, x, and the cell density, ρ, within each
capillary sprout. The stochastic ordinary differential equation governing the
velocity, vi, of the tip cell of the ith sprout is assumed to be;

dvi = −βvi(t)dt+
√
αdWi(t) + κ∇a sin |φi

2
|dt. (2.8)

From equation (2.7) the associated probability density function is governed
by the Fokker-Planck equation

∂tp = β
∑
i

∂ip− κ∇ · (sin |
φi
2
|p ∇a) +

α

2
∆p. (2.9)

The angle φi is defined as follows;

cosφi =

[
(xa − xi) cos θi + (ya − yi) sin θi

((xa − xi)2 + (ya − yi)2)1/2

]
, (2.10)

and is the angle between the direction the tip cell of the ith sprout is moving
and that towards the chemo-attractant source situated at (xa, ya). The angle
θi is the direction of cell movement measured relative to the x-axis.

Cells within a sprout are measured in terms of an average cell density,
ρ, and constrained by two densities, ρmin and ρmax. The density ρmin corre-
sponds to the lowest density required to maintain a contiguous vessel while
ρmax is the confluent density at which the micro-endothelial cell stops grow-
ing as observed both in vivo and in vitro. Stokes and Lauffenberger [28]
postulate that if a sprout’s density falls to ρmin then the sprout cannot fur-
ther elongate and new buds cannot start growing off it. Consequently if the
proliferation rate and cell redistribution rate are not great enough in compar-
ison with the migration rate, the vessel will not be able to elongate because
additional cells will not be available to maintain a contiguous vessel. At ρmax
cells in this sprout stop proliferating.

Branches bud off existing sprouts and loops with a probability density,
pb, the probability per unit time per unit length of vessel. It is assumed
constant for all vessels and all positions and times. No branches or loops can
start growing off a sprout or loop whose density is ρmin. Anastomosis, the
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formation of closed loops, occurs whenever a sprout tip runs into another
sprout or loop. When this happens the tip dies and only ρ is continually
calculated. Finally the rate of change of cell density is modelled to depend
on, the proliferation rate of cells in the sprout, the rate at which the sprout is
elongating, the redistribution of cells from the parent vessel to sprout i and
the redistribution of cells from sprout i to sprouts j growing off of sprout i.
For the relevant modelling equation see [28] equation (9).

The simulations carried out by Stokes and Lauffenberger [28] on their
model give quite realistic neovascular structures. However their model only
considers the chemotactic response of endothelial cells to VEGF and does
not include other important growth factors and growth inhibitors or the
haptotactic response to fibronectin. These can, in principle, be incorporated
into the model but here we wish to view the Stokes and Lauffenberger model
in the wider context of individual cell-based models formulated on the idea
of reinforced random walks as discussed below.

3 Master Equations and the Fokker-Planck

Equation

The individual cell-based models of angiogenesis developed by Levine et
al. [18, 19] and Plank and Sleeman [23] are based on the theory of reinforced
random walks in which the fundamental ingredient is the concept of a master
equation. To begin with we introduce the concept of a transition probability
W (x|x0, t) related to the conditional probability density p(x, t|x0, t0) via the
following:

i) lim
4t→0

p(x, t+4t|x0, t)/4t = W (x|x0, t) (3.1)

uniformly in x, x0 and t for | x− x0 |≥ ε and all ε > 0;

ii) lim
4t→0

1

4t

∫
|x−x0|<ε

dx(xi − x0i)p(x, t+4t|x0, t) = Ai(x0, t) +O(ε); (3.2)

iii) lim
4t→0

1

4t

∫
|x−x0|<ε

dx(xi−x0i)(xj−x0j)p(x, t+4t|x0, t) = Bij(x0, t)+O(ε);

(3.3)
the last two being uniform in x0, ε and t.
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In addition the quantityAi(x0, t) is to be identified with the ith component
of the drift coefficient A(x0, t) while the quantity Bij(x0, t) is to be identified
with the ijth component of the diffusion matrix B(x0, t)B

T (x0, t).
Following Gardiner [11], p52, the Master Equation, in the case of jump

processes, is defined as

∂tp(z, t|y, t′) =

∫
dx [W (z|x, t)p(x, t|y, t′)−W (x|z, t)p(z, t|y, t′)] . (3.4)

In the situation when the state space consists only of integers, as required in
our individual cell-based models, the master equation takes the form

∂tP (n, t|n′, t′) =
∑
m

[W (n|m, t)P (m, t|n′, t′)−W (m|n, t)P (n, t|n′, t′)] .

