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Adaptive Mesh Refinement for Three-Dimensional Off-Line
Tracer Advection over the Sphere

M. E. Hubbard∗

School of Computing, University of Leeds, Leeds, LS2 9JT, U.K.

SUMMARY

This paper describes briefly the application of a WAF-type finite volume scheme and a standard
Cartesian Adaptive Mesh Refinement algorithm to three-dimensional tracer advection over the sphere.
Some preliminary results are shown for standard, simple test cases in two and three dimensions which
illustrate the effectiveness of the WAF scheme and the improvement in efficiency obtained by the
adaptive meshing. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Adaptive Mesh Refinement (AMR) is a commonly-used technique in the field of Computational
Fluid Dynamics, which improves the efficiency of existing numerical models by distributing
the nodes of the computational mesh in such a way that high mesh resolution is provided only
where it is necessary to achieve the level of accuracy required of the approximation. So far,
AMR has not been incorporated fully into operational meteorological models, though many
partial attempts have been made. Often, this is due to the numerical schemes generally used
within the community being less suited for use on variable resolution meshes than those widely
used in other fields. Consequently, the work presented in this paper combines the AMR with
a standard conservative, flux-based, finite volume scheme and applies the resulting algorithm
to the approximation of global atmospheric flows based on a regular latitude/longitude/height
mesh.

2. ADAPTIVE MESH REFINEMENT

The Adaptive Mesh Refinement (AMR) algorithm used is essentially that of Berger and Oliger
[3] and Berger and Colella [2], which provides a straightforward process by which the resolution
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2 M. E. HUBBARD

Figure 1. A two-dimensional adapted grid with the dummy cells superimposed.

of structured Cartesian meshes can be adapted locally to efficiently give the desired accuracy
when approximating partial differential equations.

The method employs a hierarchical system of overlaid, properly nested, embedded grids,
as illustrated in two dimensions by the solid lines in Fig. 1, and these grids are continually
updated to ensure that the regions of high resolution follow the moving flow features. All
communication between meshes is carried out via the transfer of solution information into
layers of dummy cells, such as those illustrated by dotted lines in Fig. 1, supplying boundary
conditions for integrations on individual meshes. For flexibility, the relative level of refinement
between two grid levels can take any positive integer value (even 1) and need not be the same
in any of the three coordinate directions. The adaptation is controlled by a very simple monitor
function,

ξijk = max(|ψi+1jk − ψi−1jk|, |ψij+1j − ψij−1k|, |ψijk+1 − ψijk−1|), (1)

where ψ is the advected variable and (i, j, k) index the structured meshes. The new meshes are
formed using the clustering algorithm of Bell et al. [1], and adaptive time-stepping is used to
improve efficiency, and a flux correction is applied at mesh boundaries to ensure conservation.

On the sphere, the meshes are regularly spaced in spherical polar coordinates, and a single
coarse mesh covers the whole of the globe. Beyond this, the application of the adaptive mesh
refinement algorithm remains essentially unchanged. The only modifications required are

• The transfer of solution information from fine meshes to coarse meshes is carried out
through a volume weighted averaging procedure to ensure conservation.

• The transfer of solution information from coarse meshes to fine meshes (used to fill both
the dummy cells surrounding the mesh boundaries and the newly created mesh structure)
is still conservative when piecewise constant interpolation is used, but no longer when a
MUSCL-type reconstruction [8] is applied to the solution. Here a correction is applied
in which the MUSCL reconstruction is scaled to ensure that the sum of the ‘masses’
contained within each fine cell is the same as the mass within the corresponding coarse
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3D ADAPTIVE MESH REFINEMENT ON THE SPHERE 3

cell. The scaled reconstruction is no longer guaranteed to be monotonic, but it does
prohibit any change of sign.

• The communication between meshes through layers of dummy cells which span either
of the poles must take into account the reversal of the coordinate system across the
singularity. As a result the velocity field swaps sign in the dummy cells and any filling
of strips of cells is carried out in reverse. The zonal boundary (taken along a surface of
constant longitude) require periodic conditions to fill the dummy cells.

When the calculations are forced with externally supplied data this is projected on to the grids
using trilinear interpolation in space and linear interpolation in time.

3. The Scalar Advection Equation

The equation being approximated here is the multidimensional scalar advection equation

ψt + ~u · ~∇ψ = 0, (2)

in which ψ represents the advected scalar quantity, such as a chemical mixing ratio, and
~u = (u, v, w)T is the velocity vector.

