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Abstract

A framework is presented for the construction of multidimensional slope

limiting operators for two-dimensional MUSCL-type finite volume schemes on

triangular grids. A major component of this new viewpoint is the definition

of multidimensional ‘maximum principle regions’. These are defined by local

constraints on the linear reconstruction of the solution which guarantee that

an appropriate maximum principle is satisfied. This facilitates both the con-

struction of new schemes and the improvement of existing limiters. It is the

latter which constitutes the bulk of this paper. Numerical results are presented

for the scalar advection equation and for a nonlinear system, the shallow water

equations. The extension to systems is carried out using Roe’s approximate

Riemann solver. All the techniques presented are readily generalised to three

dimensions.
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1 Introduction

In one dimension, upwind finite volume schemes have developed into reliable tools

for producing accurate numerical approximations of hyperbolic systems of partial

differential equations. In higher dimensions it has proved difficult to attain the same

degree of robustness and accuracy with simple extensions of these one-dimensional

techniques, particularly on unstructured grids. This is in part because the additional

multidimensional nature is not exploited sufficiently. As a consequence, a great deal

of research has been carried out into the generation of genuinely multidimensional,

high order schemes which retain the properties of those methods which have had such

success in one dimension.

High resolution schemes for conservation laws in one dimension are usually con-

structed using some form of TVD (Total Variation Diminishing) limiter (cf. [16, 11])

so that high order accuracy can be achieved whilst avoiding unphysical oscillations in

the solution. One commonly used approach is the slope limiting (MUSCL) technique

of van Leer [17], in which the limiter is applied in a geometric manner, to the gradients

of a piecewise linear reconstruction of the solution, to create a monotone scheme. In

more than one dimension the generalisation of the TVD condition proves to be pro-

hibitively restrictive on Cartesian meshes because the resulting scheme can be no more

than first order accurate [6], and difficult to define on arbitrary unstructured meshes.

Consequently, Spekreijse [15] proposed a new class of monotone scheme, based on

positivity of coefficients, a property which is simple to define in any number of di-

mensions. Much subsequent research has been directed towards multidimensional

numerical schemes which satisfy properties of this type, usually based on ensuring

that some form of local maximum principle is satisfied. More recently, there has
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been a great deal of work on limiting reconstructed solutions on unstructured grids,

see for example the work of Perthame and Qiu [13] in which interpolated solution

values are limited solely to avoid unphysical negative solution values (e.g. of density

and pressure in the Euler equations), or the Local Extremum Diminishing (LED)

schemes of Jameson [10]. More closely related still to the work presented here are the

slope limiting procedures for multidimensional cell-centre finite volume schemes for

unstructured triangular meshes proposed by Barth and Jespersen [3], Durlofsky et al.

[4], Liu [12] and Batten et al. [2]. Each of these schemes involves the construction of

an appropriate linear representation of the solution within a triangular cell which is

then limited in a manner which enforces a positivity constraint on the scheme. This

paper proposes a way in which these limiting techniques can be improved by taking

more account of the multidimensional nature of the problem.

The general two-dimensional MUSCL-type numerical scheme for the solution of

the scalar advection equation is described in Section 2. Some existing techniques

for reconstructing and limiting the local solution gradients are then discussed briefly,

followed by a simple technique for improving the accuracy of many of these limiting

procedures. This involves the construction of a ‘maximum principle region’ for each

cell, within which a gradient operator must lie in order to satisfy the desired maximum

principle. The framework described also allows the construction of new schemes, but

discussion of these is kept to a minimum since a scheme using these ideas has yet to

be devised which consistently improves on the existing methods (some preliminary

results for a maximally compressive limiter are presented in [8]). This is an area

which warrants further research. A critical comparison is then made between the

results obtained from the schemes described.
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Section 3 extends the applications of these methods to a nonlinear system of

equations, specifically the shallow water equations. The basic high order scheme

is described, in which Roe’s approximate Riemann solver is employed at grid edges,

locally decomposing the system into components to which the scalar scheme is applied.

2 The Scalar Advection Equation

In conservation form the two-dimensional scalar advection equation is written

ut + fx + gy = 0 , (2.1)

where the conservative fluxes f = f(u) and g = g(u) are functions of the solution

variable u.

A MUSCL-type cell-centre finite volume method for the numerical solution of

the scalar advection equation is described as follows. Integrate (2.1) over a control

volume, Ω say, (taken here to be a single grid cell) and apply the divergence theorem

to the resulting flux integral, giving the equation

∫ ∫

Ω
ut dx dy +

∮

∂Ω

~f · d~n = 0 , (2.2)

where ~f = (f, g)T is the flux function and ~n represents an outward pointing normal

to the boundary ∂Ω of the control volume.

