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1 Introduction

Over the last ten years a family of cell vertex finite volume methods for the solution

of the two-dimensional scalar advection equation has evolved, collectively known as

multidimensional upwind fluctuation distribution schemes (or some variant thereon),

see for example [4, 6, 9, 12, 14, 17, 16, 3], the last two of which cite many additional

references. For the approximation of steady state flows on unstructured triangular

grids these have reached a degree of maturity whereby the multidimensional schemes

reproduce most of the advantages of upwind schemes in one dimension: second order

approximation of smooth solutions, monotonicity in the presence of discontinuities,

and rapid convergence to the steady state without the necessity for additional ar-

tificial viscosity. A distinctive and attractive feature of these schemes is that they

are computationally compact. They can be written as loops over elements and when

processing an element no reference is made to data outside that element. This makes

for efficient parallelisation. A theoretical attraction is that the update scheme can

incorporate insights derived from the nature of the multidimensional physics [13].

Practical application of the method has been reported by Leyland and Khobalatte [7]

and by Stoufflet [15].

Unfortunately, most of the upwind distribution schemes developed for steady state

problems are only first order accurate for time-dependent flows. This shortcoming has

been addressed with some success in [9] in which the schemes have been equated with

upwind finite element algorithms, but only at the expense of inverting a full mass

matrix. Further, this method allows spurious oscillations to occur in the solution

close to steep gradients so a flux-corrected transport step is applied [5, 8, 6] to ensure

monotonicity. A predictor-corrector method [6] in the style of MacCormack’s one-
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dimensional scheme [10] has also been constructed, but this has only proved to be

successful in a limited range of situations.

In this paper an alternative approach to the creation of monotone high reso-

lution fluctuation distribution schemes will be described. Two explicit fluctuation

distribution schemes [4], the monotone PSI scheme and the second order accurate

Lax-Wendroff scheme, are combined in the style of flux-corrected transport but in

a manner which provides greater flexibility. The limiting procedure which enforces

monotonicity is written as a fluctuation redistribution step in which the distribution

coefficients of the underlying scheme are altered in such a way that the discretisation

satisfies a local maximum principle, whilst retaining conservation and as much of the

accuracy of the basic high order scheme as possible.

For triangular elements, redistribution of the fluctuation involves three degrees of

freedom in each element, reduced to two by enforcing conservation. A slope limiting

procedure such as MUSCL [18] also has two degrees of freedom, sometimes reduced

to one by requiring that the direction of the gradient vector is not changed. The

unique feature of the present method is that the two degrees of freedom are coordi-

nated whenever possible to retain, in a certain sense, local second order accuracy. To

achieve this, the concept of a distribution point for a fluctuation distribution scheme

will be described and related to monotonicity conditions derived from the local so-

lution. These conditions define a region in which the distribution point should lie.

Furthermore, the equivalent equation for the scheme will be used to construct a pre-

ferred direction for the movement of the distribution point when the redistribution is

carried out.

In Section 2 current multidimensional upwind schemes for solving steady state
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problems are described. The next section describes the technique of fluctuation re-

distribution which is used to impose monotonicity and methods by which high order

accuracy can be retained. Results are presented for two time-dependent scalar advec-

tion test cases in Section 4 followed by a brief discussion of conclusions and further

work.

2 Steady State Schemes

Consider the two-dimensional scalar advection equation,

ut + fx + gy = 0 or ut + ~λ · ~∇u = 0 , (2.1)

where ~λ =
(

∂f

∂u
, ∂g

∂u

)T

defines the advection velocity. The fluctuation associated with

this equation is a cell-based quantity which, in the case of a divergence-free advection

velocity, ~∇ · ~λ = 0, is given by

φ = −
∫ ∫

△

~λ · ~∇u dx dy

=
∮

∂△
u~λ · d~n , (2.2)

where ~n represents the inward pointing normal to the boundary of the cell.

The numerical scheme is constructed from a discretisation of the integrated form

of (2.1) by evaluating the quantity φ defined in (2.2) within each cell and then dis-

tributing it to the nodes of the grid, i.e. a distribution of the fluctuation is carried

out.

The discrete form of φ is evaluated using an appropriate (conservative) linearisa-

tion [4]. When the integration in (2.2) can be carried out exactly the fluctuation can

be written

φ = −S△
~̂λ · ~∇u , (2.3)

4



where S△ is the cell area and the symbol ·̂ indicates an appropriately linearised quan-

tity. In the special case of linear advection a conservative linearisation can be con-

structed simply by assuming that u varies linearly over each triangle with the discrete

solution values stored at the nodes and continuity across the edges of the mesh cells

[4].

Combining the above approximation of the flux terms with a simple forward Euler

discretisation of the time derivative leads to an iterative update of the nodal solution

values which is generally written [4] as

un+1
i = un

i +
∆t

Si

∑

j∈∪△i

αj
iφj , (2.4)

where Si is the area of the median dual cell corresponding to node i (one third of the

total area of the triangles with a vertex at i), αj
i is the distribution coefficient which

indicates the appropriate proportion of the fluctuation φj to be sent from cell j to

node i, and ∪△i represents the set of cells with vertices at node i. Conservation is

assured as long as

∑

i∈△j

αj
i = 1 ∀j , (2.5)

where △j represents in this the set of nodes at the vertices of cell j, i.e. the whole of

each fluctuation is sent to the nodes.

