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Abstract

This paper addresses the issue of constructing non-oscillatory, higher than second
order, fluctuation splitting methods on unstructured triangular meshes. It highlights
the reasons why existing approaches fail and proposes a procedure which can be
applied to any high order fluctuation splitting scheme to impose positivity on it. Its
success is demonstrated through application to a series of linear and nonlinear scalar
problems, using a pseudo-time-stepping technique to reach steady state solutions
on two-dimensional unstructured meshes.
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1 Introduction

The fluctuation splitting approach to approximating multidimensional systems
of conservation laws has developed to a stage where it can be used reliably to
produce accurate simulations of complex steady state fluid flow phenomena
using unstructured meshes [12]. The most commonly used methods are second
order accurate at the steady state, which is deemed accurate enough for simu-
lating a wide range of flows and, in the presence of discontinuities, they are also
required to avoid introducing unphysical oscillations in to the flow. Within the
fluctuation splitting framework, the PSI scheme [13] (or one of its variants)
has provided the basis for a range of methods which have successfully achieved
these goals, particularly for the scalar case. It is a nonlinear upwind scheme
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which, when it is used to simulate scalar conservation laws, exhibits second
order accuracy at the steady state for smooth solutions, guarantees positivity
(even in the presence of discontinuities), and gives rapid convergence to the
steady state, all without the necessity for additional artificial viscosity.

Generalisations of the PSI scheme have been developed for application to
nonlinear systems of equations [19]. The most commonly used schemes for
systems take the form of matrix distribution schemes. A nonlinear matrix
distribution form of the PSI scheme exists, but it has so far proved more
successful to reinterpret the PSI scheme as a nonlinear “blending” of two
linear schemes, the non-oscillatory N scheme and the second order accurate
LDA scheme, both of which have natural matrix forms which can be applied
to nonlinear systems of equations [1]. Additional research, which led to the
development of wave decomposition models (see [19] for a summary), has
shown that by preconditioning the equations, an optimal decoupling can be
achieved. This allows for scalar components, which take the form of advection
equations, to be split off so that they can be approximated independently
using the original PSI scheme [13], before recombining the components to give
a conservative update to the solution. The work presented here demonstrates
that it is possible to create a scheme which combines positivity with a higher
order of accuracy (as well as higher accuracy) than the PSI scheme at the
steady state. The discussion will be restricted to scalar equations, which can be
applied directly to the simulation of passive transport phenomena or individual
components of a more complex system, though their use in the latter is left to
future research, since it is not yet clear what their ideal extension to nonlinear
systems should be.

More recently, research has focused on the development of more accurate fluc-
tuation splitting methods, for both steady state and time-dependent problems.
This has led to the creation of a number of third and higher order accurate
schemes, each one based on a standard approach to constructing a higher order
representation of the dependent variables.

The first third order fluctuation splitting scheme to be developed was that
of Caraeni et al. [10,11], who created a quadratic representation within each
mesh cell via the reconstruction of local gradients of the dependent variables
at the mesh nodes, obtained using the surrounding data. The resulting fluc-
tuation was distributed using the non-positive LDA scheme [13] so, although
the results shown for smooth viscous fluid flow and turbulence transport were
excellent, unphysical oscillations still occur in less smooth situations.

Abgrall, along with Roe [8] and Mezine and Andrianov [4,7], proposed a similar
idea, but constructed the higher order fluctuation using extra information
about the dependent variable stored at the additional nodes created by a
uniform global subdivision of the mesh. The solution is stored and updated
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at all of the submesh nodes and the distribution of the fluctuations is carried
out on the subtriangles. The proposed third (and higher) order schemes are
almost non-oscillatory.

A third, less successful, approach was proposed by Hubbard and Laird [17],
who obtained higher order by extending the stencil of the distribution of the
second order fluctuations. It was highly sensitive to the mesh structure, and
lacked robustness, but the underlying concept (of extending the stencil) re-
mains valid as an approach to achieving higher order accuracy if it is used
instead to construct a higher order representation of the dependent variable.

This work will consider the first two of these techniques for constructing a con-
tinuous piecewise quadratic interpolant, which leads to third order methods.
This higher order interpolant is used to construct a more accurate fluctuation
which, if distributed completely using bounded distribution coefficients, gives
a high order method [1,6]. It is straightforward to generalise the concepts to
higher than third order, though the implementation will be more complicated.

Each approach has achieved higher than second order accuracy for the scalar
advection equation, and that of Caraeni et al. has already shown a great deal
of promise in more practical situations. However, none of them has yet com-
bined this with positivity, except with the aid of the Flux-Corrected Transport
(FCT) algorithm [18,24] used with second order schemes in [14,17]. This pa-
per will propose a method for imposing positivity on these high order schemes
which avoids the use of any post-processing techniques such as FCT and has
the additional benefit (not discussed here in detail) of providing a simple
framework for creating a positive p-refinement algorithm for fluctuation split-
ting.

The research presented considers the scalar advection equation and a form
of the inviscid Burgers’ equation, approximated on two-dimensional, unstruc-
tured, triangular meshes. The fundamentals of first and second order fluctua-
tion splitting schemes will be summarised in Section 2, after which the existing
high order methods, of Caraeni et al. [10] and Abgrall and Roe [8], will be
outlined in Section 3, along with the reasons underlying their lack of positiv-
ity. The discussion will suggest a modification which can be applied to any of
these approaches in the steady state case to impose positivity on the scheme,
and this is presented in detail in Section 4. A series of results for standard lin-
ear and nonlinear test cases will be given in Sections 5 and 6 to illustrate the
effectiveness of the new approach at removing unwanted oscillations without
unduly affecting the underlying scheme’s accuracy. Finally, some conclusions
are drawn in Section 7, alongside a brief description of possible directions for
future work.
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2 Fluctuation Splitting

Consider the two-dimensional scalar conservation law given by

ut + fx + gy = 0 or ut + ~λ · ~∇u = 0 (1)

on a domain Ω, with u(x, y, t) = h(x, y, t) imposed on the inflow part of the

boundary ∂Ω. ~λ =
(

∂f

∂u
, ∂g

∂u

)T
defines the advection velocity associated with

the conservation law. This equation has an associated fluctuation, assumed
here to be calculated over a triangular mesh cell △ and given by

φ = −
∫

△

~λ · ~∇u dΩ =
∮

∂△
u~λ · ~n dΓ , (2)

in which ~n represents the inward pointing unit normal to the cell boundary.
When u is assumed to have a piecewise linear continuous representation with
values stored at the mesh nodes, the discrete counterpart of φ is evaluated
using an appropriate (conservative) linearisation [13]. Ideally, this allows the
integration in Equation (2) to be carried out exactly, giving

φ = −S△
~̃λ · ~∇u = −1

2

∑

i∈△

ui
~̃λ · ~ni , (3)

where S△ is the cell area and the symbol ˜ indicates an appropriately linearised
quantity, in this case the local advection velocity. The index i loops over the
vertices of △, and ~ni is the inward unit normal to the ith edge (opposite
the ith vertex) multiplied by the length of that edge. This linearisation is
straightforward in the special cases of divergence-free linear advection and
Burgers’ equation, the examples which will be used later in this paper. In
both cases it equates to taking the arithmetic mean of the cell vertex values.

A simple forward Euler discretisation of the time derivative leads to an itera-
tive update of the nodal solution values which is generally written as

un+1
i = un

i +
∆t

Si

∑

j∈∪△i

αj
i φj , (4)

where ∆t is the time-step, Si is the area of the median dual cell corresponding
to node i (one third of the total area of the triangles with a vertex at i), αj

i is
the distribution coefficient which indicates the appropriate proportion of the
fluctuation φj to be sent from cell j to node i, and ∪△i represents the set of
cells with vertices at node i. Conservation is assured as long as

∑

i∈△j

αj
i = 1 ∀j , (5)
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where △j represents the set of nodes at the vertices of cell j, i.e. the whole
of each fluctuation is sent to the nodes. Note that the distribution has been
restricted here so that a cell can only make contributions to nodes at its own
vertices, allowing the scheme to be implemented very efficiently. The time
derivative term in this construction is included here purely as a device for
iterating to the steady state, but its presence would be necessary for time-
dependent problems, in which case it must be integrated in a manner consis-
tent with the underlying representation of u if the order of accuracy of the
steady state approach is to be maintained [4,10].