(3.5)
For simplicity we again consider the one-dimensional case. Suppose the tran-
sition probability W (n|n′, t) is given by the form

W (n|n′, t) = τ̂+(n′)δn,n′+1 + τ̂−(n′)δn,n′−1 (3.6)

where δm,n is the Kronecker delta function, τ̂+(n) is the transition probability
of a one-step jump from n to n+ 1 while τ̂−(n) is the transition probability
of a one-step jump from n to n − 1. Then the master equation (3.5) takes
the form

∂tP (n, t|n′, t′) = τ̂+(n− 1)P (n− 1, t|n′, t′) + τ̂−(n+ 1)P (n+ 1, t|n′, t′)
−[τ̂+(n) + τ̂−(n)]P (n, t|n′, t′). (3.7)

This form of the master equation is, except for a slight notational change,
precisely the master equation we have exploited in previous work on cell-
based modelling of angiogenesis to describe EC motion. In this connection
we cite the references [18, 19], [23], [27]and [24].

In higher dimensions the master equation takes the form

∂tP (n, t) =
∑
N

{[τ̂−N (n + rN)P (n + rN , t)− τ̂+
N (n)P (n, t)]

+[τ̂+
N (n− rN)P (n− rN , t)− τ̂−N (n)P (n, t)]}, (3.8)

where N is the spatial dimension and rN is the directional step size.
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A continuum form of the above master equations can be obtained by
using Taylor expansions about n and a system size1 hypothesis to obtain a
so-called Kramers-Moyal expansion, cf. [11], p266. That is, we arrive at the
expansion

∂tP (n, t) =
∑
N,k

{
(rN · ∇)k

k!
[τ̂−N (n)P (n, t)] +

(−rN · ∇)k

k!
[τ̂+
N (n)P (n, t)]

}
(3.9)

and on truncating this to second order we obtain the Fokker-Planck equation

∂tP = −
∑
i

∂i [Ai(x, t)P (x, t)] +
1

2

∑
i,j

∂i∂j{[Bij(x)P (x, t)]}, (3.10)

where
Ai(x) =

∑
N

rNi [τ̂+
N − τ̂

−
N ]

and
Bij =

∑
N

rNi r
N
j [τ̂+

N + τ̂−N ]

and in which we have replaced n by the more natural space variable x. With
Bij identified as the ij-element of B(x, t)BT (x, t) we see that the Fokker-
Planck equations (2.7) and (3.10) are equivalent.

The angiogenesis model we develop here is based on an idea due to Hill
and Häder [14] who used a circular random walk model to simulate the
trajectories of swimming micro-organisms. Here each tip cell is characterised
by its speed, s(t), and direction of motion, θ(t). By considering the direction
of motion to be independent of the speed, an individual cell can be thought
of as performing a random walk on the unit circle, described by the random
variable, Θ(t), whose value is denoted by θ(t). At each time step of fixed
length, k, the cell has a probability, a(θ(t)), of turning clockwise through an
angle δ, a probability, b(θ(t)), of turning anti-clockwise through an angle δ,
and a probability, 1 − a(θ(t)) − b(θ(t)) of continuing in the same direction,
for some functions a(θ(t)) and b(θ(t)).

1In one space dimension this is a scaling assumption. That is, there is a parameter
δ such that the average step size and the variance of the step size are proportional to δ
and such that the jump probabilities increase as δ becomes small. See [26, 23] for a full
account of this both in the general case of reinforced random walks and in application to
angiogenesis.

11



This can be written as

P (Θ(t+ k)−Θ(t) = δ) = a(θ(t)),

P (Θ(t+ k)−Θ(t) = −δ) = b(θ(t)),

P (Θ(t+ k)−Θ(t) = 0) = 1− a(θ(t))− b(θ(t)).

