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Abstract

This paper proposes an approach to the approximation of time-dependent

hyperbolic conservation laws which is both second order accurate in space and

time (for any sufficiently smooth solution profile, even one containing turning

points) and free of spurious oscillations for any time-step. The numerical

algorithm is based on the concept of fluctuation distribution, applied on

a space-time mesh of triangular prisms, for which second order accurate

schemes already exist which are oscillation-free if the time-step satisfies a

CFL-type constraint. This restriction is lifted here by combining the concept

of a two-layer scheme with a representation of the solution which is allowed

to be discontinuous in time. Numerical results are presented in two space

dimensions, using unstructured meshes of space-time triangular prisms, for

the scalar advection equation, Burgers’ equation and the Euler equations of

gas dynamics.
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Unconditional positivity.

1. Introduction

The fluctuation distribution framework was developed as an alternative

to the finite volume approach for approximating hyperbolic systems of con-

servation laws which would allow a natural representation of genuinely mul-

tidimensional flow features. The resulting algorithms are closely related to

conforming finite elements, but their structure makes it far simpler to con-

struct nonlinear approximation schemes, and therefore to avoid unphysical

oscillations in the numerical solution. Recent reviews of the state-of-the-art

and descriptions of these schemes can be found in [1, 5, 11].

The original formulation, which has been successfully used to simulate

steady flow around complete aircraft configurations [6], led naturally to

schemes which can achieve second order accuracy in smooth flows without

introducing spurious numerical oscillations in the vicinity of discontinuities.

Those schemes, however, reduce to first order accuracy away from the steady

state, so much recent research has aimed to impose the same combination of

properties on time-dependent simulations, leading to the space-time formu-

lation [4] outlined in Section 2.

All of the aforementioned schemes are based on the assumption that the

solution varies continuously throughout the computational domain, but it is

straightforward to generalise the framework to allow discontinuities across

the faces of the mesh [3, 8]. This additional flexibility provides a number

of advantages, e.g. h- and p-adaptivity are more easily applied, solution dis-

continuities can be captured exactly when aligned with the mesh, and char-
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acteristic boundary conditions can be implemented in a fully conservative

manner. However, for the purposes of this work, the most important prop-

erty is that allowing the solution to be discontinuous in time means that the

distribution scheme used in the space-time cells no longer has to be upwind

in time. This removes the CFL-like positivity constraint on the time-step

so that a scheme can be constructed which is both second order accurate in

space and time and unconditionally positive. This scheme is summarised in

Section 3, numerical results are presented in Section 4, and a brief discussion

of current work is provided in Section 5.

2. Space-Time Fluctuation Distribution

Consider the scalar conservation law governing the evolution of an un-

known quantity u(~x, t) and given by

ut + ~∇ · ~f = 0 or ut + ~λ · ~∇u = 0 (1)

on a domain Ω, with the appropriate initial conditions and Dirichlet bound-

ary conditions imposed on the inflow part of the boundary ∂Ω. Here ~f

represents the conservative flux vector and ~λ = ∂ ~f/∂u defines the advection

velocity associated with the conservation law (1). This equation has an as-

sociated fluctuation which, for a space-time mesh cell Cj,n (assumed here to

be a triangular prism, cf. the diagram on the left in Figure 1), is given by

φj,n =
∫

Cj,n

ut + ~∇ · ~f dΩ =
∫ tn+1

tn

∫

Cj

ut + ~∇ · ~f d~x dt

=
∫

Cj

un+1 − un d~x +
∫ tn+1

tn

∫

Cj

~∇ · ~f d~x dt

=
∫

Cj

un+1 − un d~x −
∫ tn+1

tn

∮

∂Cj

~f · ~n ds dt , (2)
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in which ~n represents the inward pointing unit normal to ∂Cj , the boundary

of the space cell Cj. Assume now that u is continuous and has a piecewise

linear variation in space and in time, and that its discrete values are stored at

the nodes of the space-time mesh. The discrete fluctuation φj,n is evaluated

by combining the midpoint rule in time with exact integration in space (which

can be carried out using an appropriate, conservative, linearisation) [4]. This

gives a second order accurate representation of the fluctuation which can be

written as

φj,n =
∑

i∈Cj

|Cj|
3

(un+1
i − un

i ) +
∆t

2

∑

i∈Cj

(kiu
n+1
i + kiu

n
i )

