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An extension to the fluctuation splitting approach for approximating hyperbolic con-

servation laws is described, which achieves higher than second order accuracy in both

space and time by extending the range of the distribution of the fluctuations. Initial re-

sults are presented for a simple linear scheme which is third order accurate in both space

and time on uniform triangular grids. Numerically induced oscillations are suppressed

by applying the flux-corrected transport algorithm. These schemes are evaluated in the

context of existing fluctuation splitting approaches to modelling time-dependent flows and

some suggestions for their future development are made.
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1. INTRODUCTION

The fluctuation splitting approach to approximating multidimensional systems

of conservation laws has now reached a stage where it can be used reliably to pro-

duce accurate approximations to steady state, fluid flow problems of a complexity

relevant to industry [9], and are competitive with the best numerical methods avail-

able for modelling compressible fluid flow in more than one space dimension. The

most successful of the schemes are based on the concept of upwinding and are able

to reproduce most of the properties that have made upwind schemes so popular for

solving one-dimensional problems: second order accuracy combined with positivity

in the presence of discontinuities, and rapid convergence to the steady state, all

without the necessity for additional artificial viscosity.
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The success of the multidimensional fluctuation splitting schemes has been far

more limited when they have been applied to time-dependent problems. The scalar

PSI scheme [10] and its matrix distribution counterparts [16, 1], which are routinely

used to compute high quality steady state solutions, drop to first order accuracy in

space and time. They are surprisingly good at modelling flows with moving shocks,

see for example [5], but their accuracy deteriorates dramatically in the presence of

contact discontinuities. In fact, the basic scheme is incapable of modelling time-

dependent linear advection adequately [12].

Initial attempts at addressing these problems [15, 11, 12] met with limited suc-

cess, particularly when applied to nonlinear systems [17]. However, a variety of

promising new approaches are starting to emerge: the space-time approaches of

Csik and his coauthors [7, 8] and Abgrall and Mezine [2], the high order recon-

struction of Caraeni et al. [6], and (potentially) the sub-cell distribution approach

of Abgrall and Roe [3].

This paper presents an alternative approach, first implemented by Laird [13], to

the problem of modelling time-dependent flows accurately, focusing initially on the

approximation of the linear advection equation. The method retains the piecewise

linear representation of the solution used by the steady state schemes, so the stan-

dard conservative linearisations are still valid and any of the methods normally used

for decomposing nonlinear systems of equations can be simply combined with the

scalar scheme. The improvement in accuracy is obtained by extending the range

over which the fluctuation can be distributed. Third order accuracy in space can

be achieved in a very compact manner, though higher orders would be considerably

more complicated.

Comparable accuracy in time is achieved in two ways: (1) through the appli-

cation of a TVD, Runge-Kutta discretisation [18] to the time derivative, and (2)

use of a discrete form derived from the Lax-Wendroff approach, in which the Tay-

lor series approximating the evolution of the system in time is rewritten in terms

of spatial derivatives (via the original partial differential equation) which are then

approximated to an appropriate order of accuracy. As they stand, the methods are

not inherently positive, so unphysical oscillations are removed using Flux-Corrected

Transport (FCT) [21, 14].

In Section 2, fluctuation splitting for the scalar advection equation (specifically,

2



the PSI scheme) will be described briefly. This is followed by a description of how

the range of the distribution can be extended to give higher order spatial accuracy,

along with the two methods of achieving the corresponding accuracy in time, the

application of FCT, and a brief analysis of the stability of the resulting schemes.

Section 4 contains a series of results obtained for the linear advection equation,

illustrating the current capabilities of this approach, and the paper finishes with

brief conclusions and suggestions for future work.

2. FLUCTUATION SPLITTING FOR ADVECTION

Consider the scalar conservation law,

ut + fx + gy = 0 or ut + ~λ · ~∇u = 0 (1)

where ~λ =
(

∂f
∂u

, ∂g
∂u

)T

defines the appropriate advection velocity. The fluctuation

associated with this equation is a cell-based quantity which is given by

φ = −

∫ ∫

△

~λ · ~∇u dxdy =

∮

∂△

u~λ · d~n (2)

where ~n represents the inward pointing normal to the boundary of the cell.