2.1 The N Scheme

The most successful attempts to impose positivity on higher than first order
fluctuation splitting schemes rely heavily on the linear first order, positive
fluctuation distribution scheme known as the N scheme [13], which is defined
as follows:

1 For each triangle, locate the downstream vertices, i.e. those for which ~̃λ·~ni >
0, where ~ni is the inward pointing normal to the edge opposite vertex i.

2a If a triangle has a single downstream vertex, node i1 say (cf. Figure 1), then
that node receives the whole fluctuation φ, so

ui1 → ui1 +
∆t

Si1

φ , (6)

while the values of u at the other two vertices remain unchanged.
2b Otherwise, the triangle has two downstream vertices, i1 and i2 say (cf. Figure

1), and the fluctuation φ is divided between these two nodes so that

ui1 → ui1 +
∆t

Si1

φi1 ui2 → ui2 +
∆t

Si2

φi2 , (7)

where

φi1 = −1

2
~̃λ · ~ni1(ui1 − ui3) φi2 = −1

2
~̃λ · ~ni2(ui2 − ui3) , (8)

in which i3 denotes the remaining (upstream) vertex of the triangle. It is
easily shown that φi1 + φi2 = φ (for conservation).

The distribution coefficients, αj
i in Equation (4), can be derived easily from

Equations (6)–(8). The resulting scheme is clearly locally, and hence globally,
positive so the iteration given by (4) is conditionally stable. The appropriate
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restriction on the time-step at node i is given by

∆t ≤ Si

∑
j∈∪△i

max
(
0, 1

2
~̃λ · ~nj

i

) . (9)

i1 i1

i2i2

i3i3

φ φ

One Target Two target

Fig. 1. The splitting of the fluctuation distribution in to one and two target cases.

Results: The test case used here to illustrate the properties of each scheme
consists of advection in a circle, with velocity ~λ = (y,−x)T and over the
domain [−1, 1] × [0, 1], of the initial profile given by

u(x, y, 0) =





G(x) for − 0.65 ≤ x ≤ −0.35 , y = 0,

0 otherwise.
(10)

This is also imposed as the boundary function h(x, y, t) on the inflow bound-
aries of the domain while the experiment is run to steady state. The exact
solution is u(x, y) = G(r) for 0.35 ≤ r =

√
x2 + y2 ≤ 0.65, with u(x, y) = 0

elsewhere. In this case ~∇ · ~λ = 0, so the advection equation and the conserva-
tion law are equivalent and the conservative linearisation is simple [13].

Results are shown in Figure 3 for a uniform but genuinely unstructured tri-
angular mesh consisting of 3806 nodes and 7370 cells (dx ≈ 0.025), shown at
the top of Figure 2. The two cases used are defined by

Case A: G(r) = 1, which illustrates the positivity of the scheme;
Case B: G(r) = cos2(10π(r + 0.5)/3), which is more appropriate for deter-

mining the scheme’s ability to maintain a smooth peak without artificially
steepening the profile.

The solution profile along the outflow boundary at y = 0 would ideally reflect
the profile at inflow exactly, but both here show the significant level of numer-
ical diffusion incurred. This is unsurprising as the method is easily shown to
be at best first order accurate [13].
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Fig. 2. The meshes used for the advection equation results obtained with the N,
PSI and gradient recovery schemes (top) and the submesh reconstruction schemes
(bottom).

2.2 The PSI Scheme

The nonlinear PSI scheme, devised by Struijs [23] and formulated algebraically
by Sidilkover and Roe [22], is the most commonly used of the second order
positive fluctuation splitting schemes, and is easily defined once the N scheme
has been described.

Given that the contribution made by cell j to node i by the N scheme can be
written as (φj

i )
N = (αj

i )
Nφj , where φj is the fluctuation in cell j (see (3)), the

contributions due to the PSI scheme can be defined as follows:

(φj
i )

PSI =
[(αj

i )
N ]+

∑
k∈△j

[(αj
k)

N ]+
φj = (αj

i )
PSIφj , (11)

in which [ ]+ denotes the positive part of the quantity within the square
brackets. This scheme has a number of notable properties (for all nodes i and
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Fig. 3. The N scheme applied to Test Case A (top) and Test Case B (bottom).

cells j):

• The scheme is conservative because

∑

k∈△j

(αj
k)

PSI =
∑

k∈△j

(αj
k)

N = 1 . (12)

• (αj
i )

PSI (αj
i )

N ≥ 0, so the scheme is positive for an appropriate range of
time-steps.

• |(αj
i )

PSI | ≤ |(αj
i )

N |, so the limit on the time-step given by (9) is sufficient
to maintain this positivity.

• (αj
i )

PSI ∈ [0, 1] is bounded, so the order of accuracy of the steady state
scheme is equivalent to the order of the error in the representation of φ (in
this case second order) [1,6]. This property is often referred to as linearity
preservation.

Results: The results for the PSI scheme are shown in Figure 4 using the same
mesh as before (shown at the top of Figure 2). The improvement in accuracy
over the N scheme is clear, as is the lack of oscillations. This is confirmed by
the more comprehensive comparison of results supplied in Section 5. However,
the outflow profile still does not reflect the inflow profile exactly (the square
wave has clearly had its “corners” smoothed while the smooth profile has lost
height on its peak value) and could be improved by incorporating a more
accurate representation of the dependent variable in to the method.

8



−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1 0

0.5

1

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1 0

0.5

1

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. The PSI scheme applied to Test Case A (top) and Test Case B (bottom).

3 Higher Order Methods

A range of techniques exist for extending numerical algorithms to higher order
accuracy. Two which have been successfully applied to fluctuation splitting will
be described here as a precursor to the introduction of the proposed approach
for imposing positivity.

3.1 Submesh Reconstruction

The scheme of Abgrall and Roe [8] is based on a simple generalisation which
differs mainly from the schemes described in Section 2 in that the fluctuation φ
is approximated using a higher order polynomial representation of the depen-
dent variable. The procedure can be extended to arbitrary orders of accuracy
and to three space dimensions, but only the two-dimensional, third order case
will be considered here.

In this situation the dependent variable u is taken to be a continuous piece-
wise quadratic function with the unknowns stored at the nodes of a globally
refined mesh, created by subdividing each triangular cell in to four congruent
subcells (see the left hand diagram in Figure 5). This makes it possible to
construct a unique local quadratic interpolating polynomial on each cell of
the original mesh. The resulting fluctuation (2) can be evaluated on any of
the subcells, using an appropriate quadrature rule to ensure that the integral
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is evaluated to a high enough degree of accuracy. Exact integration will be
assumed throughout this work, as it is required in the following analysis of
each scheme’s positivity, but this is not necessary to achieve the desired order
of accuracy for the overall method. In fact, for a kth order method it suffices to
evaluate the fluctuation exactly with respect to a (k − 1)th degree polynomial
representation of the flux and distribute this in a linearity preserving manner
[8]. The resulting fluctuations, now calculated within each subcell, are then
distributed to the nodes of the refined mesh.

Submesh reconstruction Gradient recovery

u, ~∇u u, ~∇u

u, ~∇u

u

u

u

u

u u

Fig. 5. The storage of solution information for the quadratic reconstructions of
Abgrall and Roe (left) and Caraeni et al. (right). A filled circle indicates that a
value of u is stored there and an unfilled circle indicates that a value of ~∇u is
calculated there.

The method proposed in [8] is based on the contributions given by

(φj
i )

HO =
[(αj

i )
N ′

]+
∑

k∈△j
[(αj

k)
N ′]+

φHO
j = (αj

i )
HO φHO

j , (13)

in which φHO
j is calculated by evaluating (2) exactly according to the high

order (HO) representation of u. The indices in (13), and for all schemes based
on this submesh reconstruction approach, now represent vertex i (or k in the
summation) of subcell j. As a consequence, the distribution of the fluctua-
tion within each subcell remains local to that subcell, although the scheme is
not completely local because the reconstruction of the polynomial within the
subcell takes information from the rest of the full mesh cell.

The fluctuations defined by (13) are closely related to those of the PSI scheme
(11) in form, but it is important to note that the N scheme-like distribution
coefficients, denoted by the superscript N ′, have a slightly different definition,
i.e.