=
∑

i∈Cj

(
∆t ki

2
+

|Cj|
3

)
un+1

i +
∑

i∈Cj

(
∆t ki

2
− |Cj|

3

)
un

i

=
∑

i∈Cj

k̃iu
n+1
i +

∑

i∈Cj

k̂iu
n
i . (3)

|Cj| is the area of the triangular space cell Cj, ki = 1
2
~λ · ~ni represent the

“inflow” parameters used by the steady state schemes, and ~λ is typically

evaluated at an appropriate cell-averaged state. The k̃i and k̂i are the space-

time “inflow” parameters, i.e. for an upwind scheme in space-time a node is

only updated if the corresponding ki > 0 [4].

The differential equation (1) is approximated at each mesh node by a

weighted average of space-time fluctuations from the neighbouring cells. A

single time-step then requires the solution of a system of equations,

∑

j,n|i∈Cj,n

αj,n
i φj,n = 0 ∀ nodes i . (4)

This could be solved directly, but in this work a pseudo-time-stepping algo-
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Figure 1: Space-time cell configurations for the different forms of scheme: • indicates the

unknown solution values when solving for a given time-step; ◦ indicates the known solution

values.

rithm is applied at each time level n,

(ul
i)

(m+1) = (ul
i)

(m) − ∆τ

|Ωi,n|
∑

j,n|i∈Cj,n

αj,n
i φj,n (5)

in which l = n, n+1 indexes the time level of the node being updated, |Ωi,n| =

1
6
∆t

∑
j|i∈Cj

|Cj|, the volume of the space-time median dual cell associated

with node i restricted to the layer starting at time level n, and ∆τ is the

pseudo-time step. The term ∆τ |Ωi,n| acts purely as a relaxation parameter.

The properties of a scheme depend on the precise choice of the distribution

coefficients αj,n
i or, equivalently, φj,n

i = αj,n
i φj,n, the contributions from cell

j, n to node i (see, for example, the contribution of Deconinck and Abgrall

to [11]).

Positivity ensures that the numerical approximations are free of unphysical

oscillations by forcing each solution value at time level n+1 to be
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a positive combination of solution values at time level n. This has

traditionally imposed a CFL-like condition on the time-step.

Linearity preservation ensures that the distribution of a fluctuation eval-

uated exactly with respect to a (k − 1)th degree polynomial represen-

tation of the flux will lead to a kth order accurate scheme [2]. It is

assured as long as the distribution coefficients αj,n
i are bounded.

Conservation ensures that discontinuities are captured correctly, and is

assured as long as, for every cell Cj,n,
∑

i∈Cj,n
αj,n

i = 1, i.e. the whole

of each fluctuation is distributed.

Compactness aids the efficiency of the algorithm, especially when paral-

lelisation is considered. For piecewise linear variation of u this simply

restricts the schemes so that a cell’s fluctuation is only distributed to

its own vertices.

Continuous dependence of the distribution coefficients on both the depen-

dent variable and the advection velocity facilitates smooth iterative

convergence at each time level.

Upwinding dictates that the discrete form should propagate signals in the

same directions and with the same speeds as those inherent in the

mathematical/physical model. This facilitates the construction of pos-

itive schemes, provides rapid and smooth iterative convergence, and

simplifies the imposition of boundary conditions.

In line with Godunov’s theorem, linear fluctuation distribution schemes can-
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not be both positive and linearity preserving. However, they can be used

as the basis for developing nonlinear schemes which satisfy all of the above

properties.

The N scheme [9] is a linear scheme with all of the desired properties

except linearity preservation. It has many equivalent forms, the most useful

for the purposes of this work being given by

(φj,n
i )N = k̂+

i (un
i − ũin) , (φj,n+1

i )N = k̃+
i (un+1

i − ũin) , (6)

where k+
i is the positive part of ki and

ũin = Ñ


∑

i∈Cj

(k̃+
i u

n+1
i + k̂+

i u
n
i ) − φj,n


 , Ñ =


∑

i∈Cj

(k̃+
i + k̂+

i )




−1

.

(7)

A linear, linearity-preserving (but not positive) scheme is the LDA scheme

[9], defined by

(φj,n
i )LDA = k̂+

i Ñφj,n , (φj,n+1
i )LDA = k̃+

i Ñφj,n . (8)

In order to obtain all of the properties, a nonlinear scheme must be con-

structed. This is often done by “limiting” the coefficients of the N scheme to

impose linearity preservation, e.g.