Approximation of the boundary integral in (2.2) leads to the finite volume dis-

cretisation

du0

dt
= − 1

VΩ

Ne
∑

k=1

~f ∗

k · ~nk , (2.3)

in which u0 is defined to be the average value of u over the control volume Ω, ~f ∗

k

is a numerical flux function, VΩ is the area of the control volume, Ne is the number
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of edges it has and ~nk is the outward pointing normal to the kth edge, scaled by its

length. Note that since the control volumes coincide with the grid cells, the numerical

flux function ~f ∗

k is an approximation to the flux at a particular grid edge.

1

0u

2

3

2

0

31

Figure 2.1: The limiting planes as defined for a triangular control volume (left) and

a piecewise constant reconstruction of the solution (right).

Assuming that the approximation to u is constant within each cell and discon-

tinuous at the cell edges in general, as illustrated in Figure 2.1, a scheme which is

first order accurate in space and satisfies an appropriate local maximum principle

is obtained by introducing an upwind bias into the evaluation of the numerical flux

function. Taking as an example the kth edge of cell 0 in Figure 2.1, the upwinding is

applied [7] by defining

~f ∗(u0, uk) · ~nk =



















u0
~̃λ · ~nk if ~̃λ · ~nk ≥ 0

uk
~̃λ · ~nk otherwise ,

(2.4)

where uk is the value of u in the adjacent grid cell and ~̃λ is an appropriate local

average of the advection velocity ~λ =
(

∂f

∂u
, ∂g

∂u

)T
, evaluated from the solution values

u0 and uk. Note that an equivalent expression to (2.4) is given by

~f ∗(u0, uk) · ~nk =
1

2
(~f0 + ~fk) · ~nk −

1

2
|~̃λ · ~nk|(uk − u0) , (2.5)
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which is generally preferred because of its symmetry. Although only triangular grid

cells are illustrated in Figure 2.1, the numerical fluxes (2.4) and (2.5) can be used on

general polygonal cells, such as quadrilaterals.

2.1 Gradient Operators and Higher Order Schemes

Higher order spatial accuracy is achieved by introducing a higher order reconstruction

of the variable u within each grid cell. For example, a piecewise linear approximation

to the solution, such as that shown in Figure 2.2, which is exact for linear initial data,

leads to a method which is second order accurate in space.

Thus, given an initial constant (or average) solution value u within a cell we carry

out a linear reconstruction of u within that cell. This is expressed as

u = u + ~r · ~L , (2.6)

where ~r is a position vector relative to the centroid of the cell and ~L is a gradient

operator, yet to be defined. It is easy to show that such a reconstruction is conservative

in the sense that

1

VΩ

∫ ∫

Ω
u dx dy = u . (2.7)

It can also be shown [2] that when (2.7) holds the resulting numerical scheme (2.3)

will satisfy a local maximum principle for an appropriate restriction on the time-step

as long as the reconstruction (2.6) within each cell does not lead to the creation of

any new extrema at the midpoints of the edges of that cell. This is less restrictive

than the often used constraint [3] that no new extrema be created at the cell vertices.

The numerical flux function of Equation (2.5) at a cell edge is now written in

terms of the reconstructed solution values in the cells on either side of the edge and
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u u0k

uk0

cell k

Figure 2.2: A piecewise linear reconstruction of the solution for triangular control

volumes.

evaluated at the midpoint, as depicted in Figure 2.2. Thus, ~f ∗, as substituted into

(2.3) is written

~f ∗

k = ~f ∗(u0k, uk0) = ~f ∗(u0 + ~r0k · ~L0, uk + ~rk0 · ~Lk) , (2.8)

where ~rij is the vector from the centroid of cell i to the midpoint of the edge between

cells i and j, and ~Li is the gradient of the reconstructed solution in cell i. In the nota-

tion used here u0k is considered to be an interior reconstructed solution value relative

to the cell under consideration and uk0 is the corresponding exterior value, taken from

the adjacent cell (see Figure 2.2). As in the MUSCL approach, the discontinuity in

the reconstruction at the cell edge motivates the use of a Riemann solver to evaluate

the fluxes here. It remains to define an appropriate gradient operator ~L with which

to create the linear reconstruction of the solution within each grid cell.

A simple gradient operator, which is exact for linear data, can be defined on any

grid by taking the (average) solution value in three arbitrarily chosen, but preferably
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adjacent, cells (i, j and k say, forming a triangle with anticlockwise indexing of its

vertices) and defining

~∇(△ijk) =





































































−nx

nu

−ny

nu











for nu ≥ ǫ











0

0











otherwise .

(2.9)

Here ǫ ≈ 10−10 is a specified tolerance, and nx, ny and nu are the components of the

vector n normal to the plane, defined by the triangle ijk in xyu-space, cf. Figure 2.1,

and given by

n = (P i − P k) × (P j − P k) , (2.10)

where

P
∗

=





















x∗

y∗

u∗





















. (2.11)

The vector ~n has been constructed in such a way that nu always has the same sign

as the area of △ijk. The second option in (2.9) deals with the possibility of △ijk

having a non-positive area and rejects any such triangle as a basis for reconstruction.