The discrete form of φ is evaluated using an appropriate (conservative) linearisa-

tion [10]. When the integration in Eq. (2) can be carried out exactly the fluctuation

can be written

φ = −S△
~̂λ · ~∇u = −

1

2

3∑

i=1

ui
~̂λ · ~ni (3)

where S△ is the cell area and the symbol ·̂ indicates an appropriately linearised

quantity. The index i loops over the vertices of the triangle and ~ni is the inward

unit normal to the ith edge (opposite the ith vertex) multiplied by the length of

that edge. In the special case of linear advection a conservative linearisation can

be constructed simply by assuming that u varies linearly over each triangle with

the discrete solution values stored at the nodes and continuity across the edges of

the grid cells [10].

A forward Euler discretisation of the time derivative leads to an iterative update

of the nodal solution values which is generally written [10] as

un+1
i = un

i +
∆t

Si

∑

j∈∪△i

αj
i φj (4)
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where Si is the area of the median dual cell corresponding to node i (one third of

the total area of the triangles with a vertex at i), αj
i is the distribution coefficient

which indicates the appropriate proportion of the fluctuation φj to be sent from cell

j to node i, and ∪△i represents the set of cells with vertices at node i. Conservation

is assured as long as
∑

i∈△j

αj
i = 1 ∀j (5)

where △j represents the set of nodes at the vertices of cell j, i.e. the whole of each

fluctuation is sent to the nodes. Note that the distribution has been restricted here

so that a cell can only make contributions to nodes at its own vertices. This will

be relaxed later on in order to obtain higher orders of accuracy.

2.1. The PSI Scheme

For steady state problems, the most commonly used scalar fluctuation splitting

scheme is the PSI scheme, devised by Struijs [20] and formulated algebraically by

Sidilkover and Roe [19] as follows.

1) For each triangle, locate the downstream vertices, i.e. those for which

~̂λ · ~ni > 0 (6)

where ~ni is the inward pointing normal to the edge opposite vertex i.

2a) If a triangle has a single downstream vertex, node i say, then that node

receives the whole fluctuation, so

ui → ui +
∆t

Si

φ (7)

while the values of u at the other two vertices remain unchanged.

2b) Otherwise, the triangle has two downstream vertices, i and j say, and the

fluctuation is divided between these two nodes so that

ui → ui +
∆t

Si

φ∗
i uj → uj +

∆t

Sj

φ∗
j (8)

where φ∗
i + φ∗

j = φ.

The fluctuations in Eq. (8) are defined as the limited quantities,

φ∗
i = φi − L(φi,−φj) φ∗

j = φj − L(φj ,−φi) (9)
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where, following the N scheme [10],

φi = −
1

2
~̂λ · ~ni(ui − uk) φj = −

1

2
~̂λ · ~nj(uj − uk) (10)

in which k denotes the remaining (upstream) vertex of the triangle and L

denotes the minmod limiter function,

L(x, y) =
1

2
(1 + sgn(xy))

1

2
(sgn(x) + sgn(y))min(|x|, |y|) . (11)

The distribution coefficients, αj
i in Eq. (4), can be derived easily from Eqs. (7)–

(10), see [10]. The resulting scheme is globally positive and therefore conditionally

stable, the appropriate restriction on the time-step being

∆t ≤
Si

∑
j∈∪△i

max

(
0, 1

2
~̂λj · ~n

j
i

) (12)

This is the low order, non-oscillatory scheme which will be used later when the

FCT algorithm is applied to the high order schemes described below. Note that it

is only second order accurate at the steady state.

3. EXTENDING THE STENCIL

Existing fluctuation splitting schemes assume that the fluctuation within each

grid cell will only be used to update the nodal solution values at the vertices of

that cell. It is, however, simple to extend the range over which the fluctuation is

distributed (and hence the stencil of the scheme) without seriously affecting the

compactness of the scheme, although there would be a slight increase in inter-

processor communication in any parallel implementation of the method.

In this work, the vertices of edge-neighbour cells are included in the distribution

process, as illustrated in Figure 1. An additional memory (and parallel commu-

nication) overhead comes from the storage of 3 more nodes for each cell, and a

little extra work is required in calculating the associated distribution coefficients,

but the calculation of the fluctuations remains unchanged. Extending the stencil in

such a way can achieve third order accuracy on grids with a regular connectivity.

This leaves 3 degrees of freedom to be specified on a grid of equilateral triangles (2

too few to achieve fourth order accuracy) which can be used to give an adaptive

stencil. Here, an upwind bias is introduced with stability and positivity in mind.
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up to third orderup to second order

FIG. 1 The standard (left) and extended (right) distribution patterns for fluctua-

tion splitting schemes.