αj,n
i =

max(0, (αj,n
i )N)

∑
k∈Cj,n

max(0, (αj,n
k )N)

, (αj,n
i )N =

(φj,n
i )N

φj,n

, (9)

produces the PSI scheme [10], but a more flexible alternative is to blend two

schemes, such as N and LDA, i.e.

φB = θ φN + (1 − θ)φLDA where θ ∈ [0, 1] . (10)
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In this work, θ = |φj,n|/
∑

i∈Cj,n
|(φj,n

i )N | is chosen [6].

Remark: In order to satisfy the “past-shield” condition, the time-step

must be chosen so that k̂i ≤ 0, which ensures that the distribution is always

upwind in time. Otherwise some of the fluctuation would be distributed back

to time level n and therefore ignored in the solution update, so the scheme

would not be consistent.

2.1. Two-Layer Schemes

When a continuous representation of the solution is assumed, the past-

shield condition can be relaxed by the use of a pair of time layers [4]. If a

second layer is introduced (see the diagram in the middle of Figure 1) and

solved for at the same time as the first layer then it is only necessary to

enforce upwinding in time in the first layer. This means that the space-time

N scheme can be used consistently, while remaining positive, for any value

of ∆t in the second layer. It can therefore be combined with the space-time

LDA scheme to produce a scheme which is linearity preserving and positive

for any time-step, at the expense of doubling the number of unknowns in the

system of equations solved at each time-step.

3. Discontinuous Fluctuation Distribution

The fluctuation distribution concept can also be applied when the repre-

sentation of the solution is allowed to be discontinuous. This simply intro-

duces additional fluctuations derived from the jumps across the space-time

mesh cell faces [8]. If each face Fk,n is considered to be the limit of a prismatic

cell F ǫ
k,n as its breadth ǫ tends to zero then the corresponding fluctuations
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can be written

ψk,n = lim
ǫ→0

∫

F ǫ
k,n

ut + ~∇ · ~f dΩ =
∫

Fk,n

[~f t · ~nt] dΓ , (11)

in which ~f t = (u, ~f ) and ~nt = 1√
2
(1, ~n) are vectors in space-time. The factor

of
√

2 is required to renormalise this augmented vector. This leads to a

separate equation for each cell vertex i of each cell j, n, which involves both

cell-based and face-based fluctuations and takes the form

αj,n
i φj,n +

∑

k,n|i∈Fk,n

βk,n
i ψk,n = 0 , (12)

in which βk,n
i are the distribution coefficients for the face-based fluctuations.

In this paper, only discontinuities in time will be considered (see the

diagram on the right of Figure 1). The fluctuation across the lower face of

the space-time cell Ck,n, which corresponds to the space cell Ck at time tn,

can be written as

ψk,n =
∫

Ck

[~f t · ~nt] dΓ = |Ck|[ũ] = |Ck|(ũn+ − ũn−

) , (13)

where ũ is the arithmetic mean of the values of u at the vertices of cell Ck. A

positive distribution of this fluctuation which retains linearity preservation

in the overall scheme [8], is given by

ψk,n−

i = 0 , ψk,n+

i = βk,n+

i ψk,n =
|Ck|
3

(un+

i − un−

i ) . (14)

Remark 1: This is equivalent to a two-layer scheme in which the first

layer has degenerated in to a prism of height zero. However, the form of the

fluctuation (13) in this first layer and its distribution (14) are much simpler

because they no longer contain any contribution from the spatial flux terms.
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Remark 2: The positivity of the scheme generated by combining the

space-time N scheme (6) to distribute the cell fluctuations with (14) to dis-

tribute the contributions from the discontinuity in time is easily proved using

Proposition 3.12 of [5]. The contributions to the vertices associated with cell

Ck,n are given by

ψk,n−

i = 0

ψk,n+

i =
|Ck|
3

(un+

i − un−

i )

φk,n+

i = k̂+
i


un+

i +
∑

j∈Ck

Ñ(k̃+
j u

n+1
j + k̂+

j u
n+

j )




φk,n+1
i = k̃+

i


un+1

i +
∑

j∈Ck

Ñ(k̃+
j u

n+1
j + k̂+

j u
n+

j )


 , (15)

and some simple algebraic manipulation using the definition of Ñ leads to

φk,n+

i = −k̂+
i Ñ

∑

j∈Ck

k̃−j (un+

i − un+1
j ) − k̂+

i Ñ
∑

j∈Ck,i6=j

k̂−j (un+

i − un+

j ) (16)

φk,n+1
i = −k̃+

i Ñ
∑

j∈Ck,i6=j

k̃−j (un+1
i − un+1

j ) − k̃+
i Ñ

∑

j∈Ck

k̂−j (un+1
i − un+

j ) .

