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ABSTRACTThis paper addresses the issue of constructing non-osmjlahigher than second

order, multidimensional, fluctuation splitting methods wmstructured triangular meshes. It
highlights the reasons why current approaches fail and psgs a potential solution to these
problems. The results presented for a simple steady statarsadvection problem show sig-
nificant improvements on previous methods.

RESUME.Ce papier aborde la question de I'élaboration de schémasasmilants, d’ordre su-
périeur a deux, multidimensionnels et de type “fluctuatiplittsng” sur des maillages triangu-
laires non-structurés. Il expose les raisons de I'échecajgmoches actuelles et propose une
solution potentielle a ces problemes. Les résultats olsteour un probleme simple d’advection
scalaire stationnaire montrent des améliorations sigatfies par rapport aux méthodes exis-
tantes.
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1. Introduction

The fluctuation splitting approach to approximating muitidnsional systems of
conservation laws has developed to a stage where it can blerelssgbly to produce
accurate simulations of complex steady state fluid flow phesrea using unstructured
meshes [DSA 00]. For steady state computations, second mretbods are deemed
accurate enough in the majority of practical situations avithin the fluctuation split-
ting framework, the PSI scheme [DSBR 94] has shown itselféwide an ideal basis
for a range of highly successful methods. It is an upwind sehevhich is second
order accurate at the steady state, guarantees monoyof@eén in the presence of
discontinuities), and gives rapid convergence to the stetade, all without the neces-
sity for additional artificial viscosity.
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More recently, research has focused on the developmengbé&hbrder methods.
This has largely been with a view to approximating time-defsnt problems, which
require the discrete forms of both temporal and spatialvdévie terms to be much
higher order (typically orders of accuracy of between thaed five are preferred), if
any degree of accuracy is to be maintained over long timegy Should also prove
useful in the approximation of higher order derivativet the Boussinesq equations
for shallow water flow), even for steady state computations.

The first method to achieve third order accuracy did so bygirattng the temporal
derivative terms in a manner consistent with the spatialvegve terms (in the con-
text of a Petrov-Galerkin finite element method) [Fer 97, 196} but it relied heavily
on the structure of the computational mesh for success. Abeurof approaches
have subsequently been proposed, all of which are basedemative methods of
constructing a higher order representation of the undeglflow variablese.g.piece-
wise quadratics lead to a third order method. This is usedftwsttuct a high order
fluctuation which, if distributed completely using boundsidtribution coefficients,
gives the high order method [Abg 01, AM 03]. Caraenial. [CCF 01] created the
quadratic representation within each mesh cell via thersiraction of local gradi-
ents of the dependent variables at the mesh nodes usingrtoersding data. It was
distributed using the non-monotone LDA scheme so, althdhghresults shown for
smooth Navier-Stokes flows were excellent, unphysicallasicins can still occur at
high Reynolds number. Abgrall, along with Roe [AR 03] and hezand Andrianov
[AAM 05, AM 04] have used a similar idea, but constructed thghler order fluc-
tuation using extra information about the dependent végiatored at the additional
nodes created by a uniform global subdivision of the mesti,.gpdated the solution
using a distribution on the subtriangles. The proposedrselseare third (and higher)
order andalmostnon-oscillatory. The approach of Hubbard and Laird [HL 05} o
tained higher order by extending the stencil of the distidyufor a lower order fluc-
tuation. This can be linked with the methods of AbgetlBl. by noting that the high
order fluctuation on each mesh cell can, in simple cases, lieemwin terms of low
order fluctuations on the subcells.

Each approach has achieved higher than second order agdardhe scalar ad-
vection equation, and that of Caraenal.has already shown a great deal of promisein
more practical situations. However, none of them has ydesel the higher accuracy
without losing monotonicity, except with the aid of a posbgessing step, such as the
Flux-Corrected Transport algorithm [LMVBB 88, Zal 79] usby Ferrante [Fer 97]
and Hubbard and Roe [HR 00]. This paper is concerned withehech for this ideal
combination. It will consider the scalar advection equatgummarising the previous
methods and discussing the reasons why they have not yetesied completely. It
will offer some suggestions for how the problem might be cwene and show some
preliminary results which improve significantly on thosetloé previous methods.
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2. Fluctuation Splitting
Consider the two-dimensional scalar conservation lawrgbse
u+ fot+g, =0 o ut—i-X-ﬁu:O (1)

on adomain, with u(z,y,t) = g(z,y, t) imposed on the inflow part of the boundary

- o NT
o0 A= (%, %) defines the advection velocity associated with the conierva

law (1). This equation has an associated fluctuation, assunaee to be calculated
over a triangular mesh cefk and given by