The calculation of the fluctuation remains unchanged, as does the underlying rep-

resentation of the solution, so these schemes can be extended simply to nonlinear

systems of equations using any of the procedures previously suggested for steady

state problems.

The nodal update at each time-step remains unchanged, i.e.

un+1
i = un

i +
∆t

Si

∑

j∈∪△i

αj
i φj (13)

except that, in addition to the cells with a vertex at node i, ∪△i also contains all

their edge-neighbour cells. In order to construct a third order discretisation, the

distribution coefficients should be calculated so that

1

Si

∑

j∈∪△i

αj
iφj = (~λ · ~∇u)i + O(δ3) (14)

in which δ is the local grid size.

The αj
i are calculated here using Taylor series analysis on a regular triangular

grid, constructed by bisecting each rectangle in a uniform Cartesian grid along the

same diagonal (nominally top left to bottom right, though the analysis can be re-

peated for the opposite diagonal) - so the connectivity pattern is the same for every

grid node. The algebra is extremely tedious so only the method is summarised, as

follows.
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Upwind cell distribution Upwind nodal stencil

FIG. 2 Left: the upwind distribution of the cell fluctuation for triangles with two

outflow edges (top) and with a single outflow edge (bottom). Right: the stencil

(circled nodes) for updating the node denoted by the solid circle using the ‘upwind’

third order scheme. The large arrows indicate the advection velocity.

• Construct a set of coefficients Ak which satisfy

∑

stencil

Akuk = (~λ · ~∇u)i + O(δ3) (15)

giving a third order approximation to the nodal residual. The stencil in Eq.

(15) is constructed in an upwind manner, i.e. contributions from a given cell

are only sent to the vertices of that cell and vertices of edge-neighbour cells

opposite outflow edges of the central cell, as illustrated in Figure 2. Note that

this uniquely defines the Ak.

• Calculate the distribution coefficients αj
i which satisfy

1

Si

∑

j∈∪△i

αj
iφj =

∑

stencil

Akuk (16)

which ensures that Eq. (14) holds. This is manageable because each fluctu-

ation φ is a linear combination of the solution values at the vertices of its

cell.

The adaptive (upwind) stencil gives rise to two cases, precisely those of the PSI

scheme, and these are illustrated in Figure 3. When a triangle has only one inflow
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FIG. 3 The two cases for distribution: a cell with a single inflow edge (left) and a

cell with two inflow edges (right). The distribution coefficients are shown in each

case, and the large arrows indicate the advection velocity.

edge, the nodal updates due to its fluctuation φ can be expressed as

u1 → u1 + φ u2 → u2 +
1

3
φ u3 → u3 +

1

3
φ

u4 → u4 u5 → u5 −
1

3
φ u6 → u6 −

1

3
φ (17)

The subscripts indicate the nodes, as numbered in the figure. Each node may also

receive contributions from other triangles. For triangles with two inflow edges, the

nodal contributions take the form

u1 → u1 u2 → u2 +
2

3
φ u3 → u3 +

2

3
φ

u4 → u4 −
1

3
φ u5 → u5 u6 → u6 (18)

This scheme has been designed on a specific, uniform (and, in effect, structured)

grid, but in this fluctuation distribution form it can be applied simply on any

triangular grid, although it would be expected to lose accuracy as the grid changes

shape and/or connectivity.

Initial numerical experiments verified the third order accuracy of the above

scheme in space (it is only first order accurate in time) on uniform grids but, along

with subsequent analysis, indicated that it is unconditionally unstable.
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3.1. Improving Time-Accuracy, Stability and Positivity

The first approach to improving time-accuracy simply replaces the forward Euler

discretisation of the time derivative by the third order, TVD Runge-Kutta scheme

[18], given by

u(1) = un + ∆t C[un]

u(2) =
3

4
un +

1

4

(
u(1) + ∆t C[u(1)]

)

un+1 =
1

3
un +

2

3

(
u(2) + ∆t C[u(2)]

)
(19)

in which

C[un
i ] =

1

Si

∑

j∈∪△i

αj
i φj (20)

The second method applies the Lax-Wendroff trick before discretisation, using

the Taylor series expansion of u(t + ∆t) and the original differential equation, Eq.

