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ABSTRACT.This paper addresses the issue of constructing non-oscillatory, higher than second
order, multidimensional, fluctuation splitting methods onunstructured triangular meshes. It
highlights the reasons why current approaches fail and proposes a potential solution to these
problems. The results presented for a simple steady state scalar advection problem show sig-
nificant improvements on previous methods.

RÉSUMÉ.Ce papier aborde la question de l’élaboration de schémas non-oscillants, d’ordre su-
périeur à deux, multidimensionnels et de type “fluctuation splitting” sur des maillages triangu-
laires non-structurés. Il expose les raisons de l’échec desapproches actuelles et propose une
solution potentielle à ces problèmes. Les résultats obtenus pour un problème simple d’advection
scalaire stationnaire montrent des améliorations significatives par rapport aux méthodes exis-
tantes.
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1. Introduction

The fluctuation splitting approach to approximating multidimensional systems of
conservation laws has developed to a stage where it can be used reliably to produce
accurate simulations of complex steady state fluid flow phenomena using unstructured
meshes [DSA 00]. For steady state computations, second order methods are deemed
accurate enough in the majority of practical situations and, within the fluctuation split-
ting framework, the PSI scheme [DSBR 94] has shown itself to provide an ideal basis
for a range of highly successful methods. It is an upwind scheme which is second
order accurate at the steady state, guarantees monotonicity (even in the presence of
discontinuities), and gives rapid convergence to the steady state, all without the neces-
sity for additional artificial viscosity.
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More recently, research has focused on the development of higher order methods.
This has largely been with a view to approximating time-dependent problems, which
require the discrete forms of both temporal and spatial derivative terms to be much
higher order (typically orders of accuracy of between threeand five are preferred), if
any degree of accuracy is to be maintained over long times. They should also prove
useful in the approximation of higher order derivatives (cf. the Boussinesq equations
for shallow water flow), even for steady state computations.

The first method to achieve third order accuracy did so by integrating the temporal
derivative terms in a manner consistent with the spatial derivative terms (in the con-
text of a Petrov-Galerkin finite element method) [Fer 97, Mär96] but it relied heavily
on the structure of the computational mesh for success. A number of approaches
have subsequently been proposed, all of which are based on alternative methods of
constructing a higher order representation of the underlying flow variables,e.g.piece-
wise quadratics lead to a third order method. This is used to construct a high order
fluctuation which, if distributed completely using boundeddistribution coefficients,
gives the high order method [Abg 01, AM 03]. Caraeniet al. [CCF 01] created the
quadratic representation within each mesh cell via the reconstruction of local gradi-
ents of the dependent variables at the mesh nodes using the surrounding data. It was
distributed using the non-monotone LDA scheme so, althoughthe results shown for
smooth Navier-Stokes flows were excellent, unphysical oscillations can still occur at
high Reynolds number. Abgrall, along with Roe [AR 03] and Mezine and Andrianov
[AAM 05, AM 04] have used a similar idea, but constructed the higher order fluc-
tuation using extra information about the dependent variable stored at the additional
nodes created by a uniform global subdivision of the mesh, and updated the solution
using a distribution on the subtriangles. The proposed schemes are third (and higher)
order andalmostnon-oscillatory. The approach of Hubbard and Laird [HL 05] ob-
tained higher order by extending the stencil of the distribution for a lower order fluc-
tuation. This can be linked with the methods of Abgrallet al.by noting that the high
order fluctuation on each mesh cell can, in simple cases, be written in terms of low
order fluctuations on the subcells.