In fact, the accuracy of these schemes can be improved slightly by altering the

weighting of the nodal updates in a manner which ensures that linear initial data

on an arbitrary grid remains linear after each time-step [1, 6]. This is equivalent to

constructing a consistent, mass-lumped upwind discretisation of the equation. The

resulting nodal update, given by

un+1
i = un

i +
∆t

∑
j∈∪△i

αj
iS△j

∑

j∈∪△i

αj
iφj , (2.6)
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has been used in all PSI scheme computations reported here. This replaces the fixed

area Si associated with the ith node by
∑

αi
jS△j

wherever Si appears. Note that this

modification has no effect on the conservative nature of the distribution scheme.

2.1 The PSI Scheme

The distribution coefficients for the PSI scheme, αj
i in (2.4), are chosen so that the

resulting scheme is conservative, linearity preserving (second order accurate at the

steady state) and positive (monotone). There is generally some degree of ambiguity

associated with the definition of ‘monotone’ in two dimensions but here it will always

be used to denote a scheme that doesn’t create new extrema at the next time level.

The PSI scheme, which was devised by Struijs [17] and formulated algebraically

by Sidilkover and Roe [14] as follows, has all of the above properties.

1) For each triangle, locate the downstream vertices, i.e. those for which

~̂λ · ~ni > 0 , (2.7)

where ~ni is the inward pointing normal to the edge opposite vertex i.

2a) If a triangle has a single downstream vertex, node i say, then that node receives

the whole fluctuation, so

ui → ui +
∆t

Si

φ , (2.8)

while the values of u at the other two vertices remain unchanged.

2b) Otherwise, the triangle has two downstream vertices, i and j say, and the fluc-

tuation is divided between these two nodes so that

ui → ui +
∆t

Si

φ∗

i ,
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uj → uj +
∆t

Sj

φ∗

j , (2.9)

where φ∗
i + φ∗

j = φ.

The fluctuations in (2.9) are defined as the limited quantities,

φ∗

i = φi − L(φi,−φj) ,

φ∗

j = φj − L(φj,−φi) , (2.10)

where

φi = −
1

2
~̂λ · ~ni(ui − uk) , φj = −

1

2
~̂λ · ~nj(uj − uk) , (2.11)

in which k denotes the remaining (upstream) vertex of the triangle and L denotes

the minmod limiter function,

L(x, y) =
1

2
(1 + sgn(xy))

1

2
(sgn(x) + sgn(y)) min(|x|, |y|) . (2.12)

The scheme is globally positive and therefore stable, the appropriate restriction on

the time-step being

∆t ≤
Si

∑
j∈∪△i

max
(
0, 1

2
~̂λj · ~n

j
i

) . (2.13)

The above algorithm is second order accurate only at the steady state. This can

be explained by considering the application of the limiter in step 2b). It takes the

contributions φi and φj (2.11) due to the first order N scheme [4] and redistributes

the fluctuation between the two downstream vertices (along the outflow edge) which,

in some sense, gives second order accuracy only in the cross-stream direction. The

scheme is first order accurate in the streamwise direction (in fact on a regular grid

with edges aligned with the flow it reduces to the one-dimensional first order upwind

scheme) but at the steady state this is irrelevant because the solution is constant

parallel to the streamlines.
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In the following sections the PSI scheme will be used as the basis of a monotone

second order accurate scheme for approximating time varying solutions of the two-

dimensional scalar advection equation on triangular grids.

2.2 The Lax-Wendroff Distribution Scheme

The Lax-Wendroff scheme [4] is the unique single-step, second-order accurate fluc-

tuation distribution scheme on triangles with a compact stencil (each nodal update

depends only on the solution values at neighbouring nodes). The distribution coeffi-

cients required by (2.4) to give this scheme are

αj
i =

1

3
+

∆t

4S△j

~λj · ~n
j
i , (2.14)

where S△j
is the area of the jth cell and ~nj

i is the scaled inward pointing normal to

the edge of triangle j opposite the vertex at node i. The limit on the time-step at a

node i for the stability of this scheme is taken to be

∆t ≤ 2 min
j∈∪△i



 S△j

maxl∈△j

(
|~λj · ~n

j
l |

)



 , (2.15)

where the index l covers the vertices of each cell in the local patch surrounding the

node.

3 Limiting by Fluctuation Redistribution

The new fluctuation redistribution technique combines two numerical schemes, a low

order monotone scheme, taken here to be the PSI scheme of Section 2, and a high

order (non-monotone) scheme to which the smoothing will be applied, such as the

Lax-Wendroff scheme. The technique can be considered as a generalisation of the
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flux-corrected transport (FCT) algorithm [8, 19] and as such, requires that each of

the underlying schemes be written in a form which isolates the contribution of each

individual grid cell to the nodes of the grid. An antidiffusive cell contribution is then

calculated by taking the difference between the high order and low order contributions.