(1), to give

un+1
i = un

i − ∆t
(
~λ · ~∇u

)n

i
+

(∆t)2

2

[
~λ · ~∇

(
~λ · ~∇u

)]n

i

−
(∆t)3

6

(
~λ · ~∇

[
~λ · ~∇

(
~λ · ~∇u

)])n

i
+ O((∆t)4) (21)

This scheme is third order accurate in space and time if all of the space derivatives

are approximated to the appropriate order, i.e. coefficients Ak, Bk and Ck are found

such that

(
~λ · ~∇u

)n

i
=

∑

stencil

Akuk + O(δ3)

[
~λ · ~∇

(
~λ · ~∇u

)]n

i
=

∑

stencil

Bkuk + O(δ2)

(
~λ · ~∇

[
~λ · ~∇

(
~λ · ~∇u

)])n

i
=

∑

stencil

Ckuk + O(δ) (22)

In fact, the Runge-Kutta approach serves a similar purpose, although it takes a

different route to obtaining approximations of the appropriate order of accuracy.

The first derivative term in Eq. (22) can be discretised precisely as before, and

the others can be approximated using a similar approach to that given by Eqs. (15)

and (16) on the same uniform grid. Once again two cases arise in the distribution,

depending on the number of inflow edges the central triangle has. For a single
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inflow edge,

u1 → u1 +

[
1 +

1

2

∆t k1

S△

−
1

3

(
∆t k1

S△

)2
]

φ

u2 → u2 +

[
1

3
+

1

2

∆t k2

S△

+
1

6

3∑

l=1

(
∆t kl

S△

)2

−
2

3

(
∆t k3

S△

)2
]

φ

u3 → u3 +

[
1

3
+

1

2

∆t k3

S△

+
1

6

3∑

l=1

(
∆t kl

S△

)2

−
2

3

(
∆t k2

S△

)2
]

φ

u4 → u4

u5 → u5 +

[
−

1

3
+

1

3

(
∆t k2

S△

)2
]

φ

u6 → u6 +

[
−

1

3
+

1

3

(
∆t k3

S△

)2
]

φ (23)

while for a triangle with two inflow edges,

u1 → u1 +

[
1

2

∆t k1

S△

+
1

3

(
∆t k2

S△

)2

+
1

3

(
∆t k3

S△

)2
]

φ

u2 → u2 +

[
2

3
+

1

2

∆t k2

S△

−
1

6

3∑

l=1

(
∆t kl

S△

)2
]

φ

u3 → u3 +

[
2

3
+

1

2

∆t k3

S△

−
1

6

3∑

l=1

(
∆t kl

S△

)2
]

φ

u4 → u4 +

[
−

1

3
+

1

3

(
∆t k1

S△

)2
]

φ

u5 → u5

u6 → u6 (24)

where ki = 1
2
~λ ·~ni and S△ is the area of the triangle. The regions of linear stability

for these schemes on a uniform grid were calculated numerically, in terms of the

standard one-dimensional CFL numbers νx = λx∆t/∆x and νy = λy∆t/∆y, and

are shown in Figure 4. Note that swapping the orientation of the diagonals of the

uniform triangular simply reflects the stability regions in one of the zero axes.

Both schemes are third order accurate in space and time, and conditionally

stable, but neither is guaranteed to be positive, so unphysical oscillations can oc-

cur in the numerical solution. Here, this is dealt with using the Flux-Corrected

Transport (FCT) algorithm which can combine either of the above schemes with

the PSI scheme in a post-processing step which removes the unwanted oscillations.

The FCT procedure for fluctuation distribution schemes is very close to that con-
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FIG. 4 The stability regions for the third order Runge-Kutta (left) and Lax-

Wendroff (right) schemes. The grid used is constructed from a uniform rectangular

grid divided into triangles by drawing diagonals from the top left to the bottom

right vertices of each cell.

structed for finite element algorithms by Löhner et al. [14], and described in some

detail in [12, 11]. It can be summarised by the following steps (i is used as a node

index, j as a cell index):

1. For each cell: compute the low-order (LEC), high-order (HEC) and anti-

diffusive (AEC = HEC − LEC) element contributions, noting that there are

now 6 non-zero contributions in the high-order and anti-diffusive terms.