Figure 2.3 illustrates that this can happen even on relatively uniform grids. Note also

that any consistent local approximation to ~∇u may be used in place of (2.9), e.g. the

Green-Gauss and Linear Least-Squares approximations used in [3].

Selecting ~L in (2.8) to be the ~∇ operator of (2.9) leads to a second order accurate

method (a linear solution is modelled exactly) but doesn’t prohibit overshoots and

undershoots at the midpoints of the cell edges, so the scheme does not satisfy a local

maximum principle. In order to impose this the gradient operator ~L must be defined

as a ‘limited’ form of ~∇.
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Figure 2.3: A reconstruction triangle with negative area (shaded).

2.1.1 Limited Gradient Operators

The imposition of a local maximum principle, as used in the work of [12, 4, 2], can

be achieved by constraining the gradient operator to lie within a ‘Maximum Principle

(MP) region’. The MP region for a given triangle can be represented simply by

choosing the cell centroid as the origin and then constructing the region around it

defined by the inequalities

min (uk − u0, 0) ≤ ~r0k · ~L ≤ max (uk − u0, 0) (2.12)

for k = 1, 2, 3 (on triangles), where ~r0k is the vector from the centroid of cell 0 to the

midpoint of the edge between cells 0 and k. An example of such a region is depicted

in Figure 2.4. The gradient operator ~L = (x, y)T is most easily considered as a vector

in two-dimensional space; then each pair of inequalities in (2.12) can be depicted

by two parallel lines (one solid and one dashed in the figure) perpendicular to the

relevant vector ~r0k. Figure 2.4 illustrates a case where u1, u2 > u0 and u3 < u0. If

uk − u0 has the same sign for each k then the MP region contains only the centroid

of the triangle, as would be expected since this indicates a local extremum. Hence,

any limiting procedure of the type considered in (2.12) reduces the scheme locally to

first order in these cases.

However, the constraints given by (2.12) ensure that the reconstruction has the
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following two properties:

• no new solution extrema are created at the midpoints of the cell edges, enforcing

the maximum principle.

• u0k − u0 has the same sign as uk − u0.

Note that this differs from the work of Barth and Jesperson [3] who, in addition,

propose that

• uk0 − u0k has the same sign as uk − u0.

This, in combination with the other two properties, generalises the one-dimensional

TVD constraint on the reconstruction, but it is not necessary for positivity and, as

in [4, 12, 2], is not enforced in this work. It is not clear how a MP region could be

constructed which would ensure the third property, but a simple post-processing step,

in which the reconstructed solution within the offending cells is limited a second time

(so that ~L → α∗~L), would be enough to attain it.

Existing limited schemes based on (2.9) can be expressed quite simply, in two

stages, as

a) Construct one or more of the gradient operators

~∇(△123) , ~∇(△023) , ~∇(△103) , ~∇(△120) , (2.13)

(in the notation of (2.9) and Figure 2.1).

b) Limit a gradient operator chosen from (2.13).

Importantly, the first of these two steps ensures that the reconstruction of a linear

solution is exact (for higher order accuracy), whichever of the four gradient operators
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~r01

~r02

~r03

*

Figure 2.4: A Maximum Principle region (shaded).

is chosen, and the limiting procedure will not interfere with this. As mentioned earlier,

the list given in (2.13) can be augmented by the Green-Gauss (~∇GG) and the Linear

Least-Squares (~∇LLS) gradient reconstructions suggested in [3], both of which can be

treated in the same manner in the second stage. In effect, step a) defines a finite set

of possible directions for the reconstructed gradient, and step b) chooses one of these

directions and bounds the magnitude of the slope.

The Limited Central Difference (LCD) scheme is the simplest and cheapest ap-

proach of the type described above. It considers only the operator ~∇(△123) in step

a), and then limits this by setting

αk =







































max (uk−u0,0)

~r0k ·
~L

if ~r0k · ~L > max (uk − u0, 0)

min (uk−u0,0)

~r0k ·
~L

if ~r0k · ~L < min (uk − u0, 0)

1 otherwise

(2.14)

for each edge k, from which the LCD gradient operator is calculated using

~LLCD = α ~∇(△123) =
(

min
k=1,2,3

αk

)

~∇(△123) . (2.15)
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The action of this limiter is illustrated in Figure 2.5. The initial operator ~∇(△123)

might place the tip of the vector ~L = (x, y)T at any one of the four points indicated

by asterisks in the figure. Point A is inside the shaded region and so is unaffected by

the limiting, while points B, C and D all lie beyond the region, and the limiting moves

them in a straight line back towards the centroid until they reach the boundary of

the MP region: for points C and D this means a return to the centroid and a first

order reconstruction.

*

*
*

*

A

B

C
D

Figure 2.5: The alternative limiting procedures.