The probability density function f , for Θ(t), is defined by:

f(θ, t)dθ = P (θ ≤ Θ(t) < θ + dθ).

In the limit as k → 0, δ → 0, with δ2

k
< ∞, it can be shown that f satisfies

the Fokker-Planck equation:

∂f

∂t
= − ∂

∂θ
(µ(θ)f) +

1

2

∂2

∂θ2
(σ2(θ)f), (3.11)

where

µ(θ) = lim
k→0,δ→0

(
1

k
E(Θ(t+ k)−Θ(t))

)
,

σ2(θ) = lim
k→0,δ→0

(
1

k
V ar(Θ(t+ k)−Θ(t))

)
and E(X) and V ar(X) denote the expectation and variance of the random
variable X. We now write (3.11) in the form

∂f

∂t
=

∂

∂θ

(
D(θ)f

∂

∂θ

(
ln

f

τ(θ)

))
, (3.12)

where we have the identification

D(θ) =
σ2(θ)

2
,

τ(θ) =
1

σ2(θ)
exp

(
2

∫
µ(θ)

σ2(θ)
dθ

)
. (3.13)

Equation (3.12) is the continuum limit of the reinforced random walk equa-
tion, see for example [26, 17],

∂tfn = τ̂+
n−1fn−1 + τ̂−n+1fn+1 − (τ̂+

n + τ̂−n )fn, (3.14)
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where fn(t) = f(nδ, t).
If D(θ) = D constant, the transition rates, τ̂±n , are given by the nor-

malised barrier model

τ̂±n = 2λ
τ((n± 1

2
)δ)

τ((n+ 1
2
)δ) + τ((n− 1

2
)δ)

(3.15)

where λδ2 = D. The time spent at θ = nδ before turning is 1
2λ

, independent
of n.

If D(θ) is not constant, the transition rates may be written as

τ̂±n = 2λ̄
λ((n± 1

2
)δ)τ((n± 1

2
)δ)

τ((n+ 1
2
)δ) + τ((n− 1

2
)δ)

(3.16)

where D(θ) = λ̄δ2λ(θ). For details of these constructions and their imple-
mentation see [19, 23, 24, 27].

Remark The stochastic differential equation for the angular movement is

dθ =
(
D(θ)

τθ
τ

+Dθ

)
dt+ 2D(θ)dW (t). (3.17)

In [24] simulations of neovascular structures based on circular reinforced ran-
dom walks give very good correlations with both in vitro and in vivo obser-
vations.

4 Conservation of Mass Formulation

The mathematical model described here is a macroscopic model governing
the evolution of endothelial cell density p(x, t) in response to growth factors,
growth inhibitors, haptotaxis as well as diffusion in the tissue matrix. From
the law of mass conservation we write

∂p

∂t
+∇ · J(x, t) = 0, (4.1)

where J(x, t) is the flux due to diffusion, chemotaxis and haptotaxis. That
is

J(x, t) = −D∇p+ p∇χ+ p∇F, (4.2)
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where χ(x, t) is the chemotaxis coefficient which depends on a variety of
growth factors and growth inhibitors, including VEGF, and F is the hapto-
taxis coefficient which depends on the tissue matrix properties, in particular
fibronectin.

On combining (4.1) and (4.2) we obtain

∂p

∂t
= D∆p−∇ · (p∇χ)−∇ · (p∇F ). (4.3)

This equation is precisely of the form (2.7) and forms the basis of angiogenesis
modelling developed in [3] and [4]. In order to simulate neovascular growth
these authors adopt an idea due to Anderson and Sleeman [1] whereby (4.3) is
spatially discretised using the well known Crank-Nicolson method. The result
is an equation which resembles the master equation (3.8) above. However
the coefficients of the density terms P are not transition probabilities but
are nevertheless treated as such. Simulations following this idea also give
good agreement with experimental and in vivo observations and have been
exploited considerably in the literature.