2. For each node: compute the updated low order approximation (as in Eq. (4)),

uL
i = un

i +
∑

j∈∪△i

LECj
i (25)

3. For each cell: correct the AEC to each of the 6 associated nodes so that

conservation is retained and the new solution (as defined in step 4) has no

extrema not also found in either uL
i or un

i , so

AECj
i → βj × AECj

i , (26)

where 0 ≤ βj ≤ 1. This involves

(a) evaluating, in order, the quantities

u∗
i =

{
max
min

(uL
i , un

i )
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u∗
j =

{
max
min

u∗
i ∀ i ∈ △j

u
max

min

i =
{
max
min

u∗
j ∀ j ∈ ∪△i (27)

the last of which give the extreme values of the solution at each node i,

beyond which the updated solution is not allowed to go.

(b) defining

P±

i =
∑

j∈∪△i

max
min

(0, AECj
i )

Q±

i = u
max

min

i − uL
i (28)

and subsequently

W±

i =





min (1, Q±

i /P±

i ) if P+
i > 0, P−

i < 0

0 if P±

i = 0
(29)

a nodal limiting factor for the anti-diffusive contribution which ensures

that the new solution value at node i does not violate the prescribed

bounds.

(c) calculating

βj = min
i∈△j





W+

i if AECj
i ≥ 0

W−

i if AECj
i < 0

(30)

the limiting factor on the element→vertex contribution.

4. For each node: compute the final solution update,

un+1
i = uL

i +
∑

j∈∪△i

AECj
i (31)

The only difference between this and the standard approach is that the element

contributions extend over a wider range (due to the larger stencil), which is ac-

counted for when the limits on the nodal updates are calculated. In fact, FCT

is not applied to the Runge-Kutta scheme in any of the results presented below

because it would be very expensive to do so - either applying it at each stage or

taking account of the hugely extended stencil of the overall scheme.

Note that, since the FCT algorithm simply requires a positive scheme to remove

any spurious oscillations created by a high order method, it can be applied twice in

this situation [13]. The first sweep can combine the PSI and Lax-Wendroff schemes
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A B

FIG. 5 The two types of grid used for the numerical experiments.

while the second sweep uses the resulting scheme (which is positive) with one of

third order. The result is slightly more accurate than a direct combination of PSI

and third order schemes [13], but the benefit is not enough to counteract the drop

in speed of the algorithm, so it is not used here.

4. RESULTS

The first test case involves the advection of an initial double sine wave profile,

given by

u = sin(2πx) sin(2πy) (32)

with constant velocity ~λ = (1, 2)T over the domain [0, 1]× [0, 1]. Periodic boundary

conditions are applied throughout and the approximate and exact solutions are

compared at t = 1.0 when they should both have returned to the initial profile.

Unless stated otherwise, ∆t/∆x = 0.32 for each computation, so that |νx|+ |νy| =

0.96, well within the limits implied by the stability analysis for both schemes (see

Figure 4).

The results of convergence studies carried out on a successively refined set of

uniform grids (of the two types, A and B, shown in Figure 5) are illustrated in

Figures 6 and 7. A comparison is made between the three third order methods (the

Runge-Kutta scheme (RK3) and the Lax-Wendroff style scheme without (LW3) and

with FCT (LW3+FCT)), two second order methods (the Lax-Wendroff scheme with

FCT (LW2+FCT) and a standard cell-centred finite volume scheme on triangles -

the MLG scheme of Batten et al. [4]) and the first order PSI scheme. Note that the

results for the cell-centred scheme are shifted to the left in order to give a proper

comparison in terms of the number of unknowns in the calculation.
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FIG. 6 Log-log graphs of error against grid size for the double sine wave test case

on grid A. Third order schemes are represented by solid lines, second order by

dashes and first order by dots.
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FIG. 7 Log-log graphs of error against grid size for the double sine wave test case

on grid B. Third order schemes are represented by solid lines, second order by

dashes and first order by dots.
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Double sine wave Rotating cone

Grid A Grid B Grid A Grid B

Scheme l1 l∞ l1 l∞ Peak value

PSI 0.79 0.61 0.93 0.58 0.33 0.35

LW2+FCT 2.00 2.01 2.01 2.02 0.76 0.76

Cell-centred (MLG) 1.82 0.85 0.87 0.75 0.87 0.49

Third Order (RK3) 3.01 2.99 2.03 2.01 0.81 0.86

Third Order (LW3) 3.02 3.00 1.14 1.24 0.83 0.86

Third Order (LW3+FCT) 3.00 1.67 1.14 1.36 0.76 0.77

TABLE 1

Numerical orders of accuracy for the constant advection of a doubly periodic sine

wave, along with peak solution values on the 64× 64 type A grid after a single

period of the rotating cosine-squared profile.

