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1 Introduction

Fluctuation distribution schemes for approximating multidimensional systems
of conservation laws have developed to a stage where they can be used reliably
to produce accurate simulations of complex steady state fluid flow phenomena
using unstructured meshes [DSA00]. These methods are often required to
avoid producing unphysical, numerically induced, oscillations in the flow field,
and this has so far restricted them to second order accuracy.

More recent research has led to higher order methods (for both steady state
and time-dependent flows) which use the fact that a kth order method can be
derived by evaluating the fluctuation exactly with respect to a (k−1)th degree
polynomial representation of the dependent variable and then distributing it
in a linearity preserving manner [AR03]. So far, two successful approaches
have been proposed for constructing this high order interpolant within each
mesh cell [AR03, CF02]. A third alternative will be presented here.

As they stand, none of these three approaches can guarantee the absence
of spurious oscillations from the flow without the application of an additional
smoothing stage. This paper will briefly describe a technique which can be
combined with any of the above procedures to provide schemes which are both
higher than second order accurate and free of spurious oscillations. Brief re-
sults will be shown to demonstrate its effectiveness in approximating the scalar
advection equation on two-dimensional, unstructured, triangular meshes.

2 Fluctuation Splitting

Consider the two-dimensional scalar conservation law given by

ut + fx + gy = 0 or ut + λ · ∇u = 0 (1)

on a domain Ω, with u(x, y, t) = g(x, y, t) imposed on the inflow part of the

boundary ∂Ω. λ =
(

∂f
∂u

, ∂g
∂u

)T

defines the advection velocity associated with
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the conservation law (1). This equation has an associated fluctuation, assumed
here to be calculated over a triangular mesh cell △ and given by

φ = −

∫∫

△

λ · ∇u dΩ =

∮

∂△

u λ · dn , (2)

in which n represents the inward pointing normal to the cell boundary. It
will be assumed throughout this paper that u has a continuous piecewise
polynomial representation and the integration in (2) is carried out exactly
(though this isn’t always necessary [AB02]). Given this, a simple forward
Euler discretisation of the time derivative leads to an iterative update of the
nodal solution values which is generally written [DSBR94] as

un+1

i = un
i +

∆t

Si

∑

j∈∪△i

αj
i φj , (3)

where ∆t is the time-step, Si is the area of the median dual cell corresponding
to node i, αj

i is the distribution coefficient which indicates the appropriate
proportion of the fluctuation φj to be sent from cell j to node i, and ∪△i

represents the set of cells with vertices at node i. Conservation is assured
as long as

∑

i∈△j
αj

i = 1 , ∀j, where △j represents the set of nodes at the
vertices of cell j.

2.1 A Second Order Positive Scheme

The basis of most positive fluctuation distribution schemes is the N scheme
[DSBR94]. Its derivation relies on the fluctuation being evaluated exactly, as

φ = −
1

2

∑

i∈△

ui λ̂ · ni = −
∑

i∈△

ui ki , (4)

where the symbol ˆ indicates an appropriately linearised quantity and ni is
the inward unit normal to the ith edge (opposite the ith vertex) multiplied
by the length of that edge. The dependent variable u is assumed to vary in
a continuous piecewise linear manner, with the unknowns stored at the mesh
nodes. Now, for each triangle it is always possible to locate a pair of vertices
i2 and i3 for which ki2ki3 ≥ 0. The fluctuation can then be written

φLO = ki2(ui1 − ui2) + ki3(ui1 − ui3) = φLO
i2

+ φLO
i3

. (5)

When the choice of i2 and i3 is not unique, i.e. ki = 0 for some vertex i,
this node can be paired with either of the other vertices. This leads to an
alternative formulation of the N scheme, given by

Si1ui1 → Si1ui1 + ∆t k−

i2
(ui1 − ui2) + ∆t k−

i3
(ui1 − ui3)