Equation (2) is not itself a conservation law (except in the special case when ~∇·~u ≡ 0), but
it may be rewritten

ψt + ~∇ · (ψ~u) = ψ ~∇ · ~u. (3)

The left hand side is in conservation form, and is discretised using a flux-based finite volume
technique, while the right hand side acts as a forcing term, and is discretised in a manner which
maintains conservation in the special case when the discrete representation of the velocity field
is divergence-free. When ~∇·~u 6= 0 the algorithm presented here models the advection equation
(2), not the conservation law.

The approximation is constructed using a forward Euler discretisation of the time derivative,
along with dimensional splitting which can be carried out on the regular structured meshes
created by the AMR. A cell centred finite volume scheme is used to approximate the flux terms.
This is combined with a consistent approximation of the velocity divergence term, designed to
maintain a constant flow field (ψ = K) indefinitely, whatever the velocity field. Note that in
the case considered here the velocity field is supplied by some external source, which may be
meteorological analyses, and is not calculated as part of the numerical model. Conservation
is assured when the discrete form of the divergence of the velocity field is zero. The resulting
scheme, in three dimensions, takes the form

ψ⋆
ijk = ψn

ijk −
∆t

Vijk
× { [A (ψu)∗ ]ni+1/2jk − [A (ψu)∗ ]ni−1/2jk

+ ψ
n

ijk [Au∗ ]ni+1/2jk − ψ
n

ijk [Au∗ ]ni−1/2jk }

ψ⋆⋆
ijk = ψ⋆

ijk −
∆t

Vijk
× { [A (ψv)∗ ]⋆ij+1/2k − [A (ψv)∗ ]⋆ij−1/2k

+ ψ
n

ijk [Av∗ ]nij+1/2k − ψ
n

ijk [Av∗ ]nij−1/2k }

ψn+1

ijk = ψ⋆⋆
ijk −

∆t

Vijk
× { [A (ψw)∗ ]⋆⋆

ijk+1/2 − [A (ψw)∗ ]⋆⋆
ijk−1/2
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+ ψ
n

ijk [Aw∗ ]nijk+1/2 − ψ
n

ijk [Aw∗ ]nijk−1/2 }, (4)

where ·⋆ and ·⋆⋆ represent the intermediate states of the update procedure, and A and V are,
respectively, cell face areas and cell volumes.

The numerical fluxes are approximated using the WAF approach, originally proposed by Toro
[7] for the modelling of hyperbolic conservation laws. Since the WAF approach is being applied
here to the advection equation rather than a conservation law, the numerical flux is not used in
precisely the usual form. The numerical flux is assumed to take the form f∗ = (ψu)∗ = ψ∗u∗,
so the WAF flux becomes

(ψu)∗i+1/2 =
1

2
(1 + φi+1/2)ui+1/2ψi +

1

2
(1 − φi+1/2)ui+1/2ψi+1, (5)

where ui+1/2 = (ui + ui+1)/2 and φ is an ‘amplified’ CFL number which incorporates the flux
limiter (van Leer and superbee are used here). The expressions for the numerical fluxes, (5)
and those related to the other two space dimensions, are substituted directly into (4) to give
the WAF-type scheme used here.

In spherical polar coordinates, and for a regular latitude(θ)/longitude(λ)/height(r)
structured grid the volumes and face areas are calculated exactly, with constant mesh spacings
∆λ, ∆θ and ∆r. The WAF-type flux given by (5) is used without any modification, except
that the local dual cell CFL number used in the calculation of φ is now taken to be

νi+1/2 = ui+1/2∆t
2Ai+1/2

Vi + Vi+1

, (6)

to account for the variation in the cell sizes over the computational domain. The cell centre
representation of the solution ensures that no information is stored at the poles and the
singularities there cause no problems: only a small amount of additional bookkeeping is required
to account for the reversal of the coordinate system for cross-polar communication. The only
requirement is that there be an even number of coarse grid cells (in the context of AMR) in
the zonal direction.

4. NUMERICAL EXPERIMENTS

The first problem used here to test the code is essentially the standard two-dimensional solid
body rotation test case of Williamson et al. [9] in which a cosine bell shaped profile is advected,
without distortion, around the sphere at an angle π/2 to the equator, i.e. over the poles. The
bell radius R is set here to 7π/64. All numerical experiments were run with a maximum
Courant number of 0.9.

The AMR requires specification of certain control parameters. In this case the condition
ξ ≥ 0.1 (using (1) as the monitor ξ) was used for the cell flagging, along with one additional
layer of buffer cells, and the remeshing was carried out every time-step. The cell clustering
parameter η is taken to be 0.9 so a high proportion of cells in the fine grids have been flagged.