Figure 2.5 also depicts an alternative limiting procedure, aimed at improving the

accuracy. Instead of retaining the direction of the original gradient operator, the

limited gradient is defined by the point in the MP region closest to the tip of the

vector ~L. The dashed arrows indicate the consequent movement of the points B, C

and D. Points such as C and D are most simply dealt with by a projection step (on

to the lines passing through the centroid perpendicular to ~r02 and ~r01 respectively)

to obtain the gradient direction, followed by a limiting step which moves the point
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on to the boundary of the region if it still remains outside. In practice, however,

the expense of changing the limiting procedure for point B outweighs the resulting

improvement in accuracy so the simpler strategy is applied in such cases.

The limiter of Durlofsky et al. [4] considers the last three gradient operators of

(2.13) together with ~L = ~0, discards those which lie outside the MP region and then

chooses ~LDurl to be the remaining operator with greatest magnitude.

The Maximum Limited Gradient (MLG) scheme of Batten et al. [2] combines the

two methodologies described above. It takes all four of the operators of (2.13), limits

each one in turn in the manner of the LCD scheme (2.14, 2.15) and then takes ~LMLG

to be the remaining operator with largest slope |~L|. Figure 2.5 can again be used as an

illustration. If the asterisks represent the four gradient operators in (2.13) then each

one is limited individually in precisely the manner of the LCD scheme, moving the

gradients into the allowed range, and the point furthest away from the cell centroid

is chosen - in this case the limited position of point B. As with the LCD scheme the

alternative technique of projecting the gradient operators on to the boundary of the

MP region can be used to improve the accuracy, although the resulting scheme can

be prohibitively expensive.

The MLG scheme gives the most compressive of the limiters described so far, and

the only one which reduces to the Superbee limiter [16] in one dimension, but it is

also the most expensive since it requires the computation of four gradient planes.

An even more accurate scheme (but yet more expensive) can be devised by including

the Green-Gauss and Limited Least-Squares operators [3] in (2.13) and applying the

MLG procedure to these as well. For practical purposes though, it is desirable to

construct as few gradient operators as possible.
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It should be noted that the neither the MLG, the Durlofsky nor the LCD scheme

depends continuously on the solution data, since the limited gradient operator changes

discontinuously as the operator on which it is based moves out of the sector enclosing

the MP region (see Figure 2.5). Whilst this is of little consequence for genuinely time-

dependent problems, it may interfere with convergence to a steady state by causing

limit cycling. The inclusion of the ‘projection’ step in the limiting procedure makes the

LCD scheme continuous as well as improving its accuracy. It is also worth commenting

that the general limiting procedure, as described by steps a) and b) earlier in this

section, can easily be extended to arbitrary polygonal/polyhedral control volumes in

two and three dimensions [8]. However, on structured quadrilateral grids this method

is considerably more diffusive than using a standard, dimensionally split scheme, see

for example [1], which is linearity preserving on the uniform grids used here (although

it might not be on distorted grids).

A final point to make in this section is that the construction of the MP region

facilitates the creation of a range of new limited gradient operators satisfying the given

maximum principle, even though they can generally only be imposed in a rather

artificial manner. For example, the steepest gradient operator which satisfies the

maximum principle is defined by the point in the MP region farthest away from the

centroid of the triangle (which is always a ‘corner’ of the region, as indicated by an

asterisk for the case shown in Figure 2.4), and this can be taken to be the limited

gradient, but only when a necessity for limiting is indicated. Further details and

preliminary results can be found in [8] and provides a subject for further research.

A scheme of this form, as applied on a triangular grid, can be summarised as
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follows:

• Calculate the gradient operator ~∇(△123) as in the LCD scheme and check

whether it creates any new local extrema at the edge midpoints.

– if not, select ~L = ~∇(△123).

– otherwise calculate the new gradient operator ~L, e.g. the one with maximal

slope which still satisfies the local maximum principle.

Finding a gradient operator of this type is relatively expensive, so it should only be

calculated in cells where the initial reconstruction gives rise to overshoots or under-

shoots. This process is significantly cheaper than finding the three other gradient

operators of the MLG limiter. In fact the local maximum principle could be checked

for all four gradient operators of the MLG limiter (2.13), but the extra compression

which results does not justify the computational expense.

2.2 Boundaries

The limiting procedure is applied very simply at boundaries of the domain. In step

a) of the limiting procedure only those gradient operators which can be constructed

from centroids of control volumes within the domain are included and the others are

assumed to be zero. Also, only internal solution values are considered in the search for

new extrema in the reconstruction. On a triangular grid this means that only a single

gradient operator is constructed (and limited) in each cell with just one boundary

edge. (For the LCD scheme this replaces the usual gradient operator.) The scheme

therefore produces an exact reconstruction of linear data on triangles except in cells

with multiple boundary edges. The fluxes through the inflow boundary edges are
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overwritten by their exact values. When periodic boundary conditions are used no

special treatment of the boundaries is needed.