Applying a pseudo-time-stepping algorithm of the form (5) to these contri-

butions simply implements a forward Euler approximation of the equations

|Ωi,n|
dun+

i

dτ
= −

∑

k|i∈Ck

(ψk,n+

i + φk,n+

i )

|Ωi,n|
dun+1

i

dτ
= −

∑

k|i∈Ck

φk,n+1
i . (17)

Now note that all of the coefficients of u in (17) are non-negative, i.e.

−k̂+
i Ñ k̃

−
j , −k̂+

i Ñ k̂
−
j , −k̃+

i Ñ k̃
−
j , −k̃+

i Ñ k̂
−
j ≥ 0 , (18)
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and that |Ck|/3 ≥ 0 in ψk,n+

i . As a result, when the equations in (17) are

written in the form

|Ωi,n|
dui

dτ
= −

∑

k,n|i∈Ck,n

∑

j∈Ck,n,i6=j

cij(ui − uj) (19)

(cf. Equation (31) of [5]) all of the coefficients satisfy cij ≥ 0. Hence, by

Proposition 3.12 of [5], any converged solution of the pseudo-time-stepping

iteration (5) satisfies a discrete maximum principle for an appropriate limit

on the pseudo-time-step ∆τ . Furthermore, a discrete maximum principle is

satisfied at each intermediate stage.

4. Numerical Results

4.1. Scalar Linear Equations

The first test case presented here is used to demonstrate the order of

accuracy of the algorithm. The scalar advection equation with constant

advection in the x-direction, i.e.

ut + ux = 0 , (20)

is approximated on the spatial domain [0, 1] × [0, 1] with initial state

u0(x, y) =





cos2(2πr) if r ≤ 0.25

0 otherwise ,
(21)

with r2 = (x− 0.5)2 + (y− 0.5)2. Periodic boundary conditions are imposed

on the left and right boundaries. The problem is simulated until the final

time T = 1 on a set of 4 unstructured triangulations with the topology

shown in Figure 2. The finer ones are obtained from the coarsest via 3 steps
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of conformal refinement. Figure 3 clearly shows that close to second order

accuracy is achieved even with CFL numbers as high as 50. The blended

LDA-N solutions are also free of spurious oscillations.

Figure 2: Triangulation used for the scalar test cases.

4.2. Scalar Nonlinear Equations

The second scalar test case presented approximates the two-dimensional

Burgers’ equation,

ut +

(
u2

2

)

x

+

(
u2

2

)

y

= 0 , (22)

on the spatial domain [−1, 1] × [−1, 1] with initial solution

u0(x, y) =





1 if (x, y) ∈ [−0.6,−0.1] × [−0.35, 0.15]

0 otherwise .
(23)

The final time of the simulation is T = 1 and the problem is solved with

the blended LDA-N scheme on an unstructured triangulation of the domain

similar to the one shown in Figure 2, and with h = 1/40. Figure 4 shows

that the solution remains free of oscillations close to the discontinuity.
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Figure 3: Mesh convergence for advection of a smooth profile using continuous-in-space,

discontinuous-in-time schemes: L1 error for the LDA scheme (left); L1 error for the LDA-N

scheme (right).

4.3. Nonlinear Systems of Equations

The approaches described in Sections 2 and 3 can also be applied to

nonlinear systems of equations. The fluctuations Φ are still formed at each

time level by integrating the conservation laws over each prismatic space-time

mesh cell in that time slice [5], i.e.

U t + ~∇ · ~F = 0 −→ Φj,n =
∫

Cj,n

U t + ~∇ · ~F d~x dt , (24)

but the distribution of this fluctuation is slightly more complicated because

the upwind directions associated with the system are not immediately ap-

parent.