Table I shows the savings which are made in terms of cpu time. The timings are obtained on a
standard workstation, but it is the relative timings that are important. It should be emphasised
that no additional acceleration techniques have been used in the approximation to counteract
the effects of the converging grid at the poles (cf. Table III). There are two main reasons for
the dramatic improvements seen: the reduction in the number of computational cells on which
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Grid Equivalent Errors Time (s)
resolution l1 l2 l∞

64 × 32 64 × 32 0.9562 0.6403 0.6483 14
64 × 32 (×2) 128 × 64 0.4351 0.3595 0.3799 51
128 × 64 128 × 64 0.4759 0.3694 0.3839 224
64 × 32 (×2 × 3) 384 × 192 0.0885 0.0832 0.0846 849
128 × 64 (×3) 384 × 192 0.0856 0.0787 0.0854 1232
384 × 192 384 × 192 0.0852 0.0725 0.0859 18846

Table I. Error measures for the solid body rotation of a cosine bell after one revolution (α = π/2)
using a van Leer limited WAF scheme with varying degrees of adaptation.

Grid Equivalent Errors Maximum
resolution l1 l2 l∞ value of u

64 × 32 64 × 32 1.5319 0.8845 0.8956 0.095
64 × 32 (×2) 128 × 64 1.0837 0.7120 0.7396 0.254
128 × 64 128 × 64 1.0950 0.7133 0.7415 0.252
64 × 32 (×2 × 3) 384 × 192 0.3963 0.3167 0.3114 0.687
128 × 64 (×3) 384 × 192 0.3996 0.3181 0.3163 0.682
384 × 192 384 × 192 0.4054 0.3192 0.3205 0.678

Table II. Error measures for the solid body rotation of a cosine bell after 10 revolutions (α = π/2)
using a van Leer limited WAF scheme with varying degrees of adaptation.

the integration is carried out, and the relative increase in the stable time-step for the period
of the adaptive calculation when the fine grid does not cover either of the poles. It is, however,
noticeable that the scheme does not show full second order accuracy as the grid is reduced in
size. This is not surprising for a scheme of this type because the convergence of the mesh at
the poles means that it is non-uniform and not aligned with the velocity field. The application
of the flux limiter will also reduce the effective order of accuracy. When the superbee limiter
is used the results at this mesh resolution are generally more accurate, particularly on the
coarser meshes, but the order of accuracy demonstrated is lower. Importantly though, there is
no visible distortion of any solution profile when it crosses the poles, whichever limiter is used.

In practical situations much longer times are likely to be of interest, and Table II shows the
same set of results, but for 10 periods instead of one, and using ξ ≥ 0.001 as the criterion for
flagging the cells. This extra sensitivity is necessary because of the smoothing out of the profile
over the longer time period, but the adaptation is still capable of reducing the cpu times by a
factor of 5. The results have obviously deteriorated further but the finest grids have managed
to retain an accuracy comparable to the medium level grids after a single revolution and,
maybe surprisingly, the adapted results are more accurate than the fixed mesh approximation.
This may be due to the reduction in the number of time-steps taken to reach the same time.

The effect of applying multiple sweeps in the zonal direction is illustrated in Table III, which
shows a series of results obtained on a 384× 192 grid. The level of reduction referred to in the
first column indicates the number of times the grid would have been ‘reduced’ by a factor of
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Equivalent level Errors Time (s) Time-step (s)
of ‘reduction’ l1 l2 l∞
0 0.0852 0.0725 0.0859 18846 20.0
1 0.0839 0.0714 0.0856 9927 39.8
2 0.0812 0.0692 0.0850 5473 79.5
3 0.0759 0.0649 0.0839 3115 159.1
4 0.0658 0.0572 0.0813 1902 318.1
5 0.0534 0.0496 0.0762 1251 636.2
6 0.0867 0.0738 0.0906 938 1215.1
7 0.0877 0.0747 0.0937 1432 1215.1
‘Optimal’ 0.0823 0.0716 0.0931 469 1215.1

Table III. Error measures for the solid body rotation of a cosine bell (α = π/2) after one revolution
using a van Leer limited WAF scheme with varying numbers of zonal sweeps on a single 384 × 192

mesh.

2 in the zonal direction to gain an equivalent increase in the global time-step. The number of
sweeps increases towards the poles by a factor of 2 at equispaced intervals of cos θ, except for
the case denoted ‘optimal’ where the number of sweeps can take any positive integer value,
not just a power of 2, and is calculated separately for every layer of cells.