Si2ui2 → Si2ui2 + ∆t k+
i2

(ui1 − ui2)

Si3ui3 → Si3ui3 + ∆t k+

i3
(ui1 − ui3) , (6)
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in which · ± denotes the positive/negative part of the quantity. This scheme
is locally (and hence globally) positive, so the iteration given by (3) is condi-
tionally stable, the appropriate restriction on the time-step being

∆t ≤
Si

∑

j∈∪△i
max

(

0, 1

2
λ̂ · nj

i

) . (7)

The contribution made by cell j to node i by the N scheme can be written
as (φj

i )
N = (αj

i )
Nφj , where φj is the fluctuation in cell j (see (6)). The

contributions due to the PSI scheme, the most commonly used of the second
order non-oscillatory fluctuation distribution schemes, can then be defined by

(φj
i )

PSI =
[(αj

i )
N ]+

∑

k∈△j
[(αj

k)N ]+
φj = (αj

i )
PSIφj . (8)

This scheme can easily be shown to be conservative, positive for the time-step
given by (7), and linearity preserving, i.e. (αj

i )
PSI is bounded so the order

of accuracy of the steady state scheme is one higher than the degree of the
polynomial used to represent u (in this case second order) [Abg01, AM03].

3 Higher Order Positive Schemes

The first stage in the creation of higher order fluctuation distribution schemes
is the construction of a higher order representation of the dependent variable
u in (2). In this work a continuous piecewise quadratic interpolant of the
nodal data is sought, though higher degree polynomials are also possible. In
previous work, quadratics have been produced in each mesh cell by either (1)
reconstructing ∇u at the mesh vertices and combining them with the nodal
values of u to satisfy the necessary degrees of freedom [CF02], or (2) storing
and updating values of u at additional nodes at the midpoints of each cell
edge [AR03]. A third approach is proposed here, which uses the values of u at
additional mesh nodes beyond the given cell to construct the local polynomial:
for a quadratic, three additional nodes are required and these are chosen to
be the vertices of the three neighbouring triangles opposite the given cell’s
edge (except for boundary cells, which are treated as special cases, and some
extreme mesh topologies, which do not occur here). This does not immediately
produce a continuous representation, which is imposed here by averaging the
two interpolants at each edge.

Unfortunately, it is easy to show that the fluctuations which result from
any of these three interpolants cannot lead to a locally positive scheme if they
are distributed locally within the mesh cell (or subcell in the case method
(2)) [Hub06]. It is, for example, possible to have a non-zero fluctuation in
a (sub)cell for which ui1 = ui2 = ui3 . The possibility of distributing the
fluctuation farther afield is currently under investigation but has yet to yield
a scheme of practical value.
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An alternative approach is considered here which overcomes this obstacle
by modifying the high order interpolant. Let ū(x) be the linear interpolant
of the values of u at the vertices of a given triangular (sub)cell and u(x) =
ū(x)+δu(x) be a higher order representation of the data within that triangle.
If the high order correction δu(x) on each (sub)cell edge i1i2 is limited to give
δu′(x) along that edge which satisfies

|δu′
i1i2

(x)| ≤ C|ui1 − ui2 | ∀ x = µxi1 + (1 − µ)xi2 , 0 ≤ µ ≤ 1 , (9)

for some finite constant C ≥ 0 then, subject to an appropriate restriction on
the time-step in (3), it is possible to distribute the fluctuation (2) due to the
modified interpolant u′(x) = ū(x) + δu′(x) to the vertices of the specified
(sub)cell in a locally positive manner [Hub06].