(αj
i )

N ′

= (φj
i )

N/φHO
j , (14)

in which (φj
i )

N is the contribution made to node i when the N scheme is
applied to the fluctuation created by integrating a linear representation of
the dependent variable on subcell j. Furthermore, for reasons which will be
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discussed in more detail in Section 3.3, the distribution coefficients which are
actually used are

(αj
i )

HO =
[(αj

i )
N ′

]+ + ǫ
∑

k∈△j
([(αj

k)
N ′]+ + ǫ)

, (15)

where ǫ is some small free parameter.

Results: The results for the Abgrall-Roe scheme are presented in Figure 6,
obtained using the mesh shown at the bottom of Figure 2, which has been
constructed by regular subdivision of a 984 node, 1846 cell uniform but un-
structured mesh (giving 3813 nodes and 7384 subcells with dx ≈ 0.025, a
similar number of unknowns as used in the other schemes) so that the sub-
cells are similar in size to the cells of the mesh used for the other methods.
An improvement in accuracy is apparent in the profile at outflow of both test
cases (and is illustrated more clearly by the error measures given in Tables
1 and 2 in Section 5). However, this is at the expense of small oscillations
just visible at the discontinuities close to the inflow boundary in Test Case A
(again, see Tables 1 and 2).
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Fig. 6. The Abgrall-Roe scheme applied to Test Case A (top) and Test Case B
(bottom).

3.2 Gradient Reconstruction

One alternative to subdividing the mesh to provide the additional degrees of
freedom necessary to reconstruct quadratic polynomials is to recover solution
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gradients at the mesh nodes and use these to obtain a quadratic interpolant.
This approach was taken by Caraeni and his collaborators [10,11]. The first
stage of the procedure used approximates the cell gradients using the Green-
Gauss formulation, given by

~∇uj =
1

S△j

∮

∂△j

u~n dΓ , (16)

approximating the integral along each cell edge using the trapezoidal rule.
These are then used to obtain an approximation to the nodal solution gradients
from

~∇ui =
1

∑
j∈∪△i

|S△j
|−1

∑

j∈∪△i

|S△j
|−1 ~∇uj . (17)

This is second order accurate on uniform meshes but loses this property on the
unstructured meshes shown in Figure 2, most seriously along the “diagonals”
which clearly appear in the mesh structure, emanating from each corner of
the domain.

When quadrature is used to evaluate the fluctuations (2), the midpoint values
of u are required (in the linear, third order case), and these are defined here
by

umid =
ui1 + ui2

2
+

~∇ui1 − ~∇ui2

8
· (~xi2 − ~xi1) , (18)

where i1 and i2 denote the vertices at each end of the mesh edge. This is used
to calculate a high order fluctuation within the cell, which is then distributed
using the LDA scheme. As with the other schemes, the distribution of the fluc-
tuation within each cell remains local to that cell. However, the reconstruction
of the gradient used in (17) takes information from the surrounding cells so the
stencil of the scheme is not local, and for even higher order accuracy the sten-
cil would need to be extended further in order to provide approximations to
higher derivatives. The submesh reconstruction approach encounters a similar
issue, in the sense that the stencil of the scheme used to update a given node
extends beyond the adjacent subcells, but the structure inherent in the sub-
division ensures that the distribution of the fluctuation within a full mesh cell
only depends on information within that cell, whatever the order of accuracy
required.

The gradient reconstruction scheme is not positive (and was never intended to
be) but does achieve higher order accuracy, and gives excellent approximations
to a range of smooth solutions [9–11].

Results: The results obtained using Caraeni’s scheme are shown in Figure 7
using the same mesh as was used for the N and PSI schemes (the top mesh
of Figure 2). The improvement in accuracy is clear in the modelling of the
smooth profile but the effects of its lack of positivity are equally apparent
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in the test case involving the discontinuous profile. This is confirmed by the
evidence presented in Tables 1 and 2 of Section 5.
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Fig. 7. The Caraeni scheme applied to Test Case A (top) and Test Case B (bottom).

3.3 The Problem

In the following discussion φHO
j will be used to denote the fluctuation within a

mesh cell or, for any scheme based on uniform subdivision of the mesh, subcell
indexed by j and evaluated from the high order (quadratic) interpolant. φLO

j

will denote the fluctuation within the same (sub)cell but evaluated from the
low order (linear) interpolant. The analysis follows that given in [15] and
closely resembles that presented in independent work by Ricchiuto et al. [21]
and Abgrall [2].

Three situations are worthy of discussion, none of which arises in the PSI
scheme because, in that case, φHO

j ≡ φLO
j .

1 φHO
j φLO

j < 0 for some (sub)cells j, i.e. the high and low order fluctua-
tions can have different signs. This is most damaging when the N scheme
gives only non-negative distribution coefficients (αj

i )
N . In such cases the

procedure used by the Abgrall-Roe scheme (13) which, in the second or-
der case, imposes linearity preservation on the N scheme and leads to the
PSI scheme, now gives zero distribution coefficients for every vertex of the
(sub)cell, clearly violating conservation. The modified form given in (15)
avoids this loss of conservation, but only by reverting to a central discreti-
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sation, αj
i = 1

3
, ∀i ∈ △j, in such situations, which is not positive. The

resulting scheme is also not continuous, which can present problems when
attempting to converge to steady state solutions.

2 |φHO
j | ≫ |φLO

j | for some (sub)cells j, even when φHO
j φLO

j ≥ 0, i.e. the
magnitude of the high order fluctuation can be much higher than that of
the low order fluctuation, even when they have the same sign. Since the
ratio of the two fluctuations is unbounded this can seriously restrict the
condition (9) required for the time-stepping procedure to remain positive,
and hence the speed with which a positive steady state approximation can
be found (if one even exists).

3 The most troublesome case of all, which occurs in many (sub)cells in Test
Case A, is when φHO

j is nonzero in a (sub)cell for which ui1 = ui2 = ui3. In
such situations it is impossible to distribute φHO

j to the vertices of (sub)cell
j in a conservative manner while maintaining local positivity. Global posi-
tivity cannot therefore be achieved without prior knowledge of the contri-
butions from elsewhere. The consequence of this is that it is not possible to
construct a positive fluctuation distribution scheme which is conservative
and higher than second order accurate if the distribution of the fluctua-
tion in a (sub)cell is restricted to be only to the vertices of that (sub)cell.
Thus one of the main design criteria used in the development of fluctuation
splitting methods cannot be enforced.

Remark: At this stage of the development of a high order non-oscillatory
finite volume scheme a limiter would be introduced to combine the low order
positive scheme with the high order non-positive scheme. Applying such an
approach here (at least in the manner traditionally employed in finite volume
schemes) would lead to an inconsistency in the calculations of fluctuations
in neighbouring (sub)cells, in that the edge contributions in the boundary
integrals in (2) would no longer necessarily cancel at internal edges, leading to
a non-conservative scheme. This is an issue which this work seeks to address,
though it is worth noting that Abgrall and Barth [5] have demonstrated that
this loss of conservation may not always be a problem in practice. In particular,
if discontinuities in the representation could be confined to smooth regions of
the flow then the lack of conservation should not have a detrimental effect on
the quality of the solution. This possibility will not be explored here, but the
results produced suggest that a scheme of this form might be constructed in
the future (see Figure 16 and the accompanying discussion in Section 5).

4 Suppressing the Oscillations

A number of techniques exist which can be used to remove unphysical oscil-
lations from computational simulations of hyperbolic conservation laws. For
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example, the Flux-Corrected Transport (FCT) approach [18,24] is widely used
and has been applied within the fluctuation distribution framework [14,16,17].
In this work though, the intention is to incorporate local positivity within the
method itself, rather than applying a post-processing step once low and high
order updates have already been calculated.

It has been observed that, in the submesh distribution framework of Abgrall
and Roe [8], it is always possible to distribute the high order fluctuation of
the full mesh cell J , φHO

J =
∑

△k∈△J
φHO

k , to the six subvertices of that cell in
a manner which is both conservative and locally positive [2,15,20]. However,
this observation has yet to yield a scheme which combines positivity with high
order accuracy. The schemes presented in [15] strove for higher order accuracy,
and although they improved on the PSI scheme in some cases and were free
of oscillations, they couldn’t be proved to be positive. That technique is also
essentially still a post-processing step, can only be applied if the submesh
reconstruction approach is used to obtain higher order accuracy, and doesn’t
offer a straightforward generalisation to higher orders of accuracy. A second,
considerably more successful and flexible approach, will be presented here.