5 Angiogenesis Modelled as a Stochastic Dif-

ferential System

The final model presented here returns to the original stochastic differen-
tial equation (2.1) and uses this to govern the movement of the tips of the
angiogenic sprouts, whose positions will be denoted by xs.

The drift vectors and diffusion matrices for the system can be derived from
the expressions given for the Fokker-Planck equation in Section 3. Each of
the components of the multivariable Wiener process is treated independently,
giving a one-dimensional Wiener process for each of the space dimensions.
In the one-dimensional case the transition rates are defined to be

τ̂±n = 2λ
τ((n± 1

2
)h)

τ((n+ 1
2
)h) + τ((n− 1

2
)h)

(5.1)

in which h represents a spatial “step” and λh2 = D is constant. Using this
expression and Taylor series expansions of τ± provides the drift vectors:

Ai(x, t) =
∑
N

rNi [τ̂+
N − τ̂

−
N ] =

∑
N

rNi 2λ

[
hτxi +O(h2)

2τ +O(h2)

]

14



≈ λh2 ∂

∂xi
(ln τ) =

Nvar∑
k=1

D
∂

∂Uk
(ln τ)

∂Uk
∂xi

, (5.2)

Nvar being the number of variables that the transition probabilities depend
on. The rNi are the components of rN , vectors of length h in the direction
associated with the N th spatial variable. Similarly, the diffusion matrices can
be derived using the assumption that

τ̂+
N + τ̂−N = 2λ , (5.3)

which leads to

Bij =
∑
N

rNi r
N
j [τ̂+

N + τ̂−N ] = 2λh2 δij = 2D δij , (5.4)

in which δij is the standard Kronecker delta function. Since 2D = σ2, where
σ is the standard deviation of the random variable underlying the diffusion
process, the diffusion matrix for the stochastic differential equation is σI.

Now, assuming that τ =
∏Nvar

k=1 τk(Uk) (as in [23, 24]) gives

A(x, t) =
Nvar∑
k=1

D
∂

∂Uk
(ln τk(Uk))∇Uk , (5.5)

which leads to

dxs =

[
Nvar∑
k=1

D
∂

∂Uk
(ln τk(Uk))∇Uk

]
dt+ σ dW(t) . (5.6)

The movement of each of the sprout tips is governed by an equation of this
form.

The behaviour of this system will now be illustrated briefly using one
two-dimensional and one three-dimensional test case. The movement of the
sprout tips (and hence the transition probabilities) are assumed to depend
on a chemotactic response to a tumour angiogenic factor, such as VEGF
(denoted by U1 = V ), and a haptotactic response to fibronectin (denoted
by U2 = F ). The transition probabilities are taken from [24] and given by
τ = τ1(V )τ2(F ), where

τ1(V ) =


exp

(
χ0V
D

)
p = 0

(1 + γV )
χ0
γD p = 1

exp
(
− χ0

γD(p−1)(1+γV )p−1

)
p 6= 1

(5.7)
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τ2(F ) = exp

(
ρ0F

D

)
. (5.8)

The value of p can be adjusted to change the relative sensitivities of the
movement to VEGF and fibronectin. The results shown below are for p = 0,
which gives a constant response,

χk(Uk) = D
∂

∂Uk
(ln τk(Uk)) , (5.9)

to both species. Following [24], the other parameter values are taken to be
χ0 = 2, ρ0 = 0.25 and D = 0.00175. Note that in the conservation of mass
formulation of the previous section, this corresponds to taking

J(x, t) = −D∇p+
Nvar∑
k=1

p χk(Uk)∇Uk . (5.10)

A very simple algorithm, the stochastic Euler method [20], has been used
to approximate the movement of the sprout tips. A time-step ∆t is chosen,
and for each sprout tip

xn+1 = xn +

[
Nvar∑
k=1

χk(Uk)∇Uk

]
dt+ σ Ñ(0,∆t) , (5.11)

where n is the time level and Ñ(0,∆t) indicates a Gaussian distributed ran-
dom variable with a mean of zero and variance ∆t. This is the same approach
as that used by Stokes and Lauffenburger [28, 29], though here the sprout
tip position is updated directly, and the tip velocity is never explicitly calcu-
lated. In the numerical experiments below, the nondimensional time-step is
taken to be 0.00125 and 1600 time-steps are carried out (giving a final time
of T = 2).