2.3 Time Integration

Second order temporal accuracy may be obtained using a Runge-Kutta time-stepping

method such as

u0 = un
0 − ∆t

V

Ne
∑

k=1

~f
(

un
0 + ~r0k · ~Ln

0 , un
k + ~rk0 · ~Ln

k

)

· ~nk

un+1
0 =

1

2

(

un
0 + u0 −

∆t

V

Ne
∑

k=1

~f
(

u0 + ~r0k · ~L0, uk + ~rk0 · ~Lk

)

· ~nk

)

= un
0 − ∆t

2V
(δu0 + δu0) . (2.16)

However, the cost of the reconstructions and the local Riemann solutions is pro-

hibitively expensive, so the following approximation to the above explicit update

scheme [18] is used instead:

u0 = un
0 − ∆t

2V

Ne
∑

k=1

~f
(

un
0 + ~r0k · ~Ln

0

)

· ~nk

un+1
0 = un

0 − ∆t

V

Ne
∑

k=1

~f
(

u0 + ~r0k · ~Ln
0 , uk + ~rk0 · ~Ln

k

)

· ~nk . (2.17)

It has been shown [2] that on triangular grids any limiter of the type described in

this paper satisfies the maximum principle for a restriction on the time-step within

each cell given by

∆t ≤ V

3 maxk |~̃λ · ~nk|
. (2.18)

The maximum is taken over the adjacent cells indexed here by k. Note that a slight

drawback with the simplified scheme (2.17) is that it may allow small overshoots and

undershoots to appear in the solution. However, these do not interfere noticeably

with the overall robustness of the algorithm.
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2.4 Results

Numerical experiments have been carried out to test the behaviour of the schemes

described in this paper. The first test presented here is the advection of an initial

profile given by the double sine wave function

u = sin(2πx) sin(2πy) , (2.19)

with velocity ~λ = (1, 2)T over the domain [0, 1]× [0, 1]. This problem has been solved

on three types of grid, each of which is illustrated in Figure 2.6. Periodic boundary

conditions are applied. Note that the advection velocity has been chosen so that it

is not aligned with mesh edges, to provide a more strenuous test than was used to

produce the accuracy study of schemes of this type presented in [2], and hence there

is some loss of accuracy in comparison.

A B Q

Figure 2.6: The three grid types used for the numerical experiments.

Errors in the L1 and L∞ norms for the solutions obtained when t = 1.0 are shown

in Figures 2.7 and 2.8. In all of the numerical experiments the ratio ∆t/∆x = 0.16,

where ∆x is the length of any horizontal grid edge in Figure 2.6, giving a CFL of

about 0.358.

The first order scheme is unsurprisingly the least accurate in each case, while the

unlimited scheme is easily the best: it is the oscillations it allows in solutions with

rapidly varying gradients which cause problems when applied to nonlinear systems
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Figure 2.7: Errors for the double sine wave test case on grid A.
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Figure 2.8: Errors for the double sine wave test case on grid B.
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since they can lead to unphysical situations. On grid B each of the higher order

schemes produces very similar results, none of which can compete with the accuracy

attained on a uniform quadrilateral grid of type Q (using a dimensionally split upwind

scheme with the Superbee limiter [16]), particularly when taking into account the fact

that this grid contains only half the number of cells of the others. It can be seen from

Table I that none of the limited schemes achieves even first order accuracy on the

finest grids tested. This seems to be due to the anisotropic connectivity of this type

of grid and its effect on the limiting procedure. In essence, the limiting is applied

to solution values at the midpoints of the cell edges. On type A grids these lie on

the midpoints of the straight lines joining the cell centroids (see Figure 2.9), so the

limiting procedure gives higher accuracy than on grid B where this is not generally

the case. Furthermore, grid B will generally give a smaller MP region, simply because

the bounds in (2.12) are tighter due to the centroids of the adjacent triangles being

closer together which will generally give a smaller difference in u between cell centres.

A B

Figure 2.9: Bounding points (circles) for the limiting of the reconstruction for the two

grid types.

Note that other schemes which calculate only a single gradient operator, such as

Limited Least-Squares [3], produce results which are almost indistinguishable from
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those of the LCD scheme and so they are not presented here.

On type A grids the advantages of adding the projection step to the limiting

procedure become clear, particularly in the comparisons of the L∞ error. The pro-

jected LCD scheme provides a clear improvement, even over the solution obtained

on the quadrilateral grid. When taking into account the differing numbers of grid

cells (which would shift the graph of the quadrilateral scheme 0.15 to the right), the

projected LCD scheme still produces a solution of a prescribed accuracy faster than

the structured grid schemes. (The figures given as times in Table I are relative to the

time taken to calculate the first order solution and are all found for 64 × 64 grids.)

On the finest grids though, it is the MLG scheme which achieves the highest order of

accuracy in terms of the L1 error, the wider choice of gradient operators being more

useful here than the projection of a single one.