4.1 Limiting the Interpolant

The modification presented in [15] addresses the problem of distributing the
high order fluctuation in a positivity-preserving manner by, essentially, ex-
tending the stencil. An alternative approach is to modify the interpolant (and
hence the fluctuation) in a manner which allows a positive distribution scheme
within the existing framework, i.e. one where the fluctuation in a (sub)cell is
only distributed to that (sub)cell’s vertices. The linear interpolant used in the
second order scheme has already led to positive schemes of this type, e.g. N,
PSI, so the challenge is to find a procedure (similar in aim to flux/slope lim-
iting in finite volume schemes) which can be used to add a “limited” amount
of a high order correction to a low order scheme to improve its accuracy while
maintaining positivity.

The approach to approximating Equation (1) taken here consists of two stages.
First it is necessary to apply a simple adjustment to the interpolant, so that
it is possible to distribute the resulting fluctuation within each triangular
(sub)cell to its vertices in a locally positive manner. Once the fluctuation due
to this adjusted interpolant has been calculated, a second modification needs
to be made, this time to the distribution scheme.

In order to determine the adjustment which must be made to the interpolant,
consider ū(~x), the linear interpolant of the values of the dependent variable
u at the vertices of a given triangular (sub)cell, and δu(~x) the high order
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correction to the interpolant over that triangle, for which ū(~x) + δu(~x) is a
high order representation of the data within that triangle (independent of the
method used to obtain it).

The fluctuation due to the high order interpolant is given by

∮

∂△
u~λ · ~n dΓ=

∑

edges

∫ i2

i1

u~λ · ~n dΓ

=
∑

edges

[∫ i2

i1

ū ~λ · ~n dΓ +
∫ i2

i1

δu~λ · ~n dΓ
]

(19)

in which i1 and i2 represent successive vertices around the triangular mesh
(sub)cell (in an anticlockwise sense). The first term on the right hand side can
easily be distributed in a positive manner using, for example, the N or PSI
scheme. The second is more problematic so here it is replaced by a “limited”
high order correction term which should return the high order interpolant
whenever possible, but restrict the correction where this is necessary to achieve
positivity.

It is simple to show that if the high order correction along each edge i1i2 of
the triangle is limited to give a modified high order correction δu′(~x) along
that edge which satisfies

|δu′

i1i2
(~x)| ≤ C|ui1 − ui2| ∀ ~x = µ~xi1 + (1 − µ) ~xi2 , 0 ≤ µ ≤ 1 , (20)

for some finite constant C ≥ 0, then, subject to an appropriate restriction
on the time-step in (4), it is possible to distribute the fluctuation (2) due to
the modified interpolant u′(~x) = ū(~x) + δu′(~x) to the vertices of that mesh
(sub)cell in a locally positive manner.

The proof is straightforward once the fluctuation due to the “limited” inter-
polant u′(~x) is written in the form

∮

∂△
u′ ~λ · ~n dΓ=

∑

edges

∫ i2

i1

u′ ~λ · ~n dΓ

=
∑

edges

[∫ i2

i1

ū ~λ · ~n dΓ +
∫ i2

i1

δu′ ~λ · ~n dΓ
]

. (21)

By defining a function αi1i2(~x) for each edge, which is given by

δu′

i1i2
(~x) = αi1i2(~x)(ui1 − ui2) , (22)

it follows immediately that imposing (20) on this edge leads to |αi1i2(~x)| ≤ C
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for any ~x on the edge, and then from (21) that

∮

∂△
u′ ~λ · ~n dΓ =

∑

edges

[∫ i2

i1

αi1i2(ui1 − ui2)
~λ · ~n dΓ +

∫ i2

i1

ū ~λ · ~n dΓ
]

. (23)

Clearly, given that α is bounded, this additional component can be distributed
in a positive manner (for an appropriate limit on the time-step) by sending
the component corresponding to the integral along edge i1i2 to vertex i1 or i2
depending on the sign of the integral.

The following discussion suggests a particular form for the distribution which
makes use of the notion of upwinding, as introduced in the description of the
N scheme, and leads to the modified schemes proposed here. Noting that

(uj − uk) ≡ (ui − uk) − (ui − uj) (24)

and that, from (3), the low order fluctuation on the mesh (sub)cell is

φLO = −1

2

∑

i∈△

ui
~̃λ · ~ni , (25)

for an appropriate linearised advection velocity ~̃λ, leads to

∮

∂△
u′ ~λ · ~n dΓ=

1

2
(ui − uj)~̃λ · ~nj +

1

2
(ui − uk)~̃λ · ~nk (26)

+
∫ j

i
αij(ui − uj)~λ · ~n dΓ −

∫ k

j
αjk(ui − uj)~λ · ~n dΓ

−
∫ i

k
αki(ui − uk)~λ · ~n dΓ +

∫ k

j
αjk(ui − uk)~λ · ~n dΓ ,

where i, j and k represent the three vertices of the (sub)cell under consid-
eration and are chosen arbitrarily, but taken in an anticlockwise sense. This
immediately gives

∮

∂△
u′ ~λ · ~n dΓ=

[
1

2
~̃λ · ~nj +

∫ j

i
αij

~λ · ~n dΓ −
∫ k

j
αjk

~λ · ~n dΓ

]
(ui − uj)

+

[
1

2
~̃λ · ~nk −

∫ i

k
αki

~λ · ~n dΓ +
∫ k

j
αjk

~λ · ~n dΓ

]
(ui − uk)

= Kij(ui − uj) + Kik(ui − uk) . (27)

Since α(~x) is bounded, so are Kij and Kik. In fact, simple bounds can be
derived, for example,
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|Kij|=
∣∣∣∣∣
1

2
~̃λ · ~nj +

∫ j

i
α~λ · ~n dΓ −

∫ k

j
α~λ · ~n dΓ

∣∣∣∣∣

≤
∣∣∣∣
1

2
~̃λ · ~nj

∣∣∣∣+
∣∣∣∣
∫ j

i
α~λ · ~n dΓ

∣∣∣∣+
∣∣∣∣∣

∫ k

j
α~λ · ~n dΓ

∣∣∣∣∣

≤
∣∣∣∣
1

2
~̃λ · ~nj

∣∣∣∣+
∫ j

i
|α| |~λ · ~n| dΓ +

∫ k

j
|α| |~λ · ~n| dΓ

≤
∣∣∣∣
1

2
~̃λ · ~nj

∣∣∣∣+ C
∫ j

i
|~λ · ~n| dΓ + C

∫ k

j
|~λ · ~n| dΓ

≤
∣∣∣∣
1

2
~̃λ · ~nj

∣∣∣∣+ C
[
max
i→j

|~λ · ~nk| + max
j→k

|~λ · ~ni|
]

. (28)

Similar expressions can be derived for Kik. It then follows that the limited
fluctuation, in the form (27), can be used to produce a locally positive update
to the dependent variable u as long as ∆t is small enough, and that the bound
on the stable time-step satisfies ∆t = O(C−1).

Remark: This proof is valid for interpolants of any order of accuracy, but
for clarity the presentation below will be based on a third order (quadratic)
interpolant. It is conceptually straightforward to extend this to higher order
situations.

4.2 A Limited Third Order Scheme

Consider the two-dimensional scalar advection equation

ut + ~λ · ~∇u = 0 (29)

where, for the purposes of this illustration, ~λ is assumed to vary linearly in
space, u is assumed to vary in a piecewise quadratic manner in space, and
~∇ · ~λ = 0. This last condition means that the fluctuation can be written

φ = −
∫

△

~λ · ~∇u dΩ = −
∫

△

~∇ · (~λu) dΩ =
∮

∂△
u~λ · ~n dΓ , (30)

where ~n is the inward pointing normal. Since u is quadratic and ~λ is linear on
the triangle, applying Simpson’s rule along each edge of the triangle evaluates
the fluctuation exactly, giving
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∮

∂△
u~λ · ~n dΓ=

1

6

[
ui

~λi · ~nk + 4
(

ui + uj

2

)
~λij · ~nk + uj

~λj · ~nk

+ 4
(
uij −

ui + uj

2

)
~λij · ~nk

]

+
1

6

[
uj

~λj · ~ni + 4
(

uj + uk

2

)
~λjk · ~ni + uk

~λk · ~ni

+ 4
(
ujk −

uj + uk

2

)
~λjk · ~ni

]

+
1

6

[
uk

~λk · ~nj + 4
(

uk + ui

2

)
~λki · ~nj + ui

~λi · ~nj

+ 4
(
uki −

uk + ui

2

)
~λki · ~nj

]
, (31)

where i, j and k are again the vertices of the triangular (sub)cell, taken an-
ticlockwise. The values uij, ujk and uki represent the interpolated values of
the dependent variable at the midpoints of each of the cell (for the Caraeni
scheme) or subcell (for the Abgrall-Roe scheme) edges. For higher order repre-
sentations of the interpolant the above expressions become more complicated
due to the terms required for the additional quadrature points used to inte-
grate the fluctuation exactly.