In the L1 norm, the new schemes show a clear improvement on grids of type

A and, as predicted by the analysis, exhibit third order accuracy. The orders

approximated on the finest grids are given in Table 1. In the L∞ norm there is a

notable loss of accuracy when FCT is applied, more than is the case for the Lax-

Wendroff scheme, suggesting that the FCT algorithm is rather restrictive when an

extended stencil is considered. As expected, given the change in connectivity, the

order of accuracy drops significantly on type B grids, and it would appear to be

better to use the Lax-Wendroff scheme with FCT. These two issues are significant if

these schemes are to become of practical use. However, this paper will only present

the underlying idea, acknowledging that achieving third order accuracy on uniform

grids with different connectivities and an alternative method of enforcing positivity

are necessary areas of future research.

The second test case involves the circular advection of the ‘cone’ given by the

initial conditions

u =





cos2(2πr) for r ≤ 0.25

0 otherwise
(33)

where r2 = (x + 0.5)2 + y2, with velocity ~λ = (−2πy, 2πx)T around the domain

[−1, 1] × [−1, 1], the solution being continually set to zero at each of the inflow
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FIG. 8 Solutions after one revolution of the cosine-squared profile on a 64 × 64

type A grid (46 × 46 for the cell-centred scheme).

boundaries. The initial profile should be advected in a circle, around the centre

of the domain, without change of shape until it returns to its original position

when t = 1.0. In the numerical experiments the ratio ∆t/∆x = 0.08, giving

|νx| + |νy| ≤ 0.711, with the maximum achieved at the corners of the domain.

The approximations obtained using the three higher order positive schemes from

before on grids of type A are compared with the exact solution in Figure 8. Here

the advantage of the third order scheme becomes clear. It removes the phase lag

which occurs with the second order schemes and consequently preserves the shape

of the profile much better, even though it doesn’t significantly improve on the peak

value, as indicated in Table 1. This gives an indication of why the error in the L∞
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FIG. 9 Solutions after one revolution of the cosine-squared profile on a 64 × 64

type B grid (46 × 46 for the cell-centred scheme).
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FIG. 10 Solutions after one revolution of the cylindrical profile on a 64 × 64 type

A grid (46 × 46 for the cell-centred scheme).
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norm isn’t improved from the Lax-Wendroff scheme: fourth order accuracy would

be required for this. Qualitatively, the results shown in Figure 9 (same test case,

different grid) are very similar, but there is a notable deterioration in the quality

of the cell-centred solution.

A similar effect is seen in results obtained using the same velocity profile but

discontinuous initial conditions:

u =





1 for r ≤ 0.25

0 otherwise
(34)

with r2 = (x + 0.5)2 + y2. The main difference to be seen in Figure 10 is the

improvement in the results of the cell-centred scheme which is designed to be very

good at maintaining steep gradients. Once more, changing to a type B grid has

little effect on the qualitative nature of the results obtained using the cell vertex

schemes.

5. CONCLUSIONS

A new fluctuation splitting approach has been presented for approximating the

two-dimensional, time-dependent scalar advection equation on triangular grids. The

method achieves third order accuracy in space and time by allowing the scheme

to use a larger stencil. This can be done very efficiently within the framework

of fluctuation splitting with little overhead beyond that of existing second order

schemes. The initial results on uniform grids are promising.

There are still many aspects which require improvement. As mentioned in

the text, an alternative to FCT should be sought for obtaining positivity: ide-

ally through a mechanism incorporated within the scheme itself. Also, the current

scheme is designed specifically for certain types of uniform grid and, although it can

be used on arbitrary triangular grids, the additional accuracy is lost. Furthermore,

the distribution does not depend continuously on the orientation of the advection

velocity, which could cause problems in regions of flow which are close to equilib-

rium. It is likely that, rather than using Taylor series analysis, which is restricted

to a uniform distribution of nodes, the coefficients in Eq. (22) should be derived

from a local interpolant of the solution, or possibly by drawing an analogy with

finite element methods which use quadratic test and trial functions – the mass-

lumped schemes can be rewritten in the above framework of extended distribution
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schemes. This would address the general accuracy and continuity issues, although

an inherent positivity property may be more elusive. However, if these goals can be

achieved then it should be simple to extend the scheme to nonlinear systems using

any of the current methods applied to steady state problems.
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