Grid type A Grid type B

Scheme Time L1 L∞ Peak L1 L∞ Peak

First order 1.00 0.87 0.88 0.23 0.90 0.90 0.28

LCD 1.32 0.91 0.67 0.52 0.88 0.70 0.48

Projected LCD 1.50 1.87 1.17 0.85 0.85 0.67 0.68

MLG 1.73 1.82 0.85 0.93 0.87 0.75 0.62

Unlimited 1.23 2.00 2.00 0.95 1.99 1.99 0.96

Quadrilaterals 0.75 1.65 0.91 0.86 1.65 0.91 0.86

Table I: Numerical orders of accuracy and relative cpu times for the double sine wave

test case and peak solution values for the rotating cone test case.

A second test case has been used to further clarify the relative merits of the given
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schemes. It involves the circular advection of the ‘cone’, given by the initial conditions

(when t = 0.0)

u =



















cos2(2πr) for r ≤ 0.25

0 otherwise

(2.20)

where r2 = (x + 0.5)2 + y2, with velocity ~λ = (−2πy, 2πx)T around the domain

[−1, 1] × [−1, 1], with zero conditions at each of the inflow boundaries. The initial

profile should be advected in a circle without change of shape until it returns to its

original position when t = 1.0.

Solution profiles obtained on 64× 64 grids of types A and B are shown in Figures

2.10 and 2.11 respectively. The maximum CFL within the computational domain

was 0.355. The corresponding peak solution values are shown in Table I. Of the

schemes presented on triangular grids, MLG is clearly the most compressive on grid

type A, confirming what was seen for the first test case, although there is some small

upstream distortion of the profile. This is not apparent in the projected LCD solution

and this is considerably better than the standard LCD approach. However, none of

the unstructured grid schemes matches the performance of the dimensionally split

Superbee limited upwinding on quadrilaterals. On grid B the projected LCD scheme

is now the best of the triangular grid methods. There is little to choose between the

solutions obtained from this and the MLG scheme, but the relative cpu times in Table

I indicate the greater efficiency of the former.

In general, it can be seen that the multidimensional projection step improves the

LCD scheme considerably, to the point where the solutions are at least as accurate as

those produced by the more expensive MLG scheme on all but the most uniform grids.

Using the projection step also seems to be particularly advantageous for reducing the
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Exact Solution First Order

LCD Projected LCD

MLG Quadrilaterals

Figure 2.10: Solutions for the rotating cone test case on grid type A.
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Exact Solution First Order

LCD Projected LCD

MLG Quadrilaterals

Figure 2.11: Solutions for the rotating cone test case on grid type B.
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errors in the L∞ norm.

3 Systems of Equations

The extension of these cell centred MUSCL-type finite volume schemes to nonlinear

systems of equations is straightforward. The conservative equations take the general

form

U t + F x + Gy = 0 , (3.1)

in which U is the vector of conserved variables and F , G are the conservative flux

vectors. These are defined explicitly for the shallow water equations in Appendix A.

Integrating the equations (3.1) over a control volume Ω (taken as before to be a

grid cell) and applying the divergence theorem to the flux integral results in

∫ ∫

Ω
U t dx dy +

∮

∂Ω
(F , G) · d~n = 0 , (3.2)

where ~n again represents an outward pointing normal to the boundary. Approximating

the boundary integral and defining U 0 to be the average value of U over the control

volume Ω leads to the finite volume discretisation

∂U 0

∂t
= − 1

VΩ

Ne
∑

k=1

(F ∗

k, G∗

k) · ~nk , (3.3)

where F ∗

k and G∗

k are the numerical flux functions, VΩ is the area of the control volume,

Ne is the number of edges of the control volume and ~nk is the outward pointing normal

to the kth edge, scaled by its length.

The generalisation of the first order scalar numerical flux function of (2.5) to

systems of equations is given by

(F ∗(U0, Uk), G
∗(U0, Uk)) · ~nk = 1

2
((F 0, G0) + (F k, Gk)) · ~nk

−1
2
|(Ã, B̃) · ~nk|(Uk − U 0) , (3.4)
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in which A = ∂F

∂U
and B = ∂G

∂U
are the flux Jacobians. The construction of Ã and

B̃, the conservative approximations to the Jacobian matrices, and subsequently the

numerical flux at the midpoint of the cell edge follows the technique suggested by Roe

[14].