At this point it is still possible to limit the (sub)cell fluctuation as a whole
rather than considering the interpolant along each edge separately, as will be
done here. Although it would most likely lead to a discontinuous representation
of the dependent variable, this may not be a problem in practice, as long as
all of these discontinuities lie in regions where the solution itself is smooth [5].
The results illustrated in Figure 16 suggest that this may indeed be the case
but this possibility will be left as future work because the analysis of Section
4.1 suggests that the fluctuation should be split in to edge-based components,
as is done in the N scheme, and as soon as an edge-based limiting procedure
is considered, the continuous representation used here results automatically.

Now note that, for linear u and linear ~λ satisfying ~∇ · ~λ = 0, the fluctuation
can be written

∮

∂△
u~λ · ~n dΓ=

1

6

[
ui

~λi · ~nk + 4
(

ui + uj

2

)
~λij · ~nk + uj

~λj · ~nk

]

+
1

6

[
uj

~λj · ~ni + 4
(

uj + uk

2

)
~λjk · ~ni + uk

~λk · ~ni

]

+
1

6

[
uk

~λk · ~nj + 4
(

uk + ui

2

)
~λki · ~nj + ui

~λi · ~nj

]
(32)

so, since in this case

∫

△

~λ · ~∇u dΩ =
(∫

△

~λ dΩ
)
· ~∇u = S△

~̃λ · ~∇u , (33)
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where ~̃λ = (~λi + ~λj + ~λk)/3, it follows from (3) that in the high order case

∮

∂△
u~λ · ~n dΓ=−1

2
ui

~̃λ · ~ni −
1

2
uj

~̃λ · ~nj −
1

2
uk

~̃λ · ~nk

+
2

3

(
uij −

ui + uj

2

)
~λij · ~nk +

2

3

(
ujk −

uj + uk

2

)
~λjk · ~ni

+
2

3

(
uki −

uk + ui

2

)
~λki · ~nj . (34)

As it stands this fluctuation, evaluated over a mesh cell for the Caraeni ap-
proach or a subcell for the Abgrall-Roe scheme, cannot be distributed to the
vertices denoted by the indices i, j and k in a manner guaranteed to be pos-
itive. In order to allow this, the interpolated values at the midpoints of each
of the (sub)cell edges, uij, ujk and uki are limited so that they satisfy (20)
and (22). For cubic or higher order representations the limiting is applied to
the values at all of the quadrature points along each (sub)cell edge, i.e. the
quadrature points on the subcell edges for the Abgrall-Roe scheme but on the
full cell edge for the Caraeni approach.

Submesh reconstruction Gradient recovery

C = 0.5

i2i1i2i1 i1 i1i2 i2

C = 0.25

Fig. 8. The effect of limiting the reconstruction along a cell edge. The dotted lines
are the linear interpolants ū(~x), the dashed lines the quadratic interpolants u(~x)
and the solid lines the limited interpolants u′(~x) for C = 0.25 and C = 0.5 (they are
the same in the left hand diagram). The double headed arrows indicate the range of
values that the polynomial is allowed to take at the quadrature point and the filled
circles show the limited values at the quadrature points.

The midpoint values are limited so that new values, u′
ij, u′

jk and u′
ki, are

created for the dependent variable which, following (20), satisfy
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∣∣∣∣u
′

ij −
ui + uj

2

∣∣∣∣≤C |ui − uj |
∣∣∣∣u

′

jk −
uj + uk

2

∣∣∣∣≤C |uj − uk|
∣∣∣∣u

′

ki −
uk + ui

2

∣∣∣∣≤C |uk − ui| , (35)

where C ≥ 0 is some specified constant. In the general case, the higher order
polynomial would be limited to ensure that the above relations were satisfied
at every quadrature point, not just the midpoints. The optimal choice for C
remains an open question, but three significant values are

• C = 0, which simply returns the linear representation (and, ultimately in
the proposed scheme, leads to the PSI).

• C = 0.25, which is the largest value that guarantees that the limited inter-
polant along each edge is monotonic (in the quadratic case).

Monotonicity can be proved simply by considering the Newton interpolant
of the three data points (xL, uL), (xM , uM) and (xR, uR), where

xM =
xL + xR

2
and uM =

uL + uR

2
+ C(uR − uL) (36)

for some constant C. These represent the quadrature points at which the
interpolant is evaluated along the edge of the triangle when Simpson’s rule
is used. They are considered in one dimension for simplicity. Constructing
the Newton interpolant leads to the equation

u = uL + (2C + 1)
∆u

∆x
(x − xL) − 4C

∆x

∆u

∆x
(x − xL)(x − xM ) (37)

in which ∆u = uR −uL and ∆x = xR −xL, and it immediately follows that

du

dx
= (2C + 1)

∆u

∆x
− 4C

∆x

∆u

∆x
(2x − xL − xM) . (38)

Now, for the interpolant to be monotonic, it is necessary that du
dx

always has
the same sign as ∆u

∆x
, which leads, after some algebraic manipulation, to the

inequality
4C

∆x

(
(x − xL) + (x − xM) − ∆x

2

)
≤ 1 . (39)

This is a linear equation in x, so it suffices to impose (39) at the endpoints
of the domain, xL and xR, to find the admissible range of C. It then follows
immediately that 0 ≤ |C| ≤ 0.25, i.e. C ≤ 0.25 in (35). The geometric effect
of using C = 0.25 is illustrated in Figure 8.

This is the value which is used in the rest of this work. Using larger values
of C tends to reduce the rate of convergence to the steady state, even when
the same time-step is used for the calculations.
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• C = 0.5, which is the largest value that guarantees that the limited mid-
point values are bounded by the endpoint values for any given edge (in the
quadratic case).

This follows immediately from imposing

min(uL, uR) ≤ uM =
uL + uR

2
+ C(uR − uL) ≤ max(uL, uR) (40)

and the geometric effect of using this value is illustrated in Figure 8.

Note though that the time-step restriction depends on C, cf. Equation (28),
and that it becomes more severe as C increases, i.e. ∆t → 0 as C → ∞.

In this work, the limiting is simply carried out on an edge i1i2 by setting

u′

i1i2
=

ui1 + ui2

2
+ αi1i2(ui1 − ui2) (41)

where

αi1i2 = max

(
−C, min

[
C,

ui1i2 − (ui1 + ui2)/2

ui1 − ui2

])
, (42)

in which division by zero is carefully avoided. For a single quadrature point
this procedure is equivalent to setting δu′

i1i2
(~x) = C ′

i1i2
δui1i2(~x) where (42)

ensures that C ′
i1i2

∈ [0, 1] for each edge. Once more, in the general case this
constraint would be imposed at each of the quadrature points and then, for
example, the minimum value of α could be taken on each edge.

If a discontinuous representation was considered, allowing the limiting to be
carried out cell-by-cell instead of edge-by-edge, then the interpolant at each
quadrature point would still take a similar form to (41), but α might need to be
modified, to account for any changes in the constraints used to impose local
positivity. However, given that the positivity analysis typically decomposes
the fluctuation in to edge-based components, the continuous representation is
actually quite natural. In either situation, though, it is clear that the limiting
of the interpolant will tend to be applied in regions where the solution is
varying rapidly. In particular, it will tend to return a low order scheme close to
discontinuities, as is also expected when the more traditional one-dimensional
limiters are used.

The modification given by (41) and (42) means that the fluctuation now takes
the form

∮

∂△
u′ ~λ · ~n dΓ=−1

2
ui

~̃λ · ~ni −
1

2
uj

~̃λ · ~nj −
1

2
uk

~̃λ · ~nk (43)

+
2

3
αij(ui − uj)~λij · ~nk +

2

3
αjk(uj − uk)~λjk · ~ni +

2

3
αki(uk − ui)~λki · ~nj ,
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which, according to the analysis of Section 4.1, can be distributed to the
vertices i, j and k, in a positive manner. It remains to determine the best way
of doing this.