The method has also been applied to the idealised cyclogenesis problem of Nair et al. [6]
(which imitates a vortical flow rather than a solid body rotation) with similarly encouraging
results. This time the superbee limiter was used to maintain the sharpness of the interfaces.
The increase in speed obtained by the AMR is slightly less dramatic because a larger proportion
of the mesh has been refined, but a speed-up of a factor of 3 is still simple to obtain, with
no loss of accuracy and no spurious oscillations in the solution at the steep interface, which is
captured very sharply.

In three dimensions, the method has been applied to solid body rotation around the sphere
with an additional vertical velocity component. The initial solution profile, when viewed in
a cylindrical projection, takes the form of a slotted sphere and is transported over the poles
in the manner of the cosine bell of of Williamson et al. [9], but with an additional sinusoidal
oscillation in the vertical with one quarter the period of the revolution around the sphere.
More precisely, an initial sphere is defined by

ψ =

{

1.0 if d < π/6
0.0 otherwise

(7)

where d = [(λ − λc)
2 + (θ − θc)

2 + (h− hc)
2]1/2, in which (λc, θc, hc) = (π/2, 0.0, hmax/2). A

slot is cut out of the sphere by supplementing this with the condition

ψ = 0.0 if r ≥ rc − π/18 and θc + π/18 ≥ θ ≥ θc − π/18 , (8)

where r is given by

r = cos−1[sin θc sin θ + cos θc cos θ cos(λ− λc)] , (9)

the great circle distance between (λ, θ) and the bell centre, initially taken as (λc, θc) =
(π/2, 0.0). This is also the exact solution after any integer number of revolutions around the
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3D ADAPTIVE MESH REFINEMENT ON THE SPHERE 7

sphere. The velocity field is

u = u0(cosα cos θ + sinα cosλ sin θ)

v = −u0 sinα sinλ

w = 0.00002 cos(πt/129600) ,

where u0 = 38.61ms−1 and α = π/2, giving the solid body rotation a period of 12 days and
the vertical oscillation a period of 3 days (t is given in seconds). hmax is the magnitude of the
computational domain in the vertical direction.

The solutions shown in Fig. 2 have been obtained with the superbee limiter on a 64×32×32
coarse grid, covering the domain [0 : 2π,−π/2 : π/2, 0 : π], with a single level of grid refinement
(by a factor of 4 in each direction). The adapted grid varies between approximately 180000 and
430000 cells, while the equivalent fine grid would contain 4194304 cells. It works out that the
adaptive run takes about 1/13 of the cpu time of the fine grid run and uses roughly 1/3 of the
memory. Also note that there is no distortion in the profile as it crosses the polar singularities.
The slotted sphere appears to change shape because it has been presented as a cylindrical
projection, but on the sphere its shape remains unaltered. Numerical measures of accuracy
give less insight into the quality of the solution for a discontinuous profile such as this but, for
the sake of completeness, the three error measures for this case give

l1 : 0.2339 , l2 : 0.2987 , l∞ : 0.9990 , (10)

while the maximum solution value is still 0.9997.

The combined WAF/AMR algorithm, has also been extensively tested against the evolution
of observed atmospheric data (and not just the academic cases presented here), for which
it is driven by externally supplied velocity fields and initial conditions and uses a more
realistic representation of the vertical motion and grid. The results will be presented in future
publications [4, 5] but they clearly indicate that AMR can be used to significantly improve the
efficiency of flux-based method for approximating the scalar advection equation in practical
situations. A speed-up by a factor of 6 is easily obtained in all situations tried so far.

5. Conclusions and Future Work

In this paper an Adaptive Mesh Refinement algorithm has been combined with an
appropriately modified, conservative and monotonic finite volume scheme to model three-
dimensional tracer advection over the sphere. The resulting method accurately models scalar
advection without creating spurious oscillations in the solution, and the addition of Adaptive
Mesh Refinement maintains the accuracy of the solution on the finest grid level, while allowing
solutions to be obtained with much greater efficiency.

The benefits of using AMR are likely to become even greater with the introduction of
additional physical and chemical processes into the model. Initial work has been carried out into
the approximation of a shallow water model of the atmosphere and unadapted results obtained
using a WAF-type scheme have been encouraging. Work has also begun on the inclusion of
chemistry in the model.
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Figure 2. Cylindrical projection of the three-dimensional slotted sphere test case, showing the ψ = 0.5
isosurface and the slice of the mesh taken through θ = π/2, for the initial conditions (top left), 1/8,

3/16, 1/4, 5/16 of a revolution, and a whole revolution (bottom right).
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