This is then limited in such a way as to prohibit unwanted extrema in the solution

whilst retaining as much of the antidiffusive component as possible. As a result, the

high order scheme should dominate the algorithm in smooth regions of the flow while

the first order scheme is favoured where the solution gradient is locally high.

The fluctuation redistribution algorithm can be described in the notation of [8] by

the following simple steps:

1. For each element

(a) Compute the Low order Element Contribution (LEC) from the PSI scheme.

(b) Compute the High order Element Contribution (HEC) from the Lax-Wendroff

scheme.

(c) Calculate the Antidiffusive Element Contribution (AEC), as given by

AEC = HEC − LEC . (3.1)

2. For each node

• Compute the updated low order solution,

uL
i = un

i +
∑

j∈∪△i

LECj
i . (3.2)

3. For each element

• Correct the AEC to each cell vertex so that conservation is retained and

the new solution (as defined in step 4) has no extrema not also found in
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either uL
i or un

i , so

AECj
i → βj

i × AECj
i , (3.3)

where, usually, 0 ≤ βj
i ≤ 1. The crucial ingredient here is the computation

of βj
i , which is discussed in detail below.

Note that the FCT approach consists of using a single β for each triangle,

i.e. βj
i ≡ βj, which automatically ensures conservation. In the present

formulation the possibility of using a different β for each node is considered.

Care must be taken to ensure conservation, which is achieved as long as

the final scheme can be cast as a distribution scheme (2.4) satisfying the

conservation condition (2.5). The distribution point concept introduced in

the next section is particularly useful in this respect.

4. For each node

• Calculate the final solution update,

un+1
i = uL

i +
∑

j∈∪△i

AECj
i . (3.4)

The limiting procedure of step 3 is designed to make AECj
i as large as possible

without introducing new extrema and without knowing in advance the nodal updates

due to the high order scheme in adjacent cells. It involves the following calculations

within each triangular element:

i. Evaluate, in order, the quantities

u∗

i =
{
max
min (uL

i , un
i )

u∗

j =
{max
min u∗

i ∀ i ∈ △j

u
max

min

i =
{max
min u∗

j ∀ j ∈ ∪△i , (3.5)
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the last of which give the extreme values of the solution at each node i, beyond

which the updated solution is not allowed to go. Note that uL
i can be calculated

for this purpose using the maximum stable local time-step (rather than the

actual time-step) to give the least restrictive bounds on the nodal updates.

ii. Define

P±

i =
∑

j∈∪△i

max
min (0, AECj

i )

Q±

i = u
max

min

i − uL
i (3.6)

and subsequently

W±

i =






min (1, Q±
i /P±

i ) if P+
i > 0, P−

i < 0

0 if P±
i = 0 ,

(3.7)

a nodal limiting factor for the antidiffusive contribution which ensures that the

new solution value at node i does not violate the prescribed bounds.

iii. Finally calculate

(βj
i )

max =






W+
i if AECj

i ≥ 0

W−
i if AECj

i < 0 ,

(3.8)

the limiting factor on the element→vertex contribution.

The above procedure differs from FCT, as described for finite element schemes in [8],

in that it applies separate bounds to each of the cell→vertex contributions, providing

an extra degree of flexibility for the limiting.

The scheme applies the limiting to the difference between the element contributions

of the two underlying schemes. In the case of any explicit fluctuation distribution

scheme the splitting into these components is straightforward since the vector of nodal
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residuals Rn is assembled directly from the aforementioned element contributions and

it is clear from both (2.4) and (2.6) that the component of the vector relating to node

i takes the form

Ri =
∑

j∈∪△i

αj
iφj =

∑

j∈∪△i

Rj
i , (3.9)

a simple sum of neighbouring element contributions. Thus, the fact that

1

∆t
ML ∆nUL = −Rn , (3.10)

in which ML is a lumped mass matrix (constructed by analogy with finite element

schemes [9, 6]) and the symbol ∆n(·) = (·)n+1 − (·)n represents a time difference,

implies that the element contribution from cell j to node i can be written

(L/H)ECj

i = ∆tML
−1 (αj

iφj) 1i , (3.11)

in which 1i is the vector with zero entries except for the ith component, which takes the

value 1. ML is simply the diagonal matrix whose nonzero entries are the nodal areas

used to weight the updates in (2.4) or (2.6), so all of the inversion operations are local.

The differences between the PSI and Lax-Wendroff schemes are in the distribution

coefficients αj
i and, if the scheme defined by (2.6) is used, in the definition of the nodal

areas which constitute the diagonal entries ML. It only remains to choose the values

of the limiting coefficients βk in (3.8).

3.1 The Distribution Point

Consider a single grid cell in isolation: the distribution point is defined to be the

point whose local area coordinates are the distribution coefficients of the scheme for

that triangle. For simplicity, it will be assumed from now on that the distribution

coefficients are non-negative (true for both the Lax-Wendroff and PSI schemes) so
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that the distribution point is always within the cell or on its boundary. Figure 3.1

shows examples of typical distribution points for the two schemes considered in here.

