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1 Introduction

For some years now, the fluctuation distribution approach to approximating
multidimensional systems of conservation laws has been able to produce accu-
rate simulations of complex steady state fluid flow phenomena using unstruc-
tured meshes [DSA00]. More recent research has illustrated their potential
for providing a similar level of accuracy in the simulation of time-dependent
problems (see the notes in [VKI05] for a recent overview of such methods).
Even so, computational simulation of compressible fluid flow problems is still
dominated by the finite volume approach.

This is changing, with the emergence of the discontinuous Galerkin (DG)
approach, which can be treated as a natural generalisation of the finite vol-
ume technique which accounts directly for variation of the solution within
each mesh cell rather than dealing with cell-averaged values. Fluctuation dis-
tribution schemes do, however, have inherent advantages over finite volume
and discontinuous Galerkin schemes, both of which use numerical fluxes across
cell boundaries in the update of the dependent variables. They instead con-
sider how the variation within each cell (loosely speaking, a generalised flux
difference) should affect the local evolution of the dependent variable. Fluctu-
ation distribution schemes are also typically designed to incorporate the most
important underlying physical processes: making use of the fluctuation/flux
difference instead of the flux provides an environment in which it is simpler to
accurately model, not only genuinely multidimensional flow physics, but also
source terms when these represent processes which have a natural balance
with the fluxes.

Since they are essentially alternative formulations of continuous finite el-
ement methods, existing fluctuation distribution schemes are similarly re-
stricted by the continuity imposed on the numerical solution. This can make
it difficult to apply h- and p-adaptivity or construct high order schemes which
are free of numerically induced oscillations. Recent research, presented in
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[Hub07, Hub08], has led to the proposal of a discontinuous fluctuation distri-
bution scheme, designed to overcome such problems. It provides an alternative
discontinuous model to DG which avoids the construction of numerical fluxes
and has been successfully used to design a second order accurate, positive
algorithm (a generalisation of the PSI scheme) which can be applied to the
Euler equations of gas dynamics. This paper will discuss the extension of
these schemes to time-dependent problems, and present preliminary results
for scalar conservation laws in one space dimension.

2 Discontinuous Fluctuation Distribution

Consider the scalar conservation law governing the evolution of an unknown
quantity u(x, t) and given by

ut + ∇ · f = 0 or ut + λ · ∇u = 0 (1)

on a domain Ω, with boundary conditions imposed on the inflow part of ∂Ω
and appropriate initial conditions. Here λ = ∂f/∂u defines the advection
velocity associated with the conservation law (1).

These equations will be approximated by discretising an integrated form
of the conservation law, assuming that the representation of u is piecewise
polynomial with discontinuities allowed at the interfaces between the cells
of the computational mesh. Integrating the spatial derivative terms over the
whole domain gives

∫

Ω

∇ · f dΩ =

Nc∑

j=1

∫

Cj

∇ · f dΩ +

Nf∑

k=1

lim
ǫ→0

∫

Fk
ǫ

∇ · f dΩ , (2)

in which Nc, Nf are the numbers of cells and faces in the mesh, respectively,
and the final term represents the integrals over the interfaces, which are being
treated as limiting cases of degenerate cells whose widths (ǫ) perpendicular
to the adjacent cell faces tend to zero.

Now assume that, in d space dimensions, the computational mesh cells
are d-dimensional simplices, that u varies linearly with these cells, and that
an appropriate (conservative) linearisation exists for the system [VKI05]. The
cell spatial fluctuations can now be written

φj = −

∫

Cj

∇ · f dΩ =

∮

∂Cj

f · n dΓ = −
1

2

∑

i∈Cj

ui λ̃ · ni , (3)

where the symbol ˜ indicates an appropriately linearised quantity. The index
i loops over the vertices of the mesh cell and ni is the inward unit normal to
the ith face (opposite the ith vertex) multiplied by the length of that edge.
The interface spatial fluctuations can also be evaluated exactly, giving
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ψk = − lim
ǫ→0

∫

Fk
ǫ

∇ · f dΩ , =

∫

Fk

[f · n] dΓ = −
1

2

∑

i∈Fk

[ui] λ̂ · n , (4)

where λ̂ represents a second (different) set of conservatively averaged values,
and [ ] represents the jump in a quantity across an interface (where ui is
considered to be dual-valued), the sign of the difference being dictated by the
direction chosen for n. This term is simply the integral over the interface of
the flux difference across it.