The growth of the sprouts is augmented by two other processes.

• Anastomosis is carried out by projecting the sprout tip positions on to
a background lattice of cells. If a tip enters a cell (or the immediate
neighbour of a cell) which has previously been occupied by a sprout tip
then tip-branch anastomosis is triggered. If two tips enter each other’s
neighbourhoods at the same time then tip-tip anastomosis occurs. The
lattice used here has 500 cells in each spatial direction.
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• Branching is implemented by checking each segment of each sprout
tip’s path, and checking whether a randomly generated number (with
uniform distribution on [0, 1]) is less than pb ∆r∆t, where ∆r is the
length of the segment. If the random number is low enough then a
branch is generated. The branching rate is taken here to be pb = 4
[24].

The underlying reaction kinetics are assumed here to have reached a
steady state and are represented by simple analytic profiles, designed to
simulate a situation where there is a source of VEGF (the tumour) at one
side of the domain. Future publications will describe how the movement of
the sprout tips can be coupled with a simple model of the background chem-
istry (such as that presented in [19, 23]) but the results presented here will
simply demonstrate the use of a stochastic differential equation model for
the movement of the sprout tips.

The profiles chosen for VEGF and fibronectin are given by [24]

V (x, y) =

{
V0 exp(−k1|x− xt|) |x− xt| > rt
V0 exp(−k1rt) otherwise

F (x, y) = F0 exp(−k2y) , (5.12)

in which xt denotes the position of the centre of the tumour and rt its radius.
The domain is a square (in 2D) or cube (in 3D) of side [0, L]. The profiles
given in (5.12) are illustrated for the two-dimensional case in Figure 3. As
in [24], the free parameters are chosen to be k1 = 1, k2 = 2 (nondimension-
alisation removes dependence on V0 and F0), rt = 0.2 and xt = (0.5, 1)T in
two dimensions or xt = (0.5, 1, 0.5)T in three dimensions.

The two-dimensional test case is initialised at T = 0 with four sprouts,
evenly spaced along y = 0. The paths of the sprout tips at T = 0.5, 1, 1.5, 2
are shown in Figure 4. The sprouts are clearly drawn towards the source of
VEGF and branching and anastomosis are visible (the latter highlighted by
small solid circles). It also shows that in this situation the sprouts accelerate
towards the source of VEGF as they get closer to it (and the concentration
of VEGF increases relative to that of fibronectin). Similar behaviour is also
visible in the three-dimensional test case. This uses the same parameters but
is initialised with four evenly spaced sprouts along the line defined by x = z,
y = 0. Figure 5 shows the progress of the sprouts at times T = 0.5, 1, 1.5, 2.
The notional surface of the tumour/source of VEGF is illustrated in each
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Figure 3: The steady state profiles for VEGF (left) and fibronectin (right)
in two space dimensions.

figure. Note that the sprouts are programmed to stop when they reach the
source.

6 Conclusions

Basing the mathematical modelling of angiogenesis on stochastic differential
equations provides an underlying philosophy which unifies a number of cur-
rent modelling techniques. These include the individual cell-based models
using the theory of reinforced random walks, the macroscopic models based
on conservation of mass leading to cell density models, as well as the hybrid
methods based on numerical discretisation of cell density models.

The stochastic foundation is very general and may be used to explore
other forms of angiogenesis beyond that of sprouting angiogenesis considered
here. The ideas expressed in this paper are to be developed in future work to
include the kinetic dynamics of VEGF, haptotaxis of fibronectin as well as
proteolytic enzymes and the response to anti-angiogenic drugs. Additionally
it is of importance to model the role of pericytes in stabilising the neovascular
network as well as the incorporation of blood flow.
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Figure 4: Snapshots of the growth of the angiogenic sprouts in two space
dimensions at T = 0.5, 1, 1.5, 2.
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Figure 5: Snapshots of the growth of the angiogenic sprouts in three space
dimensions at T = 0.5, 1, 1.5, 2.
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