Note that the distribution point lies on the outflow edge (or at the downstream vertex

of a cell with one inflow edge) of the triangle when the scheme is fully upwind.

~d
~d =

~λ∆t
2

1

3

2

1

0

3

2

0

~λ

Figure 3.1: The position of the distribution point for the Lax-Wendroff scheme (left)

and in the two-target case for a fully upwind scheme, e.g. PSI (right).

The relationship between the distribution coefficients and the local area coordi-

nates can be written explicitly, using the numbering of Figure 3.1 and indexing the

coefficients by vertex number, as

α1 =
Area 230

Area 123
, α2 =

Area 310

Area 123
, α3 =

Area 120

Area 123
, (3.12)

from which it is obvious that

α1 + α2 + α3 = 1 , (3.13)

so the scheme is conservative, and that αk ≥ 0 as long as the distribution point

remains within or on the triangle.

It is useful to note that the movement of the distribution point is equivalent to the

redistribution of the fluctuation between the vertices of the triangle. Furthermore,
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moving the distribution point parallel to an edge keeps constant the proportion of the

fluctuation being sent to the opposite vertex, i.e. the redistribution is taking place

between the two nodes on that edge.

3.2 The Equivalent Equation

The diffusion vector ~d labelled in Figure 3.1 represents the displacement of the distri-

bution point from the centroid of the triangle (the distribution point of a symmetric

central scheme). It is useful to note that a scheme with diffusion vector ~d can be

shown (see Appendix A) to have the second order equivalent equation

ut + ~λ · ~∇u = ~d · ~∇(~λ · ~∇u) . (3.14)

The right hand side of (3.14) represents the numerical diffusion of the distribution

scheme and can be used in the analysis of the accuracy of the method.

Further, simple geometric arguments can be used to show that the distribution

coefficients of any scheme defined locally by a diffusion vector ~dj are given by

αj
i =

1

3
+

1

2S△j

~dj · ~n
j
i . (3.15)

The relationship with the Lax-Wendroff scheme is obvious and comparison with (2.14)

immediately gives

~dj =
~λj∆t

2
, (3.16)

as noted in Figure 3.1.

The equivalent equation can be used to suggest a method of redistributing the

fluctuation by first noting that (3.14) may be rewritten

ut + ~λ · ~∇u =
~λ∆t

2
· ~∇(~λ · ~∇u) +



~d −
~λ∆t

2



 · ~∇(~λ · ~∇u) , (3.17)
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which introduces the diffusion vector of the Lax-Wendroff scheme (3.16). The first

term on the right hand side of (3.17) represents the numerical diffusion of the Lax-

Wendroff scheme, which is second order accurate, while the second term provides

additional, unwanted, diffusion. However, any choice of ~d such that

~d −
~λ∆t

2
⊥ ~∇(~λ · ~∇u) (3.18)

will make the unwanted term vanish, so the corresponding distribution scheme should

be second order accurate for the given local data. Therefore, moving the distribution

point perpendicular to the local value of ~∇(~λ · ~∇u) should not change the order of

accuracy of the local discretisation.

It is important to note here that the second derivative in (3.18) can be approxi-

mated locally by a first derivative since

~∇(~λ · ~∇u) = −~∇ut (3.19)

and ut can be approximated simply from the unlimited high order update (which has

already been calculated as part of this FCT-type limiting procedure) using

~∇ut =
1

∆t

(
~∇un+1 − ~∇un

)
. (3.20)

This avoids calculating the second order spatial derivative that appears in (3.18)

directly and allows the overall algorithm to remain compact since (3.20) still involves

only local operations.

3.3 The Monotonicity Region

The bounds defined by (3.8) can be used to construct a region within each triangle

inside which all distribution points guarantee a monotone scheme. An example of

such a monotonicity region is shown shaded in Figure 3.2.
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The monotone scheme is constructed from low order (LO) and high order (HO)

updates. When combined like this it is considerably simpler to use the form (2.4)

for the nodal updates of both schemes, so the limited distribution coefficients can be

expressed as

αj
i = (αj

i )
LO + βj

i

(
(αj

i )
HO − (αj

i )
LO

)
, (3.21)

in which the βj
i are precisely the limiting coefficients of (3.8). The more accurate low

order update (2.6) would require the coefficients in (3.21) to be scaled by the weighted

nodal areas. From (3.21) it can be seen that βj
i = 0 leads to the PSI coefficients while

βj
i = 1 returns the Lax-Wendroff scheme.

Conservation requires that

∑

i∈△j

αj
i = 1 ∀j , (3.22)

so

∑

i∈△j

βj
i

(
(αj

i )
HO − (αj

i )
LO

)
= 0 . (3.23)

There are three terms in the sum on the left hand side of (3.23), which represent, de-

pending on one’s point of view, either the displacement of the distribution point from

that of the PSI scheme (in terms of area coordinates) or the additional contributions

from the fluctuation to the corresponding vertices of the cell.