It is worth noting here that, when a piecewise linear representation of the
dependent variable is used, the fluctuation can always (even in the single
target case) be written as

−1

2
ui

~̃λ · ~ni −
1

2
uj

~̃λ · ~nj −
1

2
uk

~̃λ · ~nk =
1

2
(ui − uj)~̃λ · ~nj +

1

2
(ui − uk)~̃λ · ~nk

= φij + φik , (44)

where the vertices i, j and k are chosen so that the inflow parameters kj =
1

2
~̃λ · ~nj and kk = 1

2
~̃λ · ~nk have the same sign (or are zero).

Remark: In the special case where the flow is parallel to an edge of the
(sub)cell one of kj or kk will be zero and the split illustrated by Equation
(44) is not unique. In the piecewise linear (second order) case, this coincides
with the situation where one of the edge contributions, φij or φik is zero, so
even though the vertices represented by i, j and k switch as the advection
velocity rotates through this orientation, when the upwind distribution of, for
example, the N scheme is applied, the distribution still depends continuously
on the advection velocity. The situation is more complicated when a higher
order representation is used.

It follows immediately from (44) and the definition of the inflow parameters
below it that the low order fluctuation is given by

φLO = kj(ui − uj) + kk(ui − uk) (45)

and that the N scheme (in both its one-target and two-target incarnations)
can be viewed as distributing φij via

Siui → Siui +
1

2
∆t ~̃λ · ~nj(ui − uj) if ~̃λ · ~nj ≤ 0

Sjuj →Sjuj +
1

2
∆t ~̃λ · ~nj(ui − uj) if ~̃λ · ~nj > 0 . (46)

A similar approach can be used to distribute φik.

Since the fluctuation can be written

φ = k+
j (ui − uj) + k−

j (ui − uj) + k+
k (ui − uk) + k−

k (ui − uk) , (47)

where [ ]+ and [ ]− are, respectively, the positive and negative parts of the
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argument within the square brackets, an equivalent form of this distribution
is given by

Siui →Siui + ∆t [k−

j (ui − uj) + k−

k (ui − uk)]

Sjuj →Sjuj + ∆t k+
j (ui − uj)

Skuk →Skuk + ∆t k+
k (ui − uk) . (48)

In the limited high order case

∮

∂△
u′ ~λ · ~n dΓ=

1

2
(ui − uj)~̃λ · ~nj +

2

3
αij(ui − uj)~λij · ~nk

+
1

2
(ui − uk)~̃λ · ~nk +

2

3
αki(uk − ui)~λki · ~nj

+
2

3
αjk(uj − uk)~λjk · ~ni (49)

so, since

uj − uk ≡ (uj − ui) + (ui − uk) ≡ (ui − uk) − (ui − uj) (50)

it follows that the limited fluctuation, denoted here by the superscript LIM ,
can be written

φLIM =
∮

∂△
u′ ~λ · ~n dΓ

=
1

2
(ui − uj)~̃λ · ~nj +

2

3
αij(ui − uj)~λij · ~nk − 2

3
αjk(ui − uj)~λjk · ~ni

+
1

2
(ui − uk)~̃λ · ~nk − 2

3
αki(ui − uk)~λki · ~nj +

2

3
αjk(ui − uk)~λjk · ~ni

= Kij(ui − uj) + Kik(ui − uk) (51)

where Kij and Kik can be found easily, cf. (27). This now has a similar form
to the linear fluctuation (45).

If Kij has the same sign as kj in (45), sending Kij(ui − uj) to the same node
as kj(ui−uj) clearly leads to a locally positive distribution. If Kij and kj have
opposite signs then the distribution can be reversed, i.e. Kij(ui − uj) can be
sent to the opposite node on edge ij to ensure local positivity. The fluctuation
associated with edge ik can be treated in a similar manner.

Remark: When kj = 0 (or kk = 0) the N scheme gives no guidance on the di-
rection in which the fluctuation associated with edge ij (or ik) should be sent.
In fact, due to the earlier limiting of the interpolant (35), it doesn’t matter
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how the vertices i and j (or k) are chosen in (45), from the point of view of
ensuring positivity (in practice, it is assumed that the N scheme would have
sent its fluctuation in the direction suggested by kj > 0 (or kk > 0), and the
procedure described in the previous paragraph is followed). However, this is
the situation highlighted by the previous remark, in which the node to which
the edge contribution is sent switches: for the N scheme it coincides with that
contribution being zero, so the distribution varies continuously as the advec-
tion velocity rotates, but for the high order case this is no longer the case.
The result is that the new scheme does not depend continuously on the ad-
vection velocity, though this doesn’t appear to have any detrimental effect on
the numerical results, particularly the rate of convergence to the steady state
(see Section 5). Alternative, continuous, distributions have been considered,
but the results were invariably far less accurate than those obtained using this
approach.

Since Kij and Kik are bounded, the above approach automatically leads to
a positive scheme for small enough ∆t. Following the formulation of the N
scheme given by (45)–(48), the contributions due to edge ij,

Siui → Siui + ∆t Kij(ui − uj) if Kij ≤ 0

Sjuj →Sjuj + ∆t Kij(ui − uj) if Kij > 0 (52)

clearly lead to a positive distribution for small enough ∆t and, in the general
case, the fluctuation can be written

φ = K+
ij (ui − uj) + K−

ij (ui − uj) + K+
ik(ui − uk) + K−

ik(ui − uk) . (53)

The distribution therefore takes the form

Siui →Siui + ∆t [K−

ij (ui − uj) + K−

ik(ui − uk)]

Sjuj →Sjuj + ∆t K+
ij (ui − uj)

Skuk →Skuk + ∆t K+
ik(ui − uk) , (54)

where the vertices i, j and k have been chosen according to the inflow edges
dictated by the N scheme. This is clearly locally positive for

∆t ≤ min

(
−Si

K−
ij + K−

ik

,
Sj

K+
ij

,
Sk

K+
ik

)
, (55)

which implies global positivity, under a slightly different constraint on the
time-step. It is also worth recalling that any fluctuation which can be written
in the form

φ = K ′

ij(ui − uj) + K ′

jk(uj − uk) + K ′

ki(uk − ui) (56)
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where each of the K ′ are bounded, can be distributed in a positive manner.
There are clearly many possible alternatives to the method described above
but only this one, which has so far turned out to be the most successful, will
be considered here.

The form of the fluctuation given in (56) suggests that the scheme is compact,
but it should be remembered that this is only the case for the schemes based
on a linear representation of the data, for which the K ′ depend only on the
local data ui, uj and uk. All of the higher order schemes presented gather
information from further away so the scheme is no longer local, although in
the submesh reconstruction the stencil used to construct the fluctuation does
remain local to the mesh cell (not the subcell).

Once these contributions for the two edges have been gathered together to
give contributions from (sub)cell j to its vertices, the distribution coefficients
of the resulting N-like scheme, denoted by the superscript N∗, take the form

(φj
i )

N∗

= (αj
i )

N∗

φLIM
j . (57)

These can be limited in precisely the manner which created the PSI scheme
(11) by imposing linearity preservation on the N scheme, i.e.

(φj
i )

PSI∗ =
[(αj

i )
N∗

]+
∑

k∈△j
[(αj

k)
N∗ ]+

φLIM
j = (αj

i )
PSI∗ φLIM

j . (58)

The form of the distribution given in (57) ensures that at least one distri-
bution coefficient within each (sub)cell must be positive so, unlike with the
Abgrall-Roe scheme, conservation is assured without the need for any modi-
fications. As with the PSI scheme, the limiting procedure will never increase
the magnitude of the distribution coefficients, so the positivity condition (55)
is actually stronger than necessary.