The evolution of the discontinuous approximation to the solution is modelled by

constructing a series of approximate Riemann problems at the edge midpoints with

‘left’ and ‘right’ states, U0k and Uk0 respectively at edge k (the internal and external

states relative to the control volume), of the reconstructed solution, cf. Equation (2.8)

and Figure 2.2. Each Riemann problem is solved using the decomposition of the flux

difference across the edge into its characteristic components. This results in a high

order numerical flux function for edge k given by

(F ∗(U0k, Uk0), G
∗(U0k, Uk0)) · ~nk = 1

2
((F 0k, G0k) + (F k0, Gk0)) · ~nk

−1
2

∑Nw

j=1 α̃j|λ̃j|r̃j . (3.5)

Here Nw is the number of components (or ‘waves’) in the decomposition, the tilde

represents the Roe average value at the discontinuity (which is constructed so as to

ensure that the linearised decomposition is conservative [14]); αj is a wave ‘strength’;

λj and rj , respectively the eigenvalues and eigenvectors of the matrix (A,B) · ~nk,

represent the speed of the wave and the transformation of a perturbation of the

characteristic variables into a perturbation of the conservative variables. Details of

the exact values of these averages for the shallow water equations are supplied in

Appendix A. The substitution of (3.5) into (3.3) together with the application of an

appropriate time-stepping scheme (see Section 2.3) gives the final algorithm.

The slope limiting is commonly applied to the primitive variables which, for the

Euler equations ensures a positive reconstruction of both density and pressure (al-
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though this may not be maintained by the subsequent application of Roe’s approx-

imate Riemann solver). For the shallow water equations both primitive and conser-

vative variable limiting give positive depths so there is less advantage in using the

former, which is also slightly more expensive. Here the limiters are applied directly to

the conservative variables, mainly for the purposes of speed and simplicity. In many

ways characteristic limiting would seem to be the most natural implementation, see

for example [2], but its application to Roe’s scheme is not straightforward [8], and the

results are not improved greatly so they are not presented here.

3.1 Boundary Conditions

Simple characteristic boundary conditions are applied, in which the flux at a bound-

ary edge is evaluated directly using information from within the boundary cell to

supplement the imposed boundary values. The physical conditions applied at a given

edge correspond to the positive eigenvalues of the matrix C = A cos θ+B sin θ, where

(cos θ, sin θ)T is the local unit inward normal to the boundary. The conservative flux

Jacobian matrices A and B are given for the shallow water equations in Appendix A.

At a freestream boundary four possibilities arise: (a) supercritical inflow, where

all three eigenvalues are positive and the boundary flux is determined completely by

the imposed solution values; (b) supercritical outflow, where no eigenvalue is positive

and the flux is calculated from internal solution values; (c) subcritical inflow, where

one eigenvalue is negative and whose corresponding Riemann invariant is given its

internal value with everything else imposed; and finally (d) subcritical outflow, for

which one eigenvalue is positive and only the value of its associated Riemann invariant

is imposed. At a solid wall the normal velocity component is set to zero while the
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rest of the information required to calculate the flux is taken from the interior of the

domain.

3.2 Results

The first test case considered here is a simple steady state problem with an exact

solution, represented by an oblique hydraulic jump in a channel induced by a wedge

[1]. The geometry of the channel is indicated in Figure 3.1: it is 40m long, 30m wide

at inflow and the foot of the wedge is 10m in from the inflow boundary. The slope of

the wedge is chosen here to be 8.95◦, and inflow conditions of h = 1.0m, u = 8.57ms−1

and v = 0.0ms−1 (implying a Froude number of F = 2.74) are imposed. The resulting

steady state flow should be purely supercritical and divided into two regions by an

oblique hydraulic jump at an angle of 30◦ to the upstream flow. Downstream of this

jump the exact solution is given by hd = 1.5m and Fd = 2.074.

Three solutions are illustrated in Figure 3.1 and there is little to choose between

them. The final solution was obtained using a dimensionally split, van Leer limited

scheme on a regular 40× 30 cell quadrilateral grid, giving the same mesh scale as the

2609 cell triangular grid shown, but fewer cells, so it is unsurprising that this appears

to be the most diffusive of the schemes. When sampling the solution at a point on the

outflow boundary midway between the lower wall and the jump, each of the schemes

predicted the downstream flow parameters accurate to two decimal places.

The next test case presented is of shallow water flow for a partial dam break

problem [5]. The computational domain consists of a 200m× 200m basin bisected by

a dam. When t = 0.0s a break in the dam appears between 95m and 170m from one

end. Initially h = 10m on one side and h = 5m on the other, while the water has zero
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Grid MLG

Projected LCD Quadrilaterals

Figure 3.1: Grid and depth contours for the oblique hydraulic jump test case.

velocity everywhere. The 3688 cell grid on which the calculations were carried out is

shown in Figure 3.2. Each of the boundaries is treated as a solid wall except those on

the left and right which were given simple non-reflecting boundary conditions.
Figure 3.2 also shows the surface elevation of the water at t = 7.2s for the MLG

and projected LCD schemes (using the grid shown) and a superbee limited scheme

on a uniform 50 × 50 quadrilateral grid. The projected LCD scheme seems to give a

slightly smoother solution than the MLG scheme, and both appear to be better than

the quadrilateral scheme in the sharpness of capturing of the downstream hydraulic

jump. The dimensionally split scheme also appears to be tending towards instability

within the downstream vortex created at the lower edge of the break. The result

obtained using the projected LCD scheme is also pictured in Figure 3.3.