In general

(0 = ) (βj
i )

min ≤ βj
i ≤ (βj

i )
max ( ≤ 1) , (3.24)

which describes a pair of ‘tramlines’ parallel to edge i of triangle j, illustrated in Figure

3.2, for a single triangular cell, by dashed/dotted lines. The bounds 0 ≤ βj
i ≤ 1

have been imposed here for simplicity. They can, with some effort, be extended

considerably [6] but we do not yet have convincing motivation to recommend this. As
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βmax
3

βmin
3

βmax

2

βmin

2

βmin
1

βmax

1

ut = constant

2

3

1

fluctuation
redistribution

LW

PSI

FCT

~λ

Figure 3.2: A monotonicity region (shaded dark grey) for the distribution point based

on the PSI and Lax-Wendroff schemes.
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it stands, the monotonicity region (shaded grey in the figure) lies within the triangle

and between the distribution points of the two underlying schemes. Placing the

distribution point anywhere within this shaded area ensures that the subsequent nodal

updates will not create any new local extrema at the next time level and, as a result,

imposes stability on the scheme. In order to maintain accuracy the distribution point

can be positioned optimally, by placing it at the point within the monotonicity region

which lies closest to the contour line of ut passing through the high order distribution

point, minimising the additional numerical diffusion in the related equivalent equation

(3.17).

Note that the perpendicular distance of each tramline from its parallel cell edge

depends linearly on the corresponding β and that β = 0 defines a line passing through

the low order distribution point while β = 1 corresponds to the parallel line through

the high order distribution point. The linear dependence allows the monotonicity

region to be constructed from simple geometric considerations. Furthermore it implies

that FCT, which for a cell j is given by

βj
i = min

i∈△j

(βj
i )

max ∀ i ∈ △j , (3.25)

will position the distribution point at the intersection of the straight line joining the

Lax-Wendroff and PSI distribution points with the boundary of the monotonicity

region, as shown in Figure 3.2.

3.4 Fluctuation Redistribution

Two schemes have been described in Section 2, one having second order accuracy

(Lax-Wendroff) and the other being monotonic (PSI), which can be combined to

produce a new scheme with improved properties. In essence this procedure involves
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constructing the monotonicity region of Section 3.3, finding the distribution point

within this region which minimises the error term according to the equivalent equation

(3.17), and finally redistributing the fluctuation accordingly. The position to which

the distribution point is moved depends not only on the extent of the monotonicity

region but also on the ‘preferred direction’ (perpendicular to a local approximation

of ~∇ut) suggested by the equivalent equation (3.17).

The calculation of the limited distribution coefficients therefore takes the following

form:

• Construct the monotonicity region surrounding the low order distribution point

using the bounds on the cell→vertex contributions defined by (3.8).

• Find the line passing through the high order distribution point perpendicular

to the locally constructed value of ~∇ut (i.e. a contour line of ut).

• Calculate the position of the point in the monotonicity region closest to the line

defined above and take this to be the distribution point of the limited scheme.

If the line intersects the region then take the point of intersection closest to

the high order distribution point. (Note that when the contour line does not

intersect the monotonicity region the limited distribution point will be at a

corner of the region.)

The limited distribution point for the example illustrated in Figure 3.2 is indicated

by a circle.
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4 Results

The practical order of accuracy of the new scheme has been investigated using various

test problems of which the first is the advection of an initial profile given by the double

sine wave function

u = sin(2πx) sin(2πy) , (4.1)

with velocity ~λ = (1, 2)T over the domain [0, 1]× [0, 1]. Periodic boundary conditions

are applied and the solutions are compared at t = 1.0 when they should have returned

to the initial profile. ∆t/∆x = 0.32 for each computation, giving a CFL number of

about 0.716, unless stated otherwise.

We compare the present scheme with various alternative methods and make the

comparison on two different types of grid, shown in Figure 4.1. Each is simply a square

grid with diagonals added either consistently (Type A) or in alternating fashion (Type

B). In type A grids all interior nodes belong to six elements, but in type B grids they

may belong to either four or eight. Some schemes are sensitive to this difference and

can be expected to perform less well if the grid is completely unstructured.

Solution profiles obtained on the two 32 × 32 grids shown in Figure 4.1 are illus-

trated in Figures 4.2 and 4.3, along with the exact solution. The PSI scheme (with

upwind weighted nodal areas, as in (2.6)) is clearly the most diffusive of those shown,

most markedly in the streamwise direction which, together with the nonalignment

of the flow with the mesh edges, causes some distortion of the profile. There are

only minor differences between the solutions obtained using the Lax-Wendroff and

fluctuation redistribution schemes and apart from a small phase lag, typical of Lax-

Wendroff type schemes, both retain the shape of the exact solution. The consistent

PSI scheme presented is that of März [9] with Crank-Nicolson implicit time-stepping
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Type A Grid Type B Grid

Figure 4.1: The two types of grid used

combined with the standard explicit PSI scheme via FCT to enforce monotonicity

[6]. This solution has been calculated using half the time-step of the others since

there is a significant loss of accuracy and distortion of the solution profile when the

higher CFL number is used. The cell centre upwind scheme (the MLG scheme of [2])

used to produce the final solution, is also run at half the time-step, this time because

the scheme becomes unstable otherwise. Furthermore, of all the schemes tested, the

cell centre scheme shows the greatest dependence on the orientation of the grid cells,

giving a considerably worse solution on the type B grid.