Results: The results of applying the limiting to the two high order methods
are shown in Figures 9 and 10, using the same meshes as were used before
to obtain results for their respective basic schemes, described in Sections 3.1
and 3.2. The oscillations have clearly been removed in each case (the contour
plots show the smoothness of the solutions and the minimum and maximum
solution values are recreated exactly, to machine precision), at the expense
of a drop in peak value in the smooth test case. A more detailed comparison
with the other schemes is provided in the following section.
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Fig. 9. The modified Abgrall-Roe scheme applied to Test Case A (top) and Test
Case B (bottom).
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Fig. 10. The modified Caraeni scheme applied to Test Case A (top) and Test Case
B (bottom).
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5 Advection Results Comparison

Results have been shown in earlier sections to illustrate the behaviour of the
methods described. Here, they will be compared, not only for test cases A and
B (defined in Section 2.1) but also for a third situation (Test Case C), which
uses exactly the same velocity field but a smoother solution profile, given by

u(x, y, 0) =





G(x) for − 0.75 ≤ x ≤ −0.25 , y = 0,

0 otherwise
(59)

in which

G(x) =





g(4x + 3) for −0.75 ≤ x ≤ −0.5

g(−4x − 1) for −0.5 < x ≤ −0.25
(60)

where
g(x) = x5(70x4 − 315x3 + 540x2 − 420x + 126) . (61)

The exact solution to this problem, u(x, y) = G(r) for 0.25 ≤ r ≤ 0.75 with
u(x, y) = 0 elsewhere, has continuous fourth derivative so it is used to test
order of accuracy in the presence of turning points in the solution, using a
non-constant (in space) advection velocity on both structured and genuinely
unstructured (but uniform) triangular meshes.

The results obtained for the different methods are compared in Tables 1 and
2 and Figures 11–14. For the purposes of this comparison the new approach
will be known as the Submesh PSI scheme when it is applied to the Abgrall-
Roe scheme and as the Gradient PSI scheme when it is applied to Caraeni’s
method.

It is immediately apparent that the unphysical oscillations have been removed
completely in each case. There is very little difference between the quality of
the profile at outflow for the two schemes (see Figures 11 and 12), though
both are significantly better than the PSI scheme. In the smooth test case
(B), Caraeni’s scheme is clearly the best, but this is at the expense of the
oscillations that are visible close to discontinuities in test case A, which do
not reduce in amplitude as the mesh is refined.

The results shown in Figure 13 and Table 1 were obtained using a series of
uniform unstructured meshes, obtained using the same mesh generator, but
successively halving the background mesh size specified. This illustrates the
rate at which the error would decrease as finer meshes are used which are
not embedded in the coarser ones, a situation which is commonly encountered
when seeking more accurate solutions. The errors obtained on the finest pair
of meshes were used to estimate the order of accuracy obtained and shown in
the final two columns of Table 1. The same comparison was carried out on
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a series of structured triangular meshes (a square mesh was subdivided in a
manner whereby the diagonals alternated in direction from cell to cell) and
the corresponding results are shown in Figure 14 and Table 2.

On the unstructured meshes it is clear that all of the high order methods lose
their formal order of accuracy, particularly those which use a submesh recon-
struction. This is not surprising because the connectivity of the mesh changes
as the refinements are carried out, leading to a “bumpiness” in the reduction
of the errors and unreliable estimates of the orders of accuracy in Table 1.
In Caraeni’s scheme, for example, the approach used to reconstruct the nodal
solution gradients, given by Equations (16) and (17), drops in accuracy so
third order is no longer expected. Even so, the schemes based on gradient
recovery are significantly more accurate on the meshes used than any of the
others. On very fine meshes the submesh reconstruction schemes actually give
higher L∞ errors than the PSI scheme. For the original Abgrall-Roe scheme
this seems to be because it is reverting to the unstable central distribution at
key nodes, whereas the Submesh PSI scheme may lose accuracy because the
interpolant is being limited separately on each of the four subcells, affecting
the smoothness of the interpolant.

Higher orders of accuracy are obtained on the structured meshes, though the
theoretical values are not always achieved. There is, for example, still a loss
of accuracy in the approximation to the solution gradients at the boundary
nodes, which reduces the order in the L∞ norm for the gradient reconstruction
schemes. Also, the effect of the occasional use of a central difference is still
visible in the L∞ errors of the Abgrall-Roe scheme. The errors measured in
the L1 norm decrease at rates much closer to those predicted by the theory.

Overall, the gradient recovery methods still give more accurate results than
those which use the submesh reconstruction. In addition, Caraeni’s original
scheme is the most accurate of all, which is expected because it uses an LDA
distribution step, known to produce less numerical dissipation than the PSI
scheme in the piecewise linear case. For a smooth solution, where high accuracy
is more important than removing the possibility of small oscillations, such
LDA-type schemes are ideal. Approaches based on the PSI scheme are more
appropriate when discontinuities may occur. The very high order of accuracy
seen in Table 2 for the L1 error of the Gradient PSI scheme (higher even than
the original Caraeni scheme) is anomalous and suggests that even on these
fine meshes, convergence has not been reached. The limited scheme is always
the less accurate of the two, even at the finest mesh resolution.

Although the imposition of positivity tends to reduce accuracy when applied to
Caraeni’s scheme (as expected) it improves the accuracy when applied to the
method of Abgrall and Roe. This is most likely because, in its original form, the
latter approach resorts to a central distribution in some circumstances which,
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if used on its own, would be unstable. In contrast, the Gradient PSI scheme
has been modified from an LDA distribution of an unlimited fluctuation. A
small drop in accuracy is therefore expected in test cases such as this where
the advection velocity is not constant in space and the solution profile has a
turning point, where the scheme will typically return to the standard, second
order, PSI scheme.

Table 1
Accuracy measures for the uniform unstructured triangular meshes (none of the
“non-oscillatory” results goes negative). The figures shown in the first three columns
have been obtained on the 3806 node and subdivided 984 node meshes shown in
Figure 2.

Test Case A Test Case B Test Case C

Scheme min(u) max(u) max(u) outflow L1 order L∞ order

N 0.0000 1.0000 0.5877 0.94 0.84

PSI 0.0000 1.0000 0.8355 1.93 1.89

Abgrall-Roe -0.0593 1.0131 0.9702 1.46 1.01

Submesh PSI 0.0000 1.0000 0.9180 1.09 0.53

Caraeni -0.1464 1.1301 0.9996 2.05 1.57

Gradient PSI 0.0000 1.0000 0.9242 1.83 2.10

Table 2
Accuracy measures for the uniform structured triangular meshes (none of the “non-
oscillatory” results goes negative). The figures shown in the first three columns
have been obtained on regular 65× 33 node and subdivided 33× 17 node triangular
meshes.

Test Case A Test Case B Test Case C

Scheme min(u) max(u) max(u) outflow L1 order L∞ order

N 0.0000 1.0000 0.4670 0.91 0.75

PSI 0.0000 1.0000 0.7751 1.92 1.81

Abgrall-Roe -0.0951 1.0107 0.9143 2.57 1.54

Submesh PSI 0.0000 1.0000 0.8641 2.68 2.30

Caraeni -0.2382 1.2036 1.0001 3.05 2.01

Gradient PSI 0.0000 1.0000 0.8832 3.47 1.23

The rates of convergence to the steady state of all of the calculations shown in
Figures 3, 4, 6, 7, 9 and 10, along with those of the corresponding calculations
for Test Case C, are illustrated in Figure 15. No convergence acceleration
techniques, such as local time-stepping, have been applied. All of the methods
except that of Abgrall and Roe converge rapidly to machine accuracy. Among
the converging schemes, the N scheme is the most rapid in each case, and the
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Fig. 11. Square wave profile at outflow (left) and magnified (right). The solid line
without symbols is the exact solution.
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Fig. 12. Cosine-squared profile at outflow (left) and magnified (right). The solid line
without symbols is the exact solution.

PSI scheme gives faster convergence when applied to the linear representation
rather than any of the higher order representations. Otherwise, the identity of
the most rapidly converging scheme depends on the level to which the residuals
are required to be reduced. It should be noted that the results presented for
the high order limited schemes are for C = 0.25. The simulations still converge
to the same level for C = 0.5 but it invariably takes more than twice as long
to do so, even when the same time-step is used, and provides little difference
in the quality of the converged results. For higher values of C, the method
ceases to converge to machine accuracy.

This rapid convergence is encouraging, since recent work by Abgrall [3] has
shown that methods based on the nonlinear mappings, discussed in [8] and
used in this paper (see Equations (11) and (58)), to impose linearity preser-
vation on positive schemes might lead to attempts to solve ill-posed algebraic
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Fig. 13. Smooth polynomial profile approximated on the uniform unstructured trian-
gular meshes: L1 errors (left) and L∞ errors (right). The solid line without symbols
is of slope 3 in each case.
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Fig. 14. Smooth polynomial profile approximated on the uniform structured trian-
gular meshes: L1 errors (left) and L∞ errors (right). The solid line without symbols
is of slope 3 in each case.

systems. The convergence of each experiment to machine accuracy and the
relatively smooth contours seen in Figures 9 and 10 suggests that the alge-
braic systems, solved here by a pseudo-time iteration, are well posed. It must
be emphasised though that only the scalar problem has been considered. It
has so far proved difficult to maintain this rapid convergence when the PSI
scheme has been extended to nonlinear systems of equations [3] and this is
likely to remain true of the high order PSI schemes proposed here until a bet-
ter generalisation can be found. In such situations schemes based on the LDA
scheme gain a clear advantage in the simulation of smooth solutions [9].