For a quadratic representation of u and linearly varying λ only the edge
midpoints are required by the quadrature for exact evaluation of the fluctua-
tion, so the limiting on edge i1i2 is carried out by using

u′
i1i2

=
ui1 + ui2

2
+ αi1i2(ui1 − ui2) (10)

as the limited solution value at the edge midpoint, where

αi1i2 = max

(

−C, min

[

C,
ui1i2 − (ui1 + ui2)/2

ui1 − ui2

])

. (11)

A value of C = 0.25 is chosen here. This is the largest value that guarantees
that the limited interpolant along each edge is monotonic (if it is chosen to
be of the form δu′(x) = C′ δu(x) where C′ ∈ [0, 1]). Also, larger values of C
tend to reduce the rate of convergence of the iteration (3) to the steady state.
The general case requires limiting at additional quadrature points.

As a result of the above procedure, the limited high order fluctuation can
be written

φLIM =

∮

∂△

u′
λ · n dΓ = Ki2(ui1 − ui2) + Ki3(ui1 − ui3) (12)

where i1, i2 and i3 are chosen to be precisely those vertices designated by
the N scheme (5). Explicit, bounded expressions can easily be found for Ki2

and Ki3 [Hub06]. The formulation of the N scheme given in (6) can then be
applied directly to this higher order fluctuation, i.e.

Si1ui1 → Si1ui1 + ∆t K−

i2
(ui1 − ui2) + ∆t K−

i3
(ui1 − ui3)

Si2ui2 → Si2ui2 + ∆t K+
i2

(ui1 − ui2)

Si3ui3 → Si3ui3 + ∆t K+

i3
(ui1 − ui3) . (13)

This scheme is clearly locally positive for a small enough time-step, the
limit on which is approximately inversely proportional to C. The distribu-
tion coefficients of the resulting N-like (N∗) scheme take the form (φj

i )
N∗

=
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Fig. 1. The new scheme applied to circular advection of a square wave (top) and a
cosine-squared profile (bottom).

(αj
i )

N∗

φLIM
j , and these can be limited in precisely the manner which created

the PSI scheme (8) by imposing linearity preservation on the N scheme, i.e.

(φj
i )

PSI∗

=
[(αj

i )
N∗

]+
∑

k∈△j
[(αj

k)N∗ ]+
φLIM

j = (αj
i )

PSI∗

φLIM
j . (14)

As with the PSI scheme, the limiting procedure will never increase the magni-
tude of the distribution coefficients, so the positivity condition for the scheme
(13) is actually stronger than necessary.

4 Results

The two-dimensional scalar advection equation (1) is approximated, over the
domain [−1, 1]× [0, 1] with λ = (y,−x)T and u(x, y, 0) = g(x) for x ∈ [−1, 0]
and y = 0 (where g(x) is chosen to take a variety of forms to demonstrate the
properties of the schemes) [Hub06].

Figure 1 shows the results obtained from the positive, high order scheme
derived from extending the stencil. Replacing g(x) with much smoother func-
tion, and carrying out a series of experiments on successively refined meshes
suggests an order of accuracy of 2.36 in the L1 norm and 2.23 in the L∞ norm.
Very similar results are obtained by applying the same limiting procedure to
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the submesh reconstruction and gradient recovery schemes [Hub06]. In all
cases the oscillations are removed completely and the results are significantly
better than those of the PSI scheme. All of the experiments have converged
to their steady states to machine accuracy.

5 Conclusions

A new fluctuation distribution scheme has been presented which is demon-
strated to give higher than second order accuracy at the steady state for
the scalar advection equation without introducing any spurious oscillations.
The procedure used to impose positivity on the high order scheme is gener-
ally applicable, but is here combined with an approach which reconstructs a
quadratic interpolant within each mesh cell by extending the stencil to include
the neighbouring cells’ nodes, averaging across cell edges to give continuity
(and hence conservation). This approach has also been successfully applied to
the two-dimensional inviscid Burgers’ equation, but it remains to extend it to
three-dimensional problems, higher than third order accuracy (both concep-
tually straightforward) and nonlinear systems of equations (not so). Ongoing
research has shown that this limiting procedure can also be used to con-
struct a fully consistent, positive, high order fluctuation distribution scheme
for time-dependent situations.
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