The most commonly-used solution has been to apply a matrix distribution
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Figure 4: Solutions to the two-dimensional Burgers’ equation using the continuous-in-

space, discontinuous-in-time LDA-N scheme: contour plots of the solutions obtained with

CFL = 2.5 (top left), CFL = 5 (top middle), and CFL = 10 (top right); data extracted

along the line y = 0.2 (bottom left), and along the symmetry line (bottom right).
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scheme [12]. In the space-time cells, analogous to Equation (3),

Φj,n =
∑

i∈Cj

K̃i U
n+1
i +

∑

i∈Cj

K̂i U
n
i , (25)

where

K̃i =
∆t

4
~A · ~ni +

|Cj|
3

I , K̂i =
∆t

4
~A · ~ni −

|Cj|
3

I , (26)

and ~A ≈ ∂ ~F/∂U represents the flux Jacobians, evaluated at an appropriate

cell-averaged state, typically derived from a conservative linearisation. The

fluctuations due to the discontinuities in time are simply

Ψk,n =
|Ck|
3

∑

i∈Ck

(Un+

i − Un−

i ) , (27)

cf. Equations (13) and (14).

The N scheme and LDA scheme can be defined precisely as before, Equa-

tions (6) and (8) respectively, except the scalar inflow parameters ki are

replaced by the inflow matrices Ki = 1
2
~A · ~n. These matrices can always be

diagonalised for the Euler equations, which leads to K± = RΛ±R−1, where

Λ is the diagonal matrix of eigenvalues of K, allowing the application of up-

winding component-by-component. The two schemes can then be blended,

cf. Equation (10), in order to obtain accurate, oscillation-free, numerical ap-

proximations.

As in the scalar case, the fluctuation due to the space-time discontinuity

is distributed in a very simple, pointwise manner, i.e. the contributions from

face j to nodes i, n− and i, n+ are given by

Ψi,n−

k = 0 Ψi,n+

k =
|Ck|
3

(Un+

i − Un−

i ) . (28)
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Preliminary results obtained using the blended LDA-N scheme to approx-

imate the Mach 3 wind tunnel with a step test case [13] are shown in Figure

6. A portion of the mesh used is shown in Figure 5. The mesh is refined close

to the corner singularity, where the characteristic size of the elements goes

from 1/80 to 1/1000. To compensate for this refinement, the CFL has been

set to 1000/80 = 12.5. The contours and the line plots demonstrate that the

solution remains free of oscillations for CFL numbers much higher than one.

Note that in the system case, the blending is performed on the scalar residual

obtained by projecting the vector quantities along characteristic directions,

as described in [2].

0.5 0.55 0.6 0.65 0.7

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

x

y

Figure 5: Supersonic backward facing step test case. Close up view of the mesh.

The accuracy of the LDA and LDA-N schemes has been tested on the

constant density vortex advection problem proposed in [7]. Mesh convergence

plots for different CFL values are reported in Figure 7, in which the L2 norm

of the pressure error is plotted. As in the scalar case, the computations have

been run on triangulations similar to that shown in Figure 2, the finer grids

having been obtained by successive steps of conformal refinement. For the

LDA-N scheme one more grid has been used to better verify the behaviour of

the scheme. The results show that, for the Euler equations, second or almost
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Figure 6: Supersonic backward facing step test case. Density contours, and density dis-

tribution along the lines y = 0.2 (containing the corner singularity), and y = 1.0 (upper

wall) at times 0.5 (top), 1.5 (middle), and 4.0 (bottom). Flow is from left to right with

M∞ = 3.0 and the CFL is 12.5.
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second order accuracy is still achieved for all CFL numbers. Clearly, the

nonlinear scheme has a much larger error and the slopes can be improved.

This shows that better definitions of the blending parameter have to be

investigated.
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Figure 7: Grid convergence for the constant density vortex advection problem : L2 pressure

error for the LDA scheme (left); L2 pressure error for the LDA-N scheme (right).

5. Discussion

A new formulation has been presented for fluctuation distribution schemes

which is based on a solution representation which is discontinuous in time.

This formulation allows an arbitrarily large time-step to be taken without

introducing unphysical oscillations in to the numerical solution. It has also

been shown that for scalar linear problems with smooth initial conditions the

scheme is second order accurate.

The penalty incurred with respect to a standard implicit discretisation is

the doubling of the number of unknowns/nonlinear equations to be solved

18



at each time step. Work remains in assessing the efficiency of the approach

with respect to its accuracy versus computational time.
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