It was mentioned at the end of Section 3 that a discontinuous representation of
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Fig. 15. Convergence histories for each of the methods on the meshes shown in
Figure 2 for Test Cases A (top left), B (top right) and C (bottom).

the dependent variable could be used, as long as the discontinuities remained
in regions where the underlying flow was smooth. It is therefore of interest to
note where the limiting procedure affects the polynomial. Figure 16 provides
an illustration of this by highlighting the edges along which the solution value
at the quadrature point has been modified (and hence the representation has
lost the full order of accuracy) for Test Case B. It shows that the affected
edges are typically in regions where the solution is close to turning points,
at peaks and close to zero on either side. It also shows that for this velocity
profile and for a linear equation the region expands as the profile diffuses.

6 A Simple Nonlinear Equation

The procedure described in the previous section can be extended to nonlinear
scalar equations. This is illustrated here using a version of the inviscid Burgers’
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Fig. 16. Illustration of the mesh edges along which the solution value at the quadra-
ture point has been modified when the Gradient PSI scheme is used, applied to Test
Case B.

equation which takes the form

ut +

(
u2

2

)

x

+ uy = 0 or ut + ~∇ · ~f = 0 (62)

where ~f = (u2

2
, u)T. This is slightly more complicated than linear advection

because Simpson’s rule is no longer accurate enough to evaluate the fluctuation

φ =
∮

∂△

~f · ~n dΓ (63)

exactly. However, it has already been mentioned that the approach can be ap-
plied to any order of reconstruction so, once an appropriate Nq-point quadra-
ture has been chosen, the fluctuation can be written

∮

∂△

~f · ~n dΓ =
∑

edges




Nq∑

l=1

wl ~f(ul) · ~n



e

(64)

=
∑

edges




Nq∑

l=1

wl ~f(ūl) · ~n



e

+
∑

edges




Nq∑

l=1

wl
(
~f(ul) − ~f(ūl)

)
· ~n



e

,

where wl are the quadrature weights and ū is the value of the linear interpolant
of u at that point along the given edge.

The polynomial interpolant is limited as before, but now the advection velocity
also depends on this value. However, the only new aspect of the above equation
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is that it contains a difference in the flux rather than the dependent variable.
This flux difference can be treated exactly as it would in a standard finite
volume scheme (when an appropriate Roe linearisation exists), writing it in
the form

~f(u) − ~f(ū) =
∂̃ ~f

∂u
(u − ū) = ~̃λ (u − ū) , (65)

where ~̃λ = ((u + ū)/2, 1)T . One consequence of this is that the time-step limit
now depends on the solution, but as long as this solution is bounded, positivity
can be maintained. Thus, for this nonlinear scalar equation, the fluctuation
can be written in the form

∮

∂△

~f · ~n dΓ = φLO +
∑

edges




Nq∑

l=1

wl (ul − ūl) ~̃λ · ~n



e

, (66)

which has exactly the same structure as the fluctuation given in (34). The

interpolant is limited in precisely the same manner and, because ~λ = ∂ ~f

∂u
is

bounded, this again leads to a positive scheme when an appropriate limit is
imposed on the time-step, cf. (51) and (55). In fact, the procedure is the same
as for linear advection, except that additional quadrature points are used in the
integration along each (sub)cell edge. The limiting is carried out as in (41) and
(42) and the minimum value of α taken along the edge, to remain consistent
with the limited correction taking the form δu′

i1i2
(~x) = C ′

i1i2
δui1i2(~x).
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Fig. 17. The meshes used for the inviscid Burgers’ equation results obtained with
the N, PSI and gradient recovery schemes (left) and the submesh reconstruction
schemes (right).
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6.1 Results

The two-dimensional inviscid Burgers’ equation (62) is approximated here on
uniform unstructured triangular meshes covering the domain [0, 1] × [0, 1], as
shown in Figure 17, with boundary conditions on the inflow boundaries (left,
right and bottom) given by

u(x, y) = 1.5 − 2x . (67)

This problem has the exact solution

u(x, y) =





−0.5 if y ≥ 0.5 and − 2(x − 0.75) + (y − 0.5) ≤ 0

1.5 if y ≥ 0.5 and − 2(x − 0.75) + (y − 0.5) ≥ 0

max
(
−0.5, min

(
1.5, x−0.75

y−0.5

))
otherwise.

(68)

The solutions to this problem obtained using the 6 approaches described in
this paper are shown in Figure 18, which shows contour plots of each of the so-
lutions, and Figure 19, which compares magnified sections of one-dimensional
slices through the profile along the lines x = 0.25, 0.5, 0.75, 1.0. The new lim-
iting procedure again removes completely the unphysical oscillations, but the
improvement in accuracy obtained by using the higher order representation is
less clear than it was for the linear advection equation.

The differences are most clearly illustrated in the magnified one-dimensional
profiles shown in Figure 19. In all cases the N scheme is the most diffusive and
the two non-positive schemes give oscillations close to the discontinuity. The
two positive high order schemes are also both better than the PSI scheme,
but the differences are fairly small, particularly close to the discontinuity, and
there is little to choose between the two schemes using a limited quadratic
representation. The convergence histories shown in Figure 20 show that all
of the methods except the Abgrall-Roe scheme again converge to machine
accuracy. The only difference now is that all of the positive schemes converge
at a very similar rate, nearly three times as fast as the LDA-based scheme.

These schemes have been applied to a range of initial profiles for the inviscid
Burgers’ equation (62) and the results suggest that for smooth solutions, the
original Caraeni scheme is the best method to use, but when discontinuities
appear one of the positive schemes should be applied, the higher order methods
giving slightly sharper shocks than the PSI scheme.
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Fig. 18. Solutions to the inviscid Burgers’ equation test case for the N scheme (top
left), the PSI scheme (top right), the Abgrall-Roe scheme (middle left), the Submesh
PSI scheme (middle right), the Caraeni scheme (bottom left) and Gradient PSI
scheme (bottom right).
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Fig. 19. Slices through the solutions to the inviscid Burgers’ equation test case for
the 6 schemes along x = 0.25 (top left), x = 0.5 (top right), x = 0.75 (bottom left)
and x = 1.0 (bottom right), magnifying the region where the solution drops from
u = 1.5. The solid lines with no symbols give the exact solution.
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Fig. 20. Convergence histories for each of the methods on the meshes shown in
Figure 17 for the inviscid Burgers’ equation test case.
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7 Conclusion

The issues associated with the construction of a conservative fluctuation split-
ting scheme which is both higher than second order accurate and positive have
been discussed, leading to the proposal of a modification which can be applied
to any of the existing high order schemes to impose positivity on them. It is
then shown that this produces a family of schemes which can be used to accu-
rately approximate solutions of linear and nonlinear scalar conservation laws
without creating any unphysical oscillations in the solution. The effectiveness
of the approach is illustrated for a third order scheme on unstructured trian-
gular meshes in two space dimensions. The theory extends straightforwardly
to three space dimensions and to arbitrarily high order schemes but, as with
the second order PSI scheme on which the new approaches are based, it is not
yet clear how best to apply this approach to nonlinear systems of equations.
The extension to time-dependent problems is also a challenging issue which is
currently being investigated.

The nature of the new scheme, which first produces a limited interpolant of
the dependent variable edge-by-edge, also provides the basis for a p-refinement
strategy for fluctuation splitting schemes. This could be implemented by using
a modification of the proposed approach to smooth the discontinuities created
by having a difference in the order of the representation between cells on ei-
ther side of a given edge, giving a continuous representation and leading to a
limited fluctuation and a conservative scheme (which could also be positive if
desired). Alternatively, discontinuities could be allowed and the limiting pro-
cedure applied to the interpolant could be modified to detect discontinuities in
the underlying flow and ensure that any such discontinuities in the represen-
tation are kept away from these regions. The resulting scheme would not be
conservative, but the allowed discrepancies should not cause significant errors
in the calculations.
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