¢ = _//Xﬁuds) :7{ uX - dit 2
JAN [o2AN

in which 77 represents the inward pointing normal to the cell bound&#enw is
assumed to have a piecewise linear continuous represamteth values stored at the
mesh nodes, the discrete counterparp s evaluated using an appropriate (conserva-
tive) linearisation [DSBR 94]. Ideally, this allows theégration in Equation (2) to be
carried out exactly, giving

. 1 2
¢=—SA/\'VUZ—§Zui/\'ﬁi (3)
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whereS is the cell area and the symbolindicates an appropriately linearised quan-
tity. The indexi loops over the vertices af, andri; is the inward unit normal to the
i** edge (opposite th&" vertex) multiplied by the length of that edge. This linearis
tion is straightforward in the special case of linear adieecfDSBR 94].

A simple forward Euler discretisation of the time derivatikeads to an iterative
update of the nodal solution values which is generally emffDSBR 94] as

At j
w =l e @

b jeun;

whereAt is the time-steps; is the area of the median dual cell corresponding to node
i (one third of the total area of the triangles with a vertex)at: is the distribution
coefficient which indicates the appropriate proportionted fluctuationp; to be sent
from cell j to nodei, andU/A; represents the set of cells with vertices at nede
Conservation is assured as long as

doai=1 5)

1EN

whereA; represents the set of nodes at the vertices of cele. the whole of each
fluctuation is sent to the nodes. Note that the distributias Ibeen restricted here so
that a cell can only make contributions to nodes at its owtices. This allows the



4 Finite volumes for complex applications IV.

scheme to be implemented very efficiently. The time derredtitrm in this construc-
tion is included here purely as a device for iterating to tieady state, but its presence
would be necessary for time-dependent problems when it beiisitegrated in a man-
ner consistent with the underlying representatiom dff the order of accuracy of the
steady state approach is to be maintained [AAM 05, CCF 01].

2.1. The N Scheme

The attempts to impose monotonicity on the higher ordermesepresented here
rely heavily on the low order, non-oscillatory fluctuatioisttibution scheme known
as the N-scheme [DSBR 94], which is defined as follows:

(1) For each triangle, locate the downstream verticesthose for whichX - 77; > 0,
wherern; is the inward pointing normal to the edge opposite veftex

(2a) If a triangle has a single downstream vertex, ngdsay, then that node receives
the whole fluctuationp, so

At
— 6

< ¢ (6)
while the values of: at the other two vertices remain unchanged.

(2b) Otherwise, the triangle has two downstream vertigeandi, say, and the fluc-
tuationg is divided between these two nodes so that

At At

Uiy — Uiy +

Uiy — Uiy + S_“ (bil Uiy, — Uiy + 5_12 (biz (7)
where
1% 12
¢i1 = _5)‘ TNy (uil - ui3) ¢i2 = _5)‘ My (uiz - ui3) (8)

in which i3 denotes the remaining (upstream) vertex of the trianglis.dasily shown
thate;, + ¢;, = ¢ (for conservation).

The distribution coeﬁicientm{ in Equation (4), can be derived easily from Equations
(6)—(8) [DSBR 94]. The resulting scheme is globally positand therefore the iter-
ation given by (4) is conditionally stable, the appropriggstriction on the time-step
being S

At < —
ZjeuAimax(O,%)\-ﬁf)

)

Results: The test case used here to illustrate the properties of eaemse consists of
advection in a circle, with velocitx = (y, —z)7 and over the domaip-1, 1] x [0, 1],
of the initial profile given by

[ G(x) for —0.65 <z < —0.35, y =0
u(z,y,0) = { 0 otherwise (10)
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This is also imposed as the boundary functigix, y, ¢) on the inflow boundaries
of the domain while the experiment is run to steady state. @kect solution is
u(z,y) = G(r) for 0.35 < r = /22 +y? < 0.65 and zero elsewhere. Results
are shown in Figure 1 for a subdivided (see Section 3) unifautgenuinely unstruc-
tured triangular mesh consisting of 984 nodes and 1846.c€lis two cases shown
useG(r) = 1 (Test Case A), which illustrates the monotonicity of theestle and
G(r) = cos?(10m(r + 0.5)/3) (Test Case B), which is more appropriate for deter-
mining the order of accuracy. Both show the significant lefahumerical diffusion
incurred.

Figurel. The N scheme applied to Test Case A (left) and Test Case B)(righ

2.2. The PSI Scheme

The PSI scheme, devised by Struijs [Str 94] and formulatgelabically by Sidilkover
and Roe [SR 95], is the most commonly used of the second oaseoscillatory fluc-
tuation splitting schemes, and is easily defined once thelé+rae has been described.