Each approach has achieved higher than second order accuracy for the scalar ad-
vection equation, and that of Caraeniet al.has already shown a great deal of promise in
more practical situations. However, none of them has yet achieved the higher accuracy
without losing monotonicity, except with the aid of a post-processing step, such as the
Flux-Corrected Transport algorithm [LMVBB 88, Zal 79] usedby Ferrante [Fer 97]
and Hubbard and Roe [HR 00]. This paper is concerned with the search for this ideal
combination. It will consider the scalar advection equation, summarising the previous
methods and discussing the reasons why they have not yet succeeded completely. It
will offer some suggestions for how the problem might be overcome and show some
preliminary results which improve significantly on those ofthe previous methods.
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2. Fluctuation Splitting

Consider the two-dimensional scalar conservation law given by

ut + fx + gy = 0 or ut + ~λ · ~∇u = 0 (1)

on a domainΩ, with u(x, y, t) = g(x, y, t) imposed on the inflow part of the boundary

∂Ω. ~λ =
(

∂f
∂u

, ∂g
∂u

)T

defines the advection velocity associated with the conservation

law (1). This equation has an associated fluctuation, assumed here to be calculated
over a triangular mesh cell△ and given by

φ = −

∫ ∫

△

~λ · ~∇u dΩ =

∮

∂△

u~λ · d~n (2)

in which ~n represents the inward pointing normal to the cell boundary.Whenu is
assumed to have a piecewise linear continuous representation with values stored at the
mesh nodes, the discrete counterpart ofφ is evaluated using an appropriate (conserva-
tive) linearisation [DSBR 94]. Ideally, this allows the integration in Equation (2) to be
carried out exactly, giving

φ = −S△
~̂λ · ~∇u = −

1

2

∑

i∈△

ui
~̂λ · ~ni (3)

whereS△ is the cell area and the symbolˆ indicates an appropriately linearised quan-
tity. The indexi loops over the vertices of△, and~ni is the inward unit normal to the
ith edge (opposite theith vertex) multiplied by the length of that edge. This linearisa-
tion is straightforward in the special case of linear advection [DSBR 94].

A simple forward Euler discretisation of the time derivative leads to an iterative
update of the nodal solution values which is generally written [DSBR 94] as

un+1

i = un
i +

∆t

Si

∑

j∈∪△i

αj
i φj (4)

where∆t is the time-step,Si is the area of the median dual cell corresponding to node
i (one third of the total area of the triangles with a vertex ati), αj

i is the distribution
coefficient which indicates the appropriate proportion of the fluctuationφj to be sent
from cell j to nodei, and∪△i represents the set of cells with vertices at nodei.
Conservation is assured as long as

∑

i∈△j

αj
i = 1 ∀j (5)

where△j represents the set of nodes at the vertices of cellj, i.e. the whole of each
fluctuation is sent to the nodes. Note that the distribution has been restricted here so
that a cell can only make contributions to nodes at its own vertices. This allows the
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scheme to be implemented very efficiently. The time derivative term in this construc-
tion is included here purely as a device for iterating to the steady state, but its presence
would be necessary for time-dependent problems when it mustbe integrated in a man-
ner consistent with the underlying representation ofu if the order of accuracy of the
steady state approach is to be maintained [AAM 05, CCF 01].

2.1. The N Scheme

The attempts to impose monotonicity on the higher order schemes presented here
rely heavily on the low order, non-oscillatory fluctuation distribution scheme known
as the N-scheme [DSBR 94], which is defined as follows:

(1) For each triangle, locate the downstream vertices,i.e. those for which~̂λ ·~ni > 0,
where~ni is the inward pointing normal to the edge opposite vertexi.

(2a) If a triangle has a single downstream vertex, nodei1 say, then that node receives
the whole fluctuationφ, so

ui1 → ui1 +
∆t

Si1

φ (6)

while the values ofu at the other two vertices remain unchanged.

(2b) Otherwise, the triangle has two downstream vertices,i1 andi2 say, and the fluc-
tuationφ is divided between these two nodes so that

ui1 → ui1 +
∆t

Si1

φi1 ui2 → ui2 +
∆t

Si2

φi2 (7)

where

φi1 = −
1

2
~̂λ · ~ni1(ui1 − ui3) φi2 = −

1

2
~̂λ · ~ni2(ui2 − ui3) (8)

in which i3 denotes the remaining (upstream) vertex of the triangle. Itis easily shown
thatφi1 + φi2 = φ (for conservation).

The distribution coefficients,αj
i in Equation (4), can be derived easily from Equations

(6)–(8) [DSBR 94]. The resulting scheme is globally positive and therefore the iter-
ation given by (4) is conditionally stable, the appropriaterestriction on the time-step
being

∆t ≤
Si

∑

j∈∪△i
max

(

0, 1

2
~̂λ · ~nj

i

) . (9)

Results: The test case used here to illustrate the properties of each scheme consists of
advection in a circle, with velocity~λ = (y,−x)T and over the domain[−1, 1]× [0, 1],
of the initial profile given by

u(x, y, 0) =

{

G(x) for − 0.65 ≤ x ≤ −0.35 , y = 0
0 otherwise

(10)
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This is also imposed as the boundary functiong(x, y, t) on the inflow boundaries
of the domain while the experiment is run to steady state. Theexact solution is
u(x, y) = G(r) for 0.35 ≤ r =

√

x2 + y2 ≤ 0.65 and zero elsewhere. Results
are shown in Figure 1 for a subdivided (see Section 3) uniformbut genuinely unstruc-
tured triangular mesh consisting of 984 nodes and 1846 cells. The two cases shown
useG(r) = 1 (Test Case A), which illustrates the monotonicity of the scheme and
G(r) = cos2(10π(r + 0.5)/3) (Test Case B), which is more appropriate for deter-
mining the order of accuracy. Both show the significant levelof numerical diffusion
incurred.

Figure 1. The N scheme applied to Test Case A (left) and Test Case B (right).

2.2. The PSI Scheme

The PSI scheme, devised by Struijs [Str 94] and formulated algebraically by Sidilkover
and Roe [SR 95], is the most commonly used of the second order non-oscillatory fluc-
tuation splitting schemes, and is easily defined once the N-scheme has been described.

Given that the contribution made by cellj to nodei by the N scheme can be written
as(φj

i )
N = (αj

i )
Nφj , whereφj is the fluctuation in cellj (see (3)), the contributions

due to the PSI scheme can be defined as follows:

(φj
i )

PSI =
[(αj

i )
N ]+

∑

k∈△j
[(αj

k)N ]+
φj = (αj

i )
PSIφj (11)

in which [ ]+ denotes the positive part of the quantity within the square brackets. This
scheme has a number of notable properties (for all nodesi and cellsj):

–
∑

k∈△j
(αj

k)PSI =
∑

k∈△j
(αj

k)N = 1, so the scheme is conservative.

– (αj
i )

PSI (αj
i )

N ≥ 0, so the scheme is non-oscillatory.
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– |(αj
i )

PSI | ≤ |(αj
i )

N |, so the limit on the time-step given by (9) is sufficient to
maintain this monotonicity.

– (αj
i )

PSI is bounded, so the order of accuracy of the steady state scheme is equiv-
alent to the order of accuracy with whichφ is represented (in this case second order)
[Abg 01, AM 03]. This is often referred to as linearity preservation.

Results: The results for the PSI scheme are shown in Figure 2 using the same mesh
as before. The improvement in accuracy over the N scheme is clear, as is the lack of
oscillations.

Figure 2. The PSI scheme applied to Test Case A (left) and Test Case B (right).

3. A Third Order Method

The scheme proposed by Abgrall and Roe [AR 03] is based on a simple general-
isation of the above procedure. The main difference is that the fluctuationφ is ap-
proximated to higher order. The procedure generalises to arbitrary order and three
space dimensions, but only the two-dimensional, third order case will be considered
here. In this situation the dependent variableu is taken to be a continuous piecewise
quadratic function with the unknowns stored at the nodes of aglobally refined mesh,
created by subdividing each triangular cell into four congruent subcells. This allows
the construction of a unique local quadratic interpolatingpolynomial on each cell of
the original mesh. The fluctuation (2) can be evaluated exactly on any subcell using
an appropriate quadrature rule, and these can then be distributed to the nodes of the
refined mesh. The method proposed is based on

(φj
i )

HO =
[(αj

i )
N ]+

∑

k∈△j
[(αj

k)N ]+
(φj)

HO = (αj
i )

HO(φj)
HO (12)
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in which (φj)
HO is calculated by evaluating (2) exactly, according to the high order

(HO) representation ofu. Note that the distribution remains local to each subcell.

Remark: There is no obvious reason why the approach of Caraeniet al. [CCF 01]
could not be used to obtain an alternative construction for the high order fluctua-
tions (φj)

HO , without the necessity for mesh subdivision. However, it would suffer
from similar problems to those discussed below so adjustments would also be required
(probably to the local reconstruction of the solution gradients) if monotonicity were
to be sought.

Results: The results for the Abgrall-Roe scheme are shown in Figure 3 using the same
mesh as before. An improvement in accuracy is apparent in theprofile at outflow
of both test cases (illustrated more clearly by the error measures given in Table 1).
However, this is at the expense of small oscillations just visible at the discontinuities
close to the inflow boundary in Test Case A (see also Table 1.

Figure 3. The Abgrall-Roe scheme applied to Test Case A (left) and TestCase B
(right).

N PSI Abgrall-Roe Modified Abgrall-Roe
Test Case A:min(u) 0.0000 0.0000 -0.0593 0.0000
Test Case A:max(u) 1.0000 1.0000 1.0131 1.0000
Test Case B:

max(u) at outflow 0.5877 0.8346 0.9702 0.9109

Table 1. Accuracy measures (none of the “non-oscillatory” results goes negative).
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3.1. The Problem

There are two significant issues here, neither of which arises in the discussion
of the PSI scheme because in that case, in the terminology used below,(φj)

HO ≡
(φj)

LO.

(1) (φj)
HO (φj)

LO < 0 for some subcellsj: the high and low order (LO) fluctu-
ations have different signs. This is most damaging in subcells where the N scheme
gives only non-negative distribution coefficients(αj

i )
N . In such situations the scheme

(12) gives only zero distribution coefficients, clearly violating conservation. Abgrall
and Roe proposed a modification to avoid this [AR 03], but thisdefaulted to a central
discretisation,αj

i = 1

3
, ∀i ∈ △j, in such situations, which is not monotone.

(2) |(φj)
HO | ≫ |(φj)

LO| for some subcellsj, even when(φj)
HO (φj)

LO ≥ 0.
The magnitude of the high order fluctuation can be much higherthan that of the low
order fluctuation, even when they have the same sign. (A similar comment holds for
the nodal contributions.) This not only places a more restrictive condition than (9) on
the time-step if the scheme is to be monotone, but also affects the monotonicity of the
steady state.

In some circumstances, which occur repeatedly in Test Case A, (φj)
HO can be

nonzero in a subcell for whichui1 = ui2 = ui3 . In such situations it becomes im-
possible to distribute(φj)

HO to the vertices of subcellj in a conservative manner
while maintaining local or, in some cases, global positivity. Hence, for a mono-
tone scheme of this type, the stencil of the distribution of the subcell fluctuations
must be extended. The most obvious (and efficient) extensionis to allow distribution
to the subvertices of the associated mesh cellJ . It is always possible to distribute
(φJ )HO =

∑

△k∈△J
(φk)HO to the six subvertices of cellJ in a manner which is

both conservative and locally positive (although it is not yet clear what an appropriate
monotone time-step restriction would be,cf. (9)).

Remark: At this stage of the development of a high order non-oscillatory finite vol-
ume scheme a limiter would be introduced to combine the low order monotone and the
high order non-monotone schemes. Here, unfortunately, this would lead to a mismatch
in the calculations of fluctuations in neighbouring cells and the edge contributions in
the boundary integrals in (2) would no longer cancel at internal edges, leading to a
non-conservative scheme. It is worth noting though that Abgrall and Barth [AB 02]
have demonstrated that this may not always be a problem in practice.

3.2. A Modified Scheme

It is clear that there are many possible alternatives for distributing (φJ )HO to the
six subvertices of cellJ in a manner which improves the monotonicity properties of
the scheme. Two questions which should be considered when making an appropriate
choice are as follows.
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– Should the distribution be upwind? This clearly relates tothe nature of the phys-
ical problem and tends to aid convergence to the steady state, but it has yet to be
proved that it is possible (or not) in every situation while maintaining conservation
and linearity preservation.

– Should the adjustments to the scheme be made to the subcell fluctuations before
distribution or directly to the contributions they make to the vertices? In order to
remain local the latter procedure would have to be applied before the updates were
accumulated at the nodes, otherwise the Flux-Corrected Transport algorithm [Fer 97,
HR 00, LMVBB 88, Zal 79] might as well be applied.

The approach proposed here is upwind (in the sense that no contribution is made
to the upstream vertices of the upstream subtriangles) and the adjustments are applied
directly to the subcell fluctuations, for simplicity. It takes the form of a simple post-
processing step (similar in character to the redistribution step of Hubbard and Roe
[HR 00]). The following steps are applied to each mesh cellJ in turn.

(1) Accumulate from each subcellj the fluctuations due to the Abgrall-Roe scheme
which would be of the “wrong” sign,i.e. for which (φj)

HO (φj
i )

LO ≤ 0 ∀i ∈ △j

and(φj)
HO 6= 0. Reset the fluctuations in the offending subcells to zero.

(2) Add to these a proportion of the high order fluctuations from any subcellj for
which they are of an allowable sign but of significantly larger magnitude than the low
order fluctuation on that subcell. In this work(φj

i )
HO − K (φj

i )
LO was redistributed,

leavingK (φj
i )

LO with the subcell (withK chosen, rather arbitrarily, to be 5).

(3) Add the fluctuations accumulated in steps (1) and (2) to the unaffected fluctua-
tion of largest magnitude.

This process is guaranteed to be conservative, but not yet proved to be monotone,
and the distribution coefficients for each of the subcell fluctuations are still bounded
(αj

i ∈ [0, 1]).

Results: The results for the modified Abgrall-Roe scheme are shown in Figure 4,
using the same mesh again. The accuracy seems similar (see also Table 1) and the
oscillations close to the inflow boundary have completely disappeared from Test Case
A, though at the expense of a slight distortion of the outflow profile.

4. Conclusion

It is an extremely challenging problem to construct a conservative fluctuation split-
ting scheme which is both higher than second order accurate and monotone. Many of
the issues associated with this have been discussed, along with a suggested modifi-
cation to an existing high order scheme which may ultimatelylead to an approach
which can be proved to have all of the desired properties. However, the work is still
in progress.
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Figure 4. The modified Abgrall-Roe scheme applied to Test Case A (left)and Test
Case B (right).

As things stand, the oscillations have been completely removed in the chosen test
case, although preliminary results that the new scheme doesnot retain the full third
order accuracy of the Abgrall-Roe approach. It is left to future work to (i) confirm
that the method (or a slight modification of it) genuinely is monotone, conservative and
high order, (ii) prove that it is, (iii) apply it to nonlinearsystems of equations, for which
it may be necessary to construct an appropriate linearisation for system decomposition
or matrix distribution (cf. [PDW 97]), and (iv) extend it to time-dependent problems,
ideally in combination with a high order, non-oscillatory time-stepping scheme, such
as the Runge-Kutta schemes presented in [SO 88].
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