The effectiveness of the new method is illustrated further in Figures 4.4 and 4.5.

(All results have been obtained on grids of the same structure as that shown in

Figure 4.1.) Most notably, the errors for the fluctuation redistribution are almost

indistinguishable from those of the unlimited Lax-Wendroff scheme on each of the

grids and the figures in Table 1 show that both schemes achieve second order accuracy.

This has been the case on all regular grids tested.

The PSI scheme is, unsurprisingly, the least accurate (the upwind weighted up-
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Exact Solution PSI

Lax-Wendroff Fluctuation Redistribution

Consistent PSI Cell Centre

Figure 4.2: Solutions for the double sine wave test case on grid A.
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Exact Solution PSI

Lax-Wendroff Fluctuation Redistribution

Consistent PSI Cell Centre

Figure 4.3: Solutions for the double sine wave test case on grid B.
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Figure 4.4: Errors for the double sine wave test case on grid A.
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Figure 4.5: Errors for the double sine wave test case on grid B.
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Grid type A Grid type B

Scheme L1 L∞ Peak L1 L∞ Peak

PSI 0.79 0.61 0.33 0.93 0.58 0.35

Lax-Wendroff 2.01 2.00 0.81 2.02 2.00 0.82

Fluctuation Redistribution 2.00 2.01 0.76 2.01 2.02 0.76

Consistent PSI 1.48 0.98 0.86 0.58 – 0.91

Cell Centre 1.82 0.85 0.93 0.87 0.75 0.62

Table 1: Numerical orders of accuracy for the double sine wave test case and peak

solution values for the rotating cone test case.

dates (2.6) used here being slightly better than the standard approach). Less expected

is the poor performance of the cell centre upwind scheme (the MLG scheme of [2])

used here for comparison which, although second order in terms of the L1 error on

grid A, reduces to, at best, first order in each of the other cases. The consistent

PSI scheme also performs poorly on grid-type B, particularly as the mesh is refined

when the error can even increase. When the diagonal grid edges are all aligned with

the flow direction third order accuracy can be achieved, repeating the improvement

shown when a consistent mass matrix is included in the one-dimensional scheme, but

the order of accuracy seen here is at most two. It should also be noted that the

inversion of the full mass matrix required for this scheme and the smaller time-step

used make it considerably more expensive than the fluctuation redistribution scheme.

Note though, that the extra expense of the matrix inversion is of little consequence

in other types of problem, e.g. advection-diffusion, where implicit time-stepping will

be used so there is no additional cost induced by using a consistent mass matrix.
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In the above comparisons the flux-corrected transport (FCT) approach could be

applied to the fluctuation distribution scheme instead of the more general redistribu-

tion used here. In most of the experiments carried out the two solutions are almost

indistinguishable, e.g. when the limiter is rarely applied, although it is noticeable that

the fluctuation redistribution improves relative to FCT as the mesh is refined. How-

ever, there are occasions when the extra flexibility of the fluctuation redistribution

scheme provides a dramatic improvement in the quality of the solution. Figure 4.6

shows the solution accuracy on type B grids for both schemes when the monotonicity

region, as described in Section 3.3, is restricted (by removing the dependence on uL

in the first computation of (3.5)), and illustrates the advantage of the more flexible

approach, particularly as the grid gets finer.
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Figure 4.6: Errors for the double sine wave test case on grid B.

The second test case presented here involves the circular advection of the ‘cone’
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given by the initial conditions

u =






cos2(2πr) for r ≤ 0.25

0 otherwise

(4.2)

where r2 = (x+0.5)2+y2, with velocity ~λ = (−2πy, 2πx)T around the domain [−1, 1]×

[−1, 1], the solution being continually set to zero at each of the inflow boundaries.

The initial profile should be advected in a circle without change of shape until it

returns to its original position when t = 1.0. In the numerical experiments the ratio

∆t/∆x = 0.08, giving a maximum CFL number of approximately 0.711.

Solution profiles obtained on a 64 × 64 type A grid are presented in Figure 4.7.

(The solutions obtained on the type B grid are very similar except for the cell centre

scheme which is considerably more diffusive, as indicated by the peak solution values

shown in Table 1.) The PSI scheme is again clearly the most diffusive (most markedly

in the streamwise direction). This is confirmed by the peak values in Table 1. Note

that the standard PSI scheme (using (2.4) rather than (2.6)) gives a peak value of

only 0.22 after one revolution. The Lax-Wendroff scheme keeps the height of the

peak much better but oscillations are obvious in the wake of the cone - and less

clearly there is a small phase lag which positions the peak slightly downstream of its

correct position. The fluctuation redistribution scheme retains the accuracy of the

Lax-Wendroff scheme without any unwanted oscillations, but still shows the phase

lag of the parent method. The consistent PSI scheme is clearly the best of the cell

vertex schemes compared since it not only retains the peak but has negligible phase

lag. The cell centre scheme gives a comparable solution on this grid, but suffers badly

on the type B grid.