Finally, the schemes have been compared using a circular dam break test case.
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Grid MLG

Projected LCD Quadrilaterals

Figure 3.2: Grid and depth contours for the partial dam break test case.
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Figure 3.3: Projected LCD solution for the partial dam break test case.

Initially, two regions of still water are separated by a cylindrical wall (radius 11m)

centred in the 50m × 50m square domain shown in Figure 3.4. The depth of the

water is 10m within the cylinder and 1m outside. The wall is then removed and the

solutions shown in Figures 3.4 and 3.5 are after t = 0.69s.

Once more, the solutions are very similar. The radial symmetry is slightly dis-

torted by the effects of the grid in each case, but otherwise the solutions are very

accurate. In all cases the MLG and projected LCD schemes have given similar so-

lutions but the extra speed of the new scheme gives it the advantage in terms of

efficiency.

4 Conclusions

In this paper the construction, on triangular grids, of second order accurate, cell centre

finite volume schemes which satisfy a local maximum principle has been discussed.
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Grid MLG

Projected LCD Quadrilaterals

Figure 3.4: Grid and depth contours for the circular dam break test case.
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Figure 3.5: Projected LCD solution for the circular dam break test case.

The methods are based on MUSCL-type schemes [18] in two dimensions in which

a linear reconstruction of the solution is created within each cell from local data,

the gradient of which is limited to impose the desired local maximum principle on

the approximation. The methods have been tested on the scalar advection equation

and then extended to nonlinear systems of equations via Roe’s approximate Riemann

solver.

The limiters which satisfy the maximum principle are defined using constraints

applied at the midpoints of the edges of the cells. It has been shown that these

constraints define a region within which every limiter of the chosen type lies. Having

defined this region, it is possible to use the multidimensional nature of the problem to

apply a new limiting strategy to the existing schemes which improves their accuracy.

It is also possible to construct new schemes using these ideas, but this has been left

as a subject for future research. The ‘projected’ limiter schemes are cheaper than the
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most accurate of the previously constructed limiters, and in the scalar case it is often

considerably more accurate.

The scalar schemes have also been successfully applied to the shallow water equa-

tions using Roe’s scheme, and accurate results have been obtained by applying the

limiting procedure to the conservative variables. Although the improvement in ac-

curacy obtained by using the new scheme is less apparent than in the scalar case,

it is still significantly more efficient than the best of the existing schemes. Research

into more robust and accurate treatments of source terms and boundary conditions

associated with the shallow water equations is ongoing.
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A The Shallow Water Equations

The shallow water equations depend on the conservative variables and fluxes given

by

U =





















h

hu

hv





















, F =





















hu

hu2 + gh2

2

huv





















, G =





















hv

huv

hv2 + gh2

2





















, (A.1)
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where h is the depth of the flow, u and v are the x- and y-velocities and g is the

acceleration due to gravity, and result in the following flux Jacobians:

A =
∂F

∂U
=





















0 1 0

c2 − u2 2u 0

−uv v u





















, B =
∂G

∂U
=





















0 0 1

−uv v u

c2 − v2 0 2v





















, (A.2)

where c =
√

gh is the gravity wave speed.

In Roe’s approximate Riemann solver the eigenvalues and eigenvectors of the ma-

trix

(A, B) · ~n =





















0 nx ny

(c2 − u2)nx − uvny 2unx − vny uny

−uvnx + (c2 − v2)ny vnx unx + 2vny





















(A.3)

are

λ1 = ũnx + ṽny + c̃ , λ2 = ũnx + ṽny , λ3 = ũnx + ṽny − c̃ , (A.4)

and

r1 =





















1

ũ + c̃nx

ṽ + c̃ny





















, r2 =





















0

−c̃ny

c̃nx





















, r3 =





















1

ũ − c̃nx

ṽ − c̃ny





















, (A.5)

respectively, and the corresponding wave strengths in (3.5) are given by

α̃1 =
∆h

2
+

1

2c̃
(∆(hu)nx + ∆(hv)ny − (ũnx + ṽny)∆h)

α̃2 =
1

c̃
((∆(hv) − ṽ∆h) nx − (∆(hu) − ũ∆h) ny)

α̃3 =
∆h

2
− 1

2c̃
(∆(hu)nx + ∆(hv)ny − (ũnx + ṽny)∆h) , (A.6)

in which the Roe average states are

ũ =
uR

√
hR + uL

√
hL√

hR +
√

hL

, ṽ =
vR

√
hR + vL

√
hL√

hR +
√

hL

, c̃ =

√

g(hR + hL)

2
, (A.7)
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and the difference operator is given by

∆· = (·)R − (·)L . (A.8)

In two dimensions the subscripts ·L and ·R represent the interior and exterior edge

midpoint values relative to the cell under consideration.
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