Given that the contribution made by cg¢lio nodei by the N scheme can be written
as(¢])N = (o) ¢;, whereg; is the fluctuation in celj (see (3)), the contributions
due to the PSI scheme can be defined as follows:

J\PSI _ [(a '
O = S (@D

inwhich[ ]* denotes the positive part of the quantity within the squaaekets. This
scheme has a number of notable properties (for all nodesl cellsj):

DN :
H— gy = (a])"g; (11)

—Yhen, (@) =30, 4 (a})Y =1, s0 the scheme is conservative.

—(al)Pst (a{)N > 0, so the scheme is non-oscillatory.

K3
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—[(al)PST| < |(ad)N], so the limit on the time-step given by (9) is sufficient to
maintain this monotonicity.

— (of)P5T is bounded, so the order of accuracy of the steady state scisequiv-
alent to the order of accuracy with whighis represented (in this case second order)
[Abg 01, AM 03]. This is often referred to as linearity pregation.

Results: The results for the PSI scheme are shown in Figure 2 usingatime snesh
as before. The improvement in accuracy over the N schemeds,@s is the lack of
oscillations.

Figure2. The PSI scheme applied to Test Case A (left) and Test CasglB)(ri

3. A Third Order Method

The scheme proposed by Abgrall and Roe [AR 03] is based on plesigeneral-
isation of the above procedure. The main difference is thatfluctuatione is ap-
proximated to higher order. The procedure generaliseshirary order and three
space dimensions, but only the two-dimensional, third ocdse will be considered
here. In this situation the dependent variablis taken to be a continuous piecewise
quadratic function with the unknowns stored at the nodesgibbally refined mesh,
created by subdividing each triangular cell into four caregrt subcells. This allows
the construction of a unique local quadratic interpolaiodynomial on each cell of
the original mesh. The fluctuation (2) can be evaluated éxaatany subcell using
an appropriate quadrature rule, and these can then bebdistti to the nodes of the
refined mesh. The method proposed is based on

JIVHO _ [(aZ)N]+ NHO _ ( J\HO (4 \HO
(¢7) > I j)N]+ (95) ()77 (95) (12)
ke, L
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in which (¢;)© is calculated by evaluating (2) exactly, according to trghtorder
(HO) representation ofi. Note that the distribution remains local to each subcell.

Remark: There is no obvious reason why the approach of Caraeal. [CCF 01]
could not be used to obtain an alternative construction tier tigh order fluctua-
tions (¢;), without the necessity for mesh subdivision. However, itidosuffer
from similar problems to those discussed below so adjustsiveould also be required
(probably to the local reconstruction of the solution gesad$) if monotonicity were
to be sought.

Results: The results for the Abgrall-Roe scheme are shown in FigurgrBythe same
mesh as before. An improvement in accuracy is apparent iptbile at outflow
of both test cases (illustrated more clearly by the errorsuess given in Table 1).
However, this is at the expense of small oscillations jusitlé at the discontinuities
close to the inflow boundary in Test Case A (see also Table 1.

Figure 3. The Abgrall-Roe scheme applied to Test Case A (left) andJast B
(right).

N PSI | Abgrall-Roe | Modified Abgrall-Roe
Test Case Amin(u) | 0.0000| 0.0000| -0.0593 0.0000
Test Case Amax(u) | 1.0000| 1.0000 1.0131 1.0000
Test Case B:
max(u) at outflow | 0.5877| 0.8346 0.9702 0.9109

Table 1. Accuracy measures (none of the “non-oscillatory” resulteg negative).
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3.1. The Problem

There are two significant issues here, neither of which srisethe discussion
of the PSI scheme because in that case, in the terminologyhelew, (¢,)7° =
(65)"°.

(1) (¢;)H (¢;)L° < 0 for some subcellg: the high and low orderKO) fluctu-
ations have different signs. This is most damaging in subeetere the N scheme
gives only non-negative distribution coefficierits ) . In such situations the scheme
(12) gives only zero distribution coefficients, clearly kting conservation. Abgrall
and Roe proposed a modification to avoid this [AR 03], but deifaulted to a central
discretisationp] = 1, Vi € A;, in such situations, which is not monotone.

) [(¢)HC| > |(¢;)C| for some subcellg, even when(¢;)7° (¢;)L° > 0.
The magnitude of the high order fluctuation can be much higear that of the low
order fluctuation, even when they have the same sign. (Aairndmment holds for
the nodal contributions.) This not only places a more retste condition than (9) on
the time-step if the scheme is to be monotone, but also afteetmonotonicity of the
steady state.

In some circumstances, which occur repeatedly in Test Cas/@jAHO can be
nonzero in a subcell for which;, = u;, = u;,. In such situations it becomes im-
possible to distributés; ) to the vertices of subcell in a conservative manner
while maintaining local or, in some cases, global posijiviHence, for a mono-
tone scheme of this type, the stencil of the distributiont@ subcell fluctuations
must be extended. The most obvious (and efficient) extensitmallow distribution
to the subvertices of the associated mesh £elllt is always possible to distribute
()79 = YA cn, (01)"C to the six subvertices of cell in a manner which is
both conservative and locally positive (although it is net glear what an appropriate
monotone time-step restriction would lod, (9)).

Remark: At this stage of the development of a high order non-osoitiafinite vol-
ume scheme a limiter would be introduced to combine the lagiomonotone and the
high order non-monotone schemes. Here, unfortunatesmtbuld lead to a mismatch
in the calculations of fluctuations in neighbouring cellsl éime edge contributions in
the boundary integrals in (2) would no longer cancel at makedges, leading to a
non-conservative scheme. It is worth noting though thatrabb@nd Barth [AB 02]
have demonstrated that this may not always be a problem atipea

3.2. A Modified Scheme

It is clear that there are many possible alternatives fdridiging (¢;)© to the
six subvertices of cell in a manner which improves the monotonicity properties of
the scheme. Two questions which should be considered whiimgnan appropriate
choice are as follows.
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— Should the distribution be upwind? This clearly relateth®nature of the phys-
ical problem and tends to aid convergence to the steady, siatet has yet to be
proved that it is possible (or not) in every situation whil@intaining conservation
and linearity preservation.

— Should the adjustments to the scheme be made to the subcgikfions before
distribution or directly to the contributions they make teetvertices? In order to
remain local the latter procedure would have to be appliddrbehe updates were
accumulated at the nodes, otherwise the Flux-Correctewspat algorithm [Fer 97,
HR 00, LMVBB 88, Zal 79] might as well be applied.

The approach proposed here is upwind (in the sense that rinkezdion is made
to the upstream vertices of the upstream subtriangles)renddjustments are applied
directly to the subcell fluctuations, for simplicity. It tak the form of a simple post-
processing step (similar in character to the redistributep of Hubbard and Roe
[HR 00]). The following steps are applied to each mesh £efi turn.

(1) Accumulate from each subcglthe fluctuations due to the Abgrall-Roe scheme
which would be of the “wrong” signi.e. for which (¢;)° (¢/)*° < 0 Vi € A;
and(¢;)7© # 0. Reset the fluctuations in the offending subcells to zero.

(2) Add to these a proportion of the high order fluctuatiomsrfrany subcellj for
which they are of an allowable sign but of significantly largeagnitude than the low
order fluctuation on that subcell. In this wofk! )¢ — K (¢?)L© was redistributed,
leaving K (¢7)“© with the subcell (withK” chosen, rather arbitrarily, to be 5).

(3) Add the fluctuations accumulated in steps (1) and (2) eouthaffected fluctua-
tion of largest magnitude.

This process is guaranteed to be conservative, but not yetgdrto be monotone,
and the distribution coefficients for each of the subcelltflations are still bounded
(o7 €10,1]).

Results: The results for the modified Abgrall-Roe scheme are shownigurg 4,
using the same mesh again. The accuracy seems similar tzeé&adile 1) and the
oscillations close to the inflow boundary have completebagdpeared from Test Case
A, though at the expense of a slight distortion of the outfloofite.

4. Conclusion

Itis an extremely challenging problem to construct a covestdre fluctuation split-
ting scheme which is both higher than second order accurate®notone. Many of
the issues associated with this have been discussed, aitm@ wuggested modifi-
cation to an existing high order scheme which may ultimated to an approach
which can be proved to have all of the desired properties. évew the work is still
in progress.
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Figure 4. The modified Abgrall-Roe scheme applied to Test Case A éeit)Test
Case B (right).

As things stand, the oscillations have been completely vehan the chosen test
case, although preliminary results that the new scheme wmloieetain the full third
order accuracy of the Abgrall-Roe approach. It is left taufetwork to (i) confirm
that the method (or a slight modification of it) genuinely ismatone, conservative and
high order, (ii) prove that it s, (iii) apply it to nonlineaystems of equations, for which
it may be necessary to construct an appropriate lineasis&r system decomposition
or matrix distribution ¢f. [PDW 97]), and (iv) extend it to time-dependent problems,
ideally in combination with a high order, non-oscillatoime-stepping scheme, such
as the Runge-Kutta schemes presented in [SO 88].
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