Finally, a similar but discontinuous test case is presented. The domain, velocity,
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Lax-Wendroff Fluctuation Redistribution

Consistent PSI Cell Centre

Figure 4.7: Solutions for the rotating cone test case on grid type A.
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Exact Solution PSI

Lax-Wendroff Fluctuation Redistribution

Consistent PSI Cell Centre

Figure 4.8: Solutions for the rotating cylinder test case on grid type A.
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boundary conditions and CFL number remain unchanged, but the new initial solution

profile is a cylinder, given by

u =






1 for r ≤ 0.25

0 otherwise

(4.3)

where r2 = (x+0.5)2 + y2. Qualitatively, the solutions exhibit the same properties as

the corresponding rotating cones, although in this case the cell centre scheme gives

clearly the best solution (on the type B grid it deteriorates considerably and only the

solution obtained from the PSI scheme is more diffusive).

It is clear from the solutions presented that the fluctuation redistribution scheme

is genuinely second order accurate on regular grids. The other monotonic schemes

with which it has been compared will sometimes produce better solutions, but this

is usually on very regular grids and when the flow direction is aligned with grid

edges. In more general situations the other schemes fare considerably worse, e.g. on a

simple regular grid in which the diagonals alternate in direction, whilst the fluctuation

redistribution maintains its accuracy, almost independently of the grid.

5 Conclusions

In this paper the problem of achieving high order accurate numerical solutions to the

two-dimensional scalar advection equation on triangular grids using upwind fluctua-

tion distribution schemes has been addressed.

An approach similar to flux-corrected transport in philosophy but having greater

flexibility has been described which puts together a low order monotone scheme with

a high order scheme to combine the properties of the two. The procedure involves a

redistribution of the fluctuation to impose monotonicity. Bounds on nodal contribu-
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tions are calculated in a manner similar to FCT and the distribution coefficients are

then altered so that these bounds are satisfied. Analysis of the equivalent equation

of the scheme reveals that there is also a preferred direction for the movement of the

distribution point - a point which geometrically represents the fluctuation distribution

within a cell - which allows second order accuracy to be attained more extensively by

the limited scheme. Flux-corrected transport is a special case of fluctuation redistri-

bution.

In practice, combining the PSI and Lax-Wendroff schemes via fluctuation redis-

tribution has achieved second order accuracy on simple test problems; in particular

it shows little loss of accuracy near smooth extrema. It has been compared with a

consistent upwind finite element scheme [9], also developed to enhance the properties

of multidimensional upwind schemes for time dependent flows. It is considerably less

expensive than the consistent PSI scheme, and although not as accurate on grids with

regular connectivity (Type A) it is often more accurate on grids with irregular connec-

tivity (Type B). It is also consistently more accurate than any of the high resolution,

triangle-based, cell centre finite volume schemes presented in [2].

All of the techniques here generalise to three-dimensional advection straightfor-

wardly. They also apply to the advective components of multidimensional systems of

equations [11, 12], and inhomogeneous equations can be dealt with either by including

the source terms within the decomposition and distributing them as such or by treat-

ing the source terms separately, using an implicit discretisation where necessary. The

remaining questions to be answered for application to three-dimensional or unsteady

systems have to do with the analytical nature of the decompositions.
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[8] R.Löhner, K.Morgan, M.Vahdati, J.P.Boris and D.L.Book, ‘FEM-FCT: combin-

ing unstructured grids with high resolution’, Communications in Applied Numer-

ical Methods, 4:717–729, 1988.

[9] J.März, ‘Improving time accuracy for residual distribution schemes’, VKI PR

1996–17, von Karman Institute for Fluid Dynamics, 1996.

[10] R.W.MacCormack, ‘The effect of viscosity in hypervelocity impact cratering’,

AIAA Paper 69-354, 1969.

[11] L.M.Mesaros and P.L.Roe, ‘Multidimensional fluctuation-splitting methods

based on decomposition methods’, AIAA 95-1699, AIAA CFD Conference AIAA

CP-956, 1995.

[12] H.Paillère, E.van der Weide and H.Deconinck, ‘Multidimensional upwind meth-

ods for inviscid and viscous compressible flows’, Computational Fluid Dynamics,

number 1995–12 in VKI Lecture Series, 1995.

[13] P.L.Roe and L.M.Mesaros, ‘Solving steady mixed conservation laws by ellip-

tic/hyperbolic splitting’, Fifteenth International Conference on Numerical Meth-

ods in Fluid Dynamics, Monterey, 1996.

[14] D.Sidilkover and P.L.Roe, ‘Unification of some advection schemes in two dimen-

sions’, ICASE Report 95-10, 1995.

[15] B.Stoufflet, Private communication.

33



[16] R.Struijs, ‘The fluctuation splitting method’, Chapter 11 in Numerical Methods

for Advection-Diffusion Problems, Eds. C.B.Vreugendhill and B.Koren, Vieweg,

1993.

[17] R.Struijs, ‘A multi-dimensional upwind discretization method for the Euler equa-

tions on unstructured grids’, Ph.D. Thesis, The University of Delft, The Nether-

lands, 1994.

[18] B.van Leer, ‘Towards the ultimate conservative difference scheme V. A second

order sequel to Godunov’s method’, J. Comput. Phys., 32:101–136, 1979.

[19] S.T.Zalesak, ‘Fully multidimensional flux-corrected transport algorithms for flu-

ids’, J. Comput. Phys., 31:335–362, 1979.

A Derivation of the Equivalent Equation

The object of this appendix is to establish the relationship between the equivalent

equation of an advection scheme of fluctuation splitting type and the location of the

distribution point. Recall that the equivalent equation is the differential equation

that a numerical scheme actually solves, rather than the one that it purports to solve.

Usually, the equivalent equation is of infinite order, corresponding to the infinite

Taylor expansion of the truncation error, but in practice only the leading terms convey

useful information.

In the present context, we reverse the usual analysis by specifying the equivalent

equation. In fact we pretend that we actually wish to solve the problem defined by

ut + ~λ · ~∇u = ~d · ~∇(~λ · ~∇u) (A.1)
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and that we wish to solve it by a first order method. Here ~d is an arbitrary vector

defining a diffusive right hand side of a particular form. This diffusion vanishes in the

steady state. For the equation to be dimensionally correct ~d must have the dimensions

of a length, and we will take it to be a constant.

i

S△j

j

j + 1

A

D

C

Si

B

Figure A.1: Geometry of grid. The triangle △j with vertices i, j, j + 1 is redrawn in

isolation. The diffusion vector is ~d = ~CD.

Now we will update the node i by integrating (A.1) over the area Si of the dual

cell associated with node i:

Si

∂ui

∂t
= −

∫ ∫

Si

~λ · ~∇u dx dy +
∫ ∫

Si

~d · ~∇(~λ · ~∇u) dx dy . (A.2)

Using Gauss’ theorem and the assumption that ~d is constant this becomes

Si

∂ui

∂t
= −

∫ ∫

Si

~λ · ~∇u dx dy +
∮

∂Si

(~λ · ~∇u) ~d · d~n , (A.3)

where ~n is the outward normal to the boundary ∂Si of the dual cell.

Since u is supposed linear within each triangle, the integrands are piecewise con-

stant. Also, the triangle △j whose vertices are i, j, j + 1 (see Figure A.1) makes a
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contribution to the line integral proportional to

∫

△j

d~n =
1

2
(~rj+1 − ~rj) ×~iz , (A.4)

where ~iz is a unit vector pointing out of the paper, and ~rj is the position of vertex j

in the x-y plane. So the time derivative of ui can be rewritten

Si

∂ui

∂t
=

∑

j∈∪∆i

Si∩j

φj

Sj

−
∑

j∈∪∆i

φj

S△j

(
1

2
~d · (~rj+1 − ~rj) ×~iz

)

=
∑

j∈∪∆i

φj

S△j

[
Si∩j −

1

2
~d · (~rj+1 − ~rj) ×~iz

]
. (A.5)

Here S△j
is the area of △j and Si∩j is the area common to Si and △j; if we choose

the dual cells, geometrically it is Sj/3.

Now let ~Cj be the position vector of the centroid of △j and let ~Dj = ~Cj + ~d. The

triple product, with the factor 1

2
, can be identified with the area SACBDA so that

1

2
~d · (~rj+1 − ~rj) ×~iz = SACB − SADB

=
1

3
Sj − SADB . (A.6)

Hence

Si

∂ui

∂t
=

∑

j∈∪∆i

φj

Sj

[
1

3
Sj −

(
1

3
Sj − SADB

)]

=
∑

j∈∪∆i

φj

SADB

Sj

=
∑

j∈∪∆i

φjSi( ~Dj) , (A.7)

where ~Dj is the ‘distribution point’ in △j and Si( ~Dj) is its area coordinate in that

triangle with respect to vertex i.

Conversely we can say that if the distribution point is chosen in this manner then

(A.1) is the equivalent equation.
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To create a scheme that is second order in time we solve by this first order method

the equivalent equation

ut + ~λ · ~∇u =
∆t

2
~λ · ~∇(~λ · ~∇u) , (A.8)

where the term on the right is the second order correction (∆t/2) utt for the original

advection problem. Therefore we take ~d = ~λ∆t/2, which gives the Lax-Wendroff

version of fluctuation splitting, and the unique member of the family that is second

order in time. To obtain steady states that are second order accurate ~d should be

chosen parallel to ~λ.

This analysis is valid provided that ~d is either constant or else varies more slowly

than the solution.
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