Each mesh node corresponds to many cell vertices and multiple values
of u. When all of the cell- and interface-based fluctuations are distributed,
each uj

i (the value associated with vertex i of cell j) can receive contributions
from precisely one cell and d interfaces (subject to the application of boundary
conditions). When this is combined with a simple forward Euler discretisation
of the time derivative it leads to an iterative update of the form

(uj
i )

n+1 = (uj
i )

n +
(d+ 1)∆t

Sj

(
αj

iφj +

d∑

k=1

αk
i ψk

)
, (5)

in which ∆t is the time-step, Sj is the volume of cell j, α
j/k
i are the distribu-

tion coefficients which indicate the appropriate proportions of the fluctuations
to be sent from cell j/interface k to vertex i of cell j. Conservation is assured
as long as

∑
i∈Cj

αj
i =

∑
i∈Fk

αk
i = 1, ∀j, k, i.e. the whole of each fluctua-

tion is distributed to the cell vertices. The precise properties of the scheme
depends on the choice of the distribution coefficients. In particular, the dis-
continuous PSI scheme described in [Hub07, Hub08] is conservative, positive
for an appropriate limit on ∆t, given by

∆t ≤
Sj/(d+ 1)
∑

l∈Cj
(kj

l )
+

∀ cells j , (6)

linearity preserving (and hence second order accurate for piecewise linear u),
compact, upwind and continuous. Note that kl = 1

2λ · nl are the standard
inflow parameters which govern the upwinding.

2.1 Time-Dependent Problems

The development of time-dependent fluctuation distribution schemes in which
u is continuous has tended to treat the time derivative in a slightly different
manner to the spatial derivatives (see, for example, [AM03, RCD05]). How-
ever, for the purposes of this discussion the time dimension will be treated
precisely as an additional spatial dimension, in which the solution is being
advected with speed λt = 1. Equation (1) can now be written as

∇
t · f t = 0 or λ

t · ∇tu = 0 , (7)

in which ∇
t, f t and λ

t have all been augmented appropriately. The discon-
tinuous fluctuation distribution schemes outlined earlier in Section 2 can now
be applied to these equations, albeit on a d+ 1-dimensional space-time mesh.
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2.2 One Space Dimension

The new scheme is most easily illustrated in one space dimension. Figure 1
shows two possible configurations for the discretisation of a rectangular space
time block of dimensions ∆x×∆t, in which it is subdivided into two triangles.
The interfaces between the triangles, at which the discontinuities occur, are
indicated by the dashed rectangles. The reverse configuration also illustrates
the behaviour of the distribution when the flow velocity is in the opposite
direction. The arrows indicate the upwind directions in which the fluctuations
are distributed and, importantly, show that since λt = 1, upwinding always
sends the fluctuations arising from the discontinuities at a fixed time level
forward in time. This allows the solution to be found sequentially, stepping
forward in time and solving at each time level instead of having to approximate
the full space-time domain at once.

time

space

flow

4

1

6 5

3

2 1

3

6 5

4

2

Fig. 1. Fluctuation distribution for a one-dimensional space-time block for flow from
left to right (showing both orientations for the diagonal). Solid arrows show vertices
to which a proportion of the fluctuation will always be distributed. Distribution
indicated by the dotted arrows is dependent on the magnitude of the velocity λ.

The system can now be approximated at the new time level by iterating
the following to convergence:

(uj
i )

(m+1) = (uj
i )

(m) +
2∆τ

∆x∆t

(
αj

iφj +
d∑

k=1

αk
i ψk

)
. (8)

The values of u5 and u6 (see Figure 1) form the solution at the new time
level. Note that this method is positive for any value of ∆t, though the above
iteration is only positive at each stage for values of ∆τ governed by (6).

The time derivative does not have to be treated exactly like the space
derivatives. Using the approach typical of the continuous time-dependent
schemes [AM03, RCD05] (which do not usually subdivide the space-time cells
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into simplices) to distribute the cell fluctuations in the discontinuous case
leads to a scheme which is only first order accurate. It is not yet clear why
this should be so and other possibilities are being investigated to try to remove
the asymmetry which appears in the mesh of simplices.

3 Numerical Results

The one-dimensional scalar advection equation was modelled, with

u(x, 0) =

{
G(x) for 0 ≤ x ≤ 1
0 elsewhere,

(9)

being advected with a constant velocity (λ = 1) across the domain [−1, 2].
Periodic boundary conditions are applied and uniform space-time meshes are
used to produce all of the following results. Figure 2 shows the outcomes for
two initial profiles, G(x) = cos2((x− 0.5)π) and G(x) = 1, obtained on a 151
node uniform spatial mesh with a CFL of 0.5. The effect of increasing the
CFL number and reversing the advection velocity are illustrated in Figure 3.
The scheme has also been applied successfully to the one-dimensional inviscid
Burgers’ equation.
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Fig. 2. Numerical approximation of the scalar advection equation for a smooth
(left) and a discontinuous (right) initial profile after 1, 10 and 100 periods.

4 Summary

A framework has been proposed for the development of fluctuation distribu-
tion schemes for approximating time-dependent problems when the underly-
ing representation of the dependent variable is allowed to be discontinuous
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Fig. 3. Numerical approximation of the scalar advection equation for a smooth
initial profile for different CFL numbers (left) and for λ = −1 (right).

across space-time mesh interfaces. It has been successfully applied to one-
dimensional, scalar problems, for which second order accuracy in space and
time and unconditional L∞ stability have been verified. Further work is re-
quired to apply the approach in higher space dimensions and improve the
efficiency of the approach, as well as removing the asymmetry inherent in the
current